IRFS3207ZPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFS3207ZPBF
型号: IRFS3207ZPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总11页 (文件大小:829K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97213  
IRFB3207ZPbF  
IRFS3207ZPbF  
IRFSL3207ZPbF  
Applications  
l High Efficiency Synchronous Rectification in  
SMPS  
HEXFET® Power MOSFET  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
75V  
RDS(on) typ.  
3.3m  
4.1m  
:
:
G
max  
ID  
170A  
Benefits  
l Improved Gate, Avalanche and Dynamic  
dv/dt Ruggedness  
l Fully Characterized Capacitance and  
Avalanche SOA  
D
D
D
l Enhanced body diode dV/dt and dI/dt  
Capability  
S
S
S
D
D
G
G
G
D2Pak  
TO-262  
TO-220AB  
IRFB3207ZPbF  
IRFS3207ZPbF  
IRFSL3207ZPbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current d  
Max.  
170c  
120c  
670  
Units  
A
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
PD @TC = 25°C  
300  
W
Maximum Power Dissipation  
Linear Derating Factor  
2.0  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
16  
Peak Diode Recovery f  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
180  
75  
mJ  
A
Avalanche Currentꢀc  
IAR  
Repetitive Avalanche Energy g  
EAR  
30  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
Max.  
0.50  
–––  
62  
Units  
RθJC  
–––  
0.50  
–––  
–––  
Junction-to-Case k  
RθCS  
RθJA  
RθJA  
°C/W  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220 k  
Junction-to-Ambient (PCB Mount) , D2Pak jk  
40  
www.irf.com  
1
05/29/06  
IRFB/S/SL3207ZPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
75 ––– –––  
––– 0.091 ––– V/°C Reference to 25°C, ID = 5mAd  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
–––  
3.3  
4.1  
4.0  
VGS = 10V, ID = 75A g  
mΩ  
V
VGS(th)  
–––  
VDS = VGS, ID = 150µA  
RG(int)  
IDSS  
Internal Gate Resistance  
Drain-to-Source Leakage Current  
0.80 –––  
20  
––– –––  
µA VDS = 75V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
V
V
V
DS = 75V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA  
GS = 20V  
GS = -20V  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 75A  
280 ––– –––  
S
––– 120 170  
nC ID = 75A  
VDS = 38V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
27  
33  
87  
20  
68  
55  
68  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgd  
VGS = 10V g  
Qsync  
ID = 75A, VDS =0V, VGS = 10V  
td(on)  
ns VDD = 49V  
ID = 75A  
tr  
Rise Time  
td(off)  
Turn-Off Delay Time  
RG = 2.7Ω  
VGS = 10V g  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 6920 –––  
––– 600 –––  
––– 270 –––  
––– 770 –––  
––– 960 –––  
pF VGS = 0V  
Coss  
Output Capacitance  
V
DS = 50V  
ƒ = 1.0MHz  
GS = 0V, VDS = 0V to 60V j  
Crss  
Reverse Transfer Capacitance  
Coss eff. (ER)  
Coss eff. (TR)  
V
Effective Output Capacitance (Energy Related)  
i
VGS = 0V, VDS = 0V to 60V h  
Effective Output Capacitance (Time Related)  
h
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
170  
c
(Body Diode)  
showing the  
integral reverse  
G
ISM  
Pulsed Source Current  
(Body Diode)ꢀdi  
Diode Forward Voltage  
Reverse Recovery Time  
––– ––– 670  
p-n junction diode.  
TJ = 25°C, IS = 75A, VGS = 0V g  
VSD  
trr  
––– –––  
1.3  
54  
V
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 64V,  
–––  
–––  
–––  
–––  
–––  
36  
41  
50  
67  
2.4  
ns  
IF = 75A  
62  
di/dt = 100A/µs g  
Qrr  
Reverse Recovery Charge  
75  
nC  
100  
–––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 75A.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.065mH  
RG = 25, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
„ ISD 75A, di/dt 1730A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRFB/S/SL3207ZPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2
3
4
5
6
7
-60 -40 -20  
T
0
20 40 60 80 100120140160180  
, Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12.0  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 75A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
rss  
oss  
gd  
V
V
V
= 60V  
= 38V  
= 15V  
DS  
DS  
DS  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
0
20  
40  
60  
80  
100 120 140  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q , Total Gate Charge (nC)  
V
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB/S/SL3207ZPbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100  
10  
1
100µsec  
T
= 25°C  
J
1msec  
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
V
= 0V  
GS  
Single Pulse  
0.1  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
, Source-to-Drain Voltage (V)  
V
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
180  
100  
95  
90  
85  
80  
75  
70  
Id = 5mA  
Limited By Package  
160  
140  
120  
100  
80  
60  
40  
20  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
2.5  
800  
I
D
16A  
28A  
700  
600  
500  
400  
300  
200  
100  
0
TOP  
2.0  
1.5  
1.0  
0.5  
0.0  
BOTTOM 75A  
-10  
0
10 20 30 40 50 60 70 80  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
4
www.irf.com  
IRFB/S/SL3207ZPbF  
1
D = 0.50  
0.1  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.1049 0.000099  
τ
JτJ  
τ
τ
Cτ  
τ
1τ1  
τ
2 τ2  
3τ3  
0.02  
0.01  
0.2469 0.001345  
0.1484 0.008469  
0.01  
Ci= τi/Ri  
τ /  
Notes:  
SINGLE PULSE  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
0.01  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle =  
Single Pulse  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
∆Τ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
200  
180  
160  
140  
120  
100  
80  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 1.0% Duty Cycle  
= 75A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
60  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
40  
20  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB/S/SL3207ZPbF  
20  
15  
10  
5
4.5  
4.0  
3.5  
3.0  
2.5  
I
= 30A  
= 64V  
F
V
R
T = 25°C  
J
T = 125°C  
J
I
I
I
I
= 150µA  
= 250µA  
= 1.0mA  
= 1.0A  
2.0  
1.5  
1.0  
0.5  
D
D
D
D
0
0
200  
400  
600  
800  
1000  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
di /dt (A/µs)  
T
F
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
20  
15  
10  
5
340  
260  
180  
100  
20  
I
= 45A  
= 64V  
I
= 30A  
V = 64V  
R
F
F
V
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
340  
I
= 45A  
= 64V  
F
V
R
T = 25°C  
J
260  
180  
100  
20  
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB/S/SL3207ZPbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 21b. Unclamped Inductive Waveforms  
Fig 21a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 23a. Gate Charge Test Circuit  
Fig 23b. Gate Charge Waveform  
www.irf.com  
7
IRFB/S/SL3207ZPbF  
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Part Marking Information  
Note: "P" in assembly line  
position indicates "Lead-Free"  
TO-220AB packages are not recommended for Surface Mount Application.  
8
www.irf.com  
IRFB/S/SL3207ZPbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
25  
www.irf.com  
9
IRFB/S/SL3207ZPbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
25  
10  
www.irf.com  
IRFB/S/SL3207ZPbF  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 04/06  
www.irf.com  
11  

相关型号:

IRFS3207ZTRLPBF

Power Field-Effect Transistor, 120A I(D), 75V, 0.0041ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3207ZTRRPBF

Power Field-Effect Transistor, 120A I(D), 75V, 0.0041ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3306

60V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRFS3306PBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFS3306TRLPBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFS3307

HEXFET Power MOSFET
INFINEON

IRFS3307PBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFS3307TRL

Power Field-Effect Transistor, 75A I(D), 75V, 0.0063ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRFS3307TRLPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.0063ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS3307TRR

暂无描述
INFINEON

IRFS3307TRRPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.0063ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS3307ZPBF

HEXFET Power MOSFET
INFINEON