IRG7PH30K10PBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR; 绝缘栅双极晶体管
IRG7PH30K10PBF
型号: IRG7PH30K10PBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR
绝缘栅双极晶体管

晶体 晶体管 栅
文件: 总9页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96156A  
IRG7PH30K10PbF  
INSULATED GATE BIPOLAR TRANSISTOR  
Features  
• Low VCE (ON) Trench IGBT Technology  
C
VCES = 1200V  
• Low Switching Losses  
• Maximum Junction Temperature 175 °C  
• 10 µS short Circuit SOA  
• SquareRBSOA  
IC = 23A, TC = 100°C  
tSC 10µs, TJ(max) =175°C  
G
• 100% of the parts tested for ILM  

E
• Positive VCE (ON) Temperature Co-Efficient  
• TightParameterDistribution  
• LeadFreePackage  
VCE(on) typ. = 2.05V  
n-channel  
C
E
C
Benefits  
G
• High Efficiency in a Wide Range of Applications  
• Suitable for a Wide Range of Switching Frequencies due to  
Low VCE (ON) and Low Switching Losses  
TO-247AC  
• Rugged Transient Performance for Increased Reliability  
• Excellent Current Sharing in Parallel Operation  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VCES  
Collector-to-Emitter Voltage  
1200  
33  
V
IC @ TC = 25°C  
Continuous Collector Current  
Continuous Collector Current  
Nominal Current  
IC @ TC = 100°C  
23  
A
INOMINAL  
9.0  
ICM  
Pulse Collector Current Vge = 15V  
Clamped Inductive Load Current Vge = 20V  
Continuous Gate-to-Emitter Voltage  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
27  
ILM  
36  
V
VGE  
±30  
PD @ TC = 25°C  
210  
W
PD @ TC = 100°C  
110  
TJ  
-55 to +175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
°C  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
Typ.  
–––  
0.24  
40  
Max.  
0.70  
–––  
Units  
Rθ (IGBT)  
JC  
Thermal Resistance Junction-to-Case-(each IGBT)  
°C/W  
Rθ  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
CS  
Rθ  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
–––  
JA  
1
www.irf.com  
06/23/09  
IRG7PH30K10PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
CT6  
Parameter  
Collector-to-Emitter Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 250µA  
V(BR)CES  
1200  
1.27  
2.05  
2.56  
2.65  
V
V(BR)CES/TJ  
VGE = 0V, IC = 1mA (25°C-175°C)  
IC = 9.0A, VGE = 15V, TJ = 25°C  
IC = 9.0A, VGE = 15V, TJ = 150°C  
IC = 9.0A, VGE = 15V, TJ = 175°C  
VCE = VGE, IC = 400µA  
CT6  
Temperature Coeff. of Breakdown Voltage  
V/°C  
5,6,7  
8,9,10  
2.35  
VCE(on)  
VGE(th)  
Collector-to-Emitter Saturation Voltage  
V
Gate Threshold Voltage  
5.0  
7.5  
V
mV/°C  
S
8,9  
VGE(th)/ TJ  
V
CE = VGE, IC = 400µA (25°C - 175°C)  
10,11  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-16  
6.2  
VCE = 50V, IC = 9.0A, PW = 80µs  
VGE = 0V, VCE = 1200V  
gfe  
ICES  
Collector-to-Emitter Leakage Current  
1.0  
25  
µA  
nA  
VGE = 0V, VCE = 1200V, TJ = 175°C  
400  
IGES  
VGE = ±30V  
Gate-to-Emitter Leakage Current  
±100  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
18  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 9.0A  
45  
8.7  
20  
68  
13  
30  
760  
600  
1360  
31  
41  
130  
56  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
VGE = 15V  
CT1  
nC  
µJ  
ns  
V
CC = 600V  
IC = 9.0A, VCC = 600V, VGE = 15V  
G = 22, L = 1000µH, LS = 150nH,TJ = 25°C  
CT4  
CT4  
530  
380  
910  
14  
R
Energy losses include tail & diode reverse recovery  
IC = 9.0A, VCC = 600V, VGE = 15V  
RG = 22 , L = 1000µH, LS = 150nH,TJ = 25°C  
24  
td(off)  
tf  
Turn-Off delay time  
Fall time  
110  
38  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 9.0A, VCC = 600V, VGE=15V  
12,14  
CT4  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
850  
750  
1600  
12  
RG=22 , L=1000µH, LS=150nH, TJ = 175°C  
µJ  
ns  
pF  
Energy losses include tail & diode reverse recovery  
IC = 9.0A, VCC = 600V, VGE=15V  
WF1, WF2  
13,15  
CT4  
R
G = 22, L = 1000µH, LS = 150nH  
23  
td(off)  
tf  
TJ = 175°C  
WF1  
Turn-Off delay time  
Fall time  
130  
270  
1070  
63  
WF2  
Cies  
Coes  
Cres  
VGE = 0V  
17  
Input Capacitance  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
26  
f = 1.0Mhz  
TJ = 175°C, IC = 36A  
VCC = 960V, Vp =1200V  
Rg = 10, VGE = +20V to 0V, TJ =175°C  
VCC = 600V, Vp =1200V ,TJ = 150°C,  
Rg = 22, VGE = +15V to 0V  
4
RBSOA  
SCSOA  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
FULL SQUARE  
10  
CT2  
16, CT3  
WF4  
µs  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 51.  
‚ Pulse width 400µs; duty cycle 2%.  
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
„ R is measured at TJ of approximately 90°C.  
θ
2
www.irf.com  
IRG7PH30K10PbF  
35  
30  
25  
20  
15  
10  
5
225  
200  
175  
150  
125  
100  
75  
50  
25  
0
0
25  
50  
75  
100  
(°C)  
125  
150  
175  
0
25  
50  
75  
T
100 125 150 175  
(°C)  
T
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
CaseTemperature  
Temperature  
100  
100  
10µsec  
10  
100µsec  
1msec  
10  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
1
0.1  
10  
100  
1000  
10000  
1
10  
100  
(V)  
1000  
10000  
V
V
(V)  
CE  
CE  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 175°C; VGE =15V  
Fig. 4 - Reverse Bias SOA  
TJ = 175°C; VGE =20V  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
GE  
GE  
GE  
GE  
GE  
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
0
0
2
4
6
8
10 12 14 16 18  
(V)  
0
2
4
6
8
10 12 14 16 18  
(V)  
V
V
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
www.irf.com  
3
IRG7PH30K10PbF  
40  
18  
16  
14  
12  
10  
8
V
= 18V  
GE  
35  
30  
25  
20  
15  
10  
5
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
I
I
I
= 4.5A  
= 9.0A  
= 18A  
CE  
CE  
CE  
6
4
2
0
0
0
2
4
6
8
10 12 14 16 18  
(V)  
5
10  
15  
20  
V
(V)  
GE  
V
CE  
Fig. 8 - Typical VCE vs. VGE  
Fig. 7 - Typ. IGBT Output Characteristics  
TJ = -40°C  
TJ = 175°C; tp = 80µs  
14  
12  
10  
8
18  
16  
14  
12  
I
I
I
= 4.5A  
= 9.0A  
= 18A  
I
I
I
= 4.5A  
= 9.0A  
= 18A  
CE  
CE  
CE  
CE  
CE  
CE  
10  
8
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 9 - Typical VCE vs. VGE  
Fig. 10 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = 175°C  
2000  
1600  
1200  
800  
400  
0
40  
35  
30  
25  
20  
15  
10  
5
E
ON  
T = 25°C  
E
J
OFF  
T
= 175°C  
J
0
5
10  
15  
20  
0
5
10  
15  
I
(A)  
V
(V)  
C
GE  
Fig. 12 - Typ. Energy Loss vs. IC  
Fig. 11- Typ. Transfer Characteristics  
TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22; VGE = 15V  
VCE = 50V; tp = 10µs  
4
www.irf.com  
IRG7PH30K10PbF  
1000  
100  
10  
1000  
900  
800  
700  
600  
E
ON  
t
F
td  
OFF  
t
R
E
OFF  
td  
ON  
0
10  
20  
30  
()  
40  
50  
0
5
10  
(A)  
15  
20  
R
G
I
C
Fig. 13 - Typ. Switching Time vs. IC  
TJ = 175°C; L = 1000µH; VCE = 600V, RG = 22; VGE = 15V  
Fig. 14 - Typ. Energy Loss vs. RG  
TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V  
60  
50  
40  
30  
20  
10  
48  
40  
32  
24  
16  
8
1000  
t
F
T
sc  
100  
td  
OFF  
I
sc  
t
R
10  
td  
ON  
1
8
10  
12  
(V)  
14  
16  
0
10  
20  
30  
()  
40  
50  
V
R
GE  
G
Fig. 15 - Typ. Switching Time vs. RG  
TJ = 175°C; L = 1000µH; VCE = 600V, ICE = 9.0A; VGE = 15V  
Fig. 16 - VGE vs. Short Circuit Time  
VCC = 600V; TC = 150°C  
16  
14  
12  
10  
8
10000  
V
V
= 600V  
= 400V  
CES  
CES  
Cies  
1000  
100  
6
Coes  
4
10  
1
Cres  
2
0
0
10  
Q
20  
30  
40  
50  
0
100  
200  
V
300  
400  
500  
, Total Gate Charge (nC)  
(V)  
G
CE  
Fig. 18- Typical Gate Charge vs. VGE  
Fig. 17 - Typ. Capacitance vs. VCE  
ICE = 9.0A; L = 1.0mH  
VGE= 0V; f = 1MHz  
www.irf.com  
5
IRG7PH30K10PbF  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
τ
0.01068 0.000005  
τ
J τJ  
τ
Cτ  
0.02  
0.18156 0.000099  
0.31802 0.001305  
0.19105 0.009113  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case  
6
www.irf.com  
IRG7PH30K10PbF  
L
L
80 V  
+
-
DUT  
VCC  
DUT  
Vclamped  
Rg  
0
1K  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
L
DIODE CLAMP  
VCC  
DUT /  
VCC  
DRIVER  
Rg  
Fig.C.T.3 - S.C. SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
R = VCC  
ICM  
C fo rce  
100K  
D1  
22K  
C sen se  
DUT  
VCC  
0.0075µ  
G force  
Rg  
DUT  
E sense  
E force  
Fig.C.T.5 - Resistive Load Circuit  
Fig.C.T.6 - BVCES Filter Circuit  
www.irf.com  
7
IRG7PH30K10PbF  
700  
600  
500  
400  
300  
200  
100  
0
35  
30  
25  
20  
15  
10  
5
900  
18  
16  
14  
12  
10  
8
800  
tf  
700  
600  
500  
tr  
90% test  
current  
TEST CURRENT  
90% ICE  
400  
300  
200  
100  
0
6
10% test  
current  
5% ICE  
5% VCE  
4
5% VCE  
2
0
0
Eon Los s  
Eoff Loss  
-100  
-2  
-100  
-5  
-5  
0
5
10  
-1.8 -0.8 0.2  
1.2  
2.2  
3.2  
time(µs)  
time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 175°C using Fig. CT.4  
@ TJ = 175°C using Fig. CT.4  
800  
700  
600  
500  
400  
300  
200  
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
VCE  
ICE  
-100  
-5  
-10  
0
5
10  
Time (uS)  
Fig. WF4 - Typ. S.C. Waveform  
@ TJ = 150°C using Fig. CT.3  
8
www.irf.com  
IRG7PH30K10PbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/2009  
www.irf.com  
9

相关型号:

IRG7PH35U-EP

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH35UD-EP

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRG7PH35UD1-EP

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRG7PH35UD1MPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE
INFINEON

IRG7PH35UD1MPBF_15

Low Switching Losses
INFINEON

IRG7PH35UD1PBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRG7PH35UDPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRG7PH35UPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH35UPBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH37K10D-EPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRG7PH37K10DPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRG7PH37K10DPBF_15

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON