IRG7PH35UD1-EP [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS; 超低VF二极管感应加热和软开关应用绝缘栅双极晶体管
IRG7PH35UD1-EP
型号: IRG7PH35UD1-EP
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
超低VF二极管感应加热和软开关应用绝缘栅双极晶体管

晶体 二极管 开关 晶体管 栅
文件: 总9页 (文件大小:402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97455  
IRG7PH35UD1PbF  
IRG7PH35UD1-EP  
INSULATEDGATEBIPOLARTRANSISTORWITHULTRA-LOWVFDIODE  
FORINDUCTIONHEATINGANDSOFTSWITCHINGAPPLICATIONS  
Features  
C
• Low VCE (ON) trench IGBT Technology  
• Low Switching Losses  
• SquareRBSOA  
• Ultra-LowVF Diode  
• 1300Vpk Repetitive Transient Capacity  
VCES = 1200V  
I NOMINAL = 20A  
G
• 100% of the Parts Tested for ILM  

TJ(max) = 150°C  
VCE(on) typ. = 1.9V  
• Positive VCE (ON) Temperature Co-Efficient  
• TightParameterDistribution  
• LeadFreePackage  
E
n-channel  
Benefits  
C
C
• Device optimized for induction heating and soft switching  
applications  
• High Efficiency due to Low VCE(on), low switching losses  
andUltra-lowVF  
• Ruggedtransientperformanceforincreasedreliability  
• Excellent current sharing in parallel operation  
• Low EMI  
E
E
C
C
G
G
TO-247AC  
TO-247AD  
IRG7PH35UD1PbF  
IRG7PH35UD1-EP  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
Collector-to-Emitter Voltage  
Continuous Collector Current  
Continuous Collector Current  
Nominal Current  
1200  
V
VCES  
50  
IC @ TC = 25°C  
25  
IC @ TC = 100°C  
20  
INOMINAL  
ICM  
Pulse Collector Current, VGE=15V  
Clamped Inductive Load Current, VGE=20V  
60  
A
ILM  
80  
Diode Continous Forward Current  
Diode Continous Forward Current  
Diode Maximum Forward Current  
50  
25  
IF @ TC = 25°C  
IF @ TC = 100°C  
80  
IFM  
Continuous Gate-to-Emitter Voltage  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
±30  
V
VGE  
179  
W
PD @ TC = 25°C  
71  
PD @ TC = 100°C  
-55 to +150  
TJ  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
°C  
TSTG  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
Typ.  
–––  
–––  
0.24  
40  
Max.  
0.70  
1.35  
–––  
Units  
Rθ (IGBT)  
Thermal Resistance Junction-to-Case-(each IGBT)  
Thermal Resistance Junction-to-Case-(each Diode)  
JC  
Rθ (Diode)  
JC  
°C/W  
Rθ  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
CS  
Rθ  
JA  
–––  
1
www.irf.com  
02/09/2010  
IRG7PH35UD1PbF/IRG7PH35UD1-EP  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min.  
1200  
Typ. Max. Units  
Conditions  
VGE = 0V, IC = 100µA  
V(BR)CES  
Collector-to-Emitter Breakdown Voltage  
Repetitive Transient Collector-to-Emitter Voltage  
Temperature Coeff. of Breakdown Voltage  
Collector-to-Emitter Saturation Voltage  
1300  
V
V(BR)Transient  
V(BR)CES/TJ  
VCE(on)  
VGE = 0V, TJ = 75°C, PW 10µs  
VGE = 0V, IC = 1mA (25°C-150°C)  
IC = 20A, VGE = 15V, TJ = 25°C  
IC = 20A, VGE = 15V, TJ = 150°C  
VCE = VGE, IC = 600µA  
V
1.2  
1.9  
2.3  
V/°C  
V
2.2  
VGE(th)  
gfe  
Gate Threshold Voltage  
3.0  
6.0  
V
S
VCE = 50V, IC = 20A, PW = 30µs  
VGE = 0V, VCE = 1200V  
Forward Transconductance  
Collector-to-Emitter Leakage Current  
22  
ICES  
1.0  
120  
1.15  
1.08  
100  
µA  
V
GE = 0V, VCE = 1200V, TJ = 150°C  
VFM  
IGES  
IF = 20A  
Diode Forward Voltage Drop  
1.26  
V
IF = 20A, TJ = 150°C  
VGE = ±30V  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Total Gate Charge (turn-on)  
Min.  
Typ. Max. Units  
Conditions  
Qg  
IC = 20A  
85  
15  
35  
130  
Qge  
Qgc  
VGE = 15V  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
20  
nC  
VCC = 600V  
50  
IC = 20A, VCC = 600V, VGE = 15V  
Eoff  
RG = 10 , L = 200µH,LS = 150nH, TJ = 25°C  
Turn-Off Switching Loss  
620  
850  
µJ  
ns  
Energy losses include tail  
td(off)  
tf  
IC = 20A, VCC = 600V, VGE = 15V  
RG = 10, L = 200µH,LS = 150nH, TJ = 25°C  
IC = 20A, VCC = 600V, VGE=15V  
Turn-Off delay time  
Fall time  
160  
80  
180  
105  
Eoff  
RG = 10, L = 200µH,LS = 150nH, TJ = 150°C  
Turn-Off Switching Loss  
1120  
µJ  
ns  
pF  
Energy losses include tail  
IC = 20A, VCC = 600V, VGE = 15V  
RG = 10, L = 200µH,LS = 150nH, TJ = 150°C  
VGE = 0V  
td(off)  
tf  
Turn-Off delay time  
Fall time  
190  
210  
1940  
120  
40  
Cies  
Coes  
Cres  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
VCC = 30V  
f = 1.0Mhz  
TJ = 150°C, IC = 80A  
V
CC = 960V, Vp =1200V  
RBSOA  
Reverse Bias Safe Operating Area  
FULL SQUARE  
Rg = 10, VGE = +20V to 0V  
Notes:  
 VCC = 80% (VCES), VGE = 20V, RG = 10Ω.  
‚ Pulse width limited by max. junction temperature.  
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
„ Rating for Hard Switching conditions. Rating is higher in Soft Switching conditions.  
Rθ is measured at TJ approximately 90°C.  
2
www.irf.com  
IRG7PH35UD1PbF/IRG7PH35UD1-EP  
50  
40  
30  
20  
10  
0
200  
175  
150  
125  
100  
75  
50  
25  
0
25  
50  
75  
100  
(°C)  
125  
150  
25  
50  
75  
100  
(°C)  
125  
150  
T
C
T
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
1.0  
1000  
I
= 600µA  
C
0.9  
0.8  
0.7  
0.6  
0.5  
100  
10  
1
25  
50  
75  
100  
125  
150  
10  
100  
1000  
10000  
T
, Temperature (°C)  
V
(V)  
J
CE  
Fig. 3 - Typical Gate Threshold Voltage  
Fig. 4 - Reverse Bias SOA  
(Normalized)vs.JunctionTemperature  
TJ = 150°C; VGE = 20V  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
GE  
GE  
GE  
GE  
GE  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
V
= 18V  
GE  
GE  
GE  
GE  
GE  
= 15V  
= 12V  
= 10V  
= 8.0V  
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 30µs  
TJ = 25°C; tp = 30µs  
www.irf.com  
3
IRG7PH35UD1PbF/IRG7PH35UD1-EP  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
GE  
GE  
GE  
GE  
GE  
25°C  
150°C  
0
2
4
6
8
10  
0.0  
0.5  
1.0  
(V)  
1.5  
2.0  
V
F
V
(V)  
CE  
Fig. 8 - Typ. Diode Forward Voltage Drop  
Fig. 7 - Typ. IGBT Output Characteristics  
Characteristics  
TJ = 150°C; tp = 30µs  
8
7
6
5
8
7
6
5
I
I
I
= 10A  
= 20A  
= 40A  
I
I
I
= 10A  
= 20A  
= 40A  
CE  
CE  
CE  
CE  
CE  
CE  
4
3
2
1
4
3
2
1
4
8
12  
16  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 10 - Typical VCE vs. VGE  
Fig. 9 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = -40°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
7
6
5
4
3
2
1
I
I
I
= 10A  
= 20A  
= 40A  
CE  
CE  
CE  
T = 150°C  
J
T
= 25°C  
J
4
5
6
7
8
9
10  
5
10  
15  
20  
V
Gate-to-Emitter Voltage (V)  
V
(V)  
GE,  
GE  
Fig. 11 - Typical VCE vs. VGE  
Fig. 12 - Typ. Transfer Characteristics  
TJ = 150°C  
VCE = 50V; tp = 30µs  
4
www.irf.com  
IRG7PH35UD1PbF/IRG7PH35UD1-EP  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
1000  
t
F
E
OFF  
td  
OFF  
100  
600  
400  
200  
10  
0
10  
20  
30  
40  
50  
0
10  
20  
(A)  
30  
40  
I
C
I
(A)  
C
Fig. 13 - Typ. Energy Loss vs. IC  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 150°C; L = 680µH; VCE = 600V, RG = 10; VGE = 15V  
TJ = 150°C; L = 680µH; VCE = 600V, RG = 10; VGE = 15V  
2800  
10000  
2600  
2400  
2200  
td  
OFF  
1000  
E
2000  
1800  
1600  
1400  
1200  
1000  
OFF  
t
F
100  
10  
0
25  
50  
75  
100  
125  
0
20  
40  
60  
()  
80  
100  
120  
R
G
Rg ()  
Fig. 16 - Typ. Switching Time vs. RG  
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V  
TJ = 150°C; L = 680µH; VCE = 600V, ICE = 20A; VGE = 15V  
16  
10000  
14  
12  
10  
8
V
V
= 600V  
= 400V  
CES  
CES  
Cies  
1000  
6
100  
10  
Coes  
Cres  
4
2
0
0
100  
200  
300  
(V)  
400  
500  
600  
0
20  
Q
40  
60  
80  
100  
, Total Gate Charge (nC)  
V
CE  
G
Fig. 17 - Typ. Capacitance vs. VCE  
Fig. 18 - Typical Gate Charge vs. VGE  
VGE= 0V; f = 1MHz  
ICE = 20A; L = 2.4mH  
www.irf.com  
5
IRG7PH35UD1PbF/IRG7PH35UD1-EP  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.02  
0.01  
0.017  
0.218  
0.299  
0.177  
0.000013  
0.000141  
0.002184  
0.013107  
τ
τ
J τJ  
τ
Cτ  
0.01  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
SINGLE PULSE  
Notes:  
( THERMAL RESPONSE )  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.05  
0.00756 0.000005  
τ
τ
J τJ  
τ
Cτ  
0.56517 0.000677  
0.54552 0.003514  
0.25085 0.019551  
0.02  
0.01  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 20. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
6
www.irf.com  
IRG7PH35UD1PbF/IRG7PH35UD1-EP  
L
L
80 V  
+
-
DUT  
VCC  
VCC  
0
DUT  
VCC  
1K  
Rg  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
C force  
diode clamp /  
DUT  
100K  
L
D1 22K  
C sense  
-5V  
DUT  
DUT /  
DRIVER  
G force  
0.0075µF  
VCC  
Rg  
E sense  
E force  
Fig.C.T.4 - BVCES Filter Circuit  
Fig.C.T.3 - Switching Loss Circuit  
800  
700  
600  
500  
400  
300  
200  
100  
0
40  
35  
30  
25  
20  
15  
10  
5
tf  
90% ICE  
5% VCE  
5% ICE  
0
Eoff Loss  
1
-100  
-0.5  
-5  
2
0
0.5  
1.5  
time(µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
@ TJ = 150°C using Fig. CT.3  
www.irf.com  
7
IRG7PH35UD1PbF/IRG7PH35UD1-EP  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRG7PH35UD1PbF/IRG7PH35UD1-EP  
TO-247AD Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AD Part Marking Information  
TO-247AD package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 02/2010  
www.irf.com  
9

相关型号:

IRG7PH35UD1MPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE
INFINEON

IRG7PH35UD1MPBF_15

Low Switching Losses
INFINEON

IRG7PH35UD1PBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRG7PH35UDPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRG7PH35UPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH35UPBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH37K10D-EPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRG7PH37K10DPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRG7PH37K10DPBF_15

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRG7PH42U-EP

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH42UD-EP

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRG7PH42UD1-EP

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON