IRG7PH42UD-EP [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 绝缘栅双极型晶体管,超快软恢复二极管
IRG7PH42UD-EP
型号: IRG7PH42UD-EP
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
绝缘栅双极型晶体管,超快软恢复二极管

晶体 二极管 双极型晶体管 功率控制 栅 局域网 超快软恢复二极管 快速软恢复二极管
文件: 总11页 (文件大小:436K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97391B  
IRG7PH42UDPbF  
IRG7PH42UD-EP  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
Features  
C
• Low VCE (ON) trench IGBT technology  
• Low switching losses  
• SquareRBSOA  
VCES = 1200V  
IC = 45A, TC = 100°C  
• 100% of the parts tested for ILM  

• Positive VCE (ON) temperature co-efficient  
• Ultra fast soft recovery co-pak diode  
• Tightparameterdistribution  
• Lead-Free  
G
TJ(max) = 150°C  
E
VCE(on) typ. = 1.7V  
n-channel  
Benefits  
• High efficiency in a wide range of applications  
• Suitable for a wide range of switching frequencies due to  
low VCE (ON) and low switching losses  
C
C
• Ruggedtransientperformanceforincreasedreliability  
• Excellent current sharing in parallel operation  
E
E
C
Applications  
• U.P.S.  
• Welding  
• SolarInverter  
• InductionHeating  
C
G
G
TO-247AC  
IRG7PH42UDPbF  
TO-247AD  
IRG7PH42UD-EP  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
1200  
85  
Units  
Collector-to-Emitter Voltage  
V
VCES  
Continuous Collector Current (Silicon Limited)  
Continuous Collector Current (Silicon Limited)  
Nominal Current  
IC @ TC = 25°C  
45  
IC @ TC = 100°C  
30  
INOMINAL  
ICM  
Pulse Collector Current, VGE = 15V  
Clamped Inductive Load Current, VGE = 20V  
90  
A
ILM  
120  
Diode Continous Forward Current  
Diode Continous Forward Current  
Diode Maximum Forward Current  
Continuous Gate-to-Emitter Voltage  
Maximum Power Dissipation  
85  
45  
IF @ TC = 25°C  
IF @ TC = 100°C  
120  
±30  
320  
130  
IFM  
V
VGE  
W
PD @ TC = 25°C  
Maximum Power Dissipation  
PD @ TC = 100°C  
Operating Junction and  
-55 to +150  
TJ  
Storage Temperature Range  
°C  
TSTG  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
Typ.  
–––  
–––  
0.24  
40  
Max.  
0.39  
0.56  
–––  
Units  
Thermal Resistance Junction-to-Case-(each IGBT)  
Rθ (IGBT)  
JC  
Thermal Resistance Junction-to-Case-(each Diode)  
Rθ (Diode)  
JC  
°C/W  
Rθ  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
CS  
Rθ  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
–––  
JA  
1
www.irf.com  
10/26/09  
IRG7PH42UDPbF/IRG7PH42UD-EP  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)CES  
VGE = 0V, IC = 100µA  
Collector-to-Emitter Breakdown Voltage  
Temperature Coeff. of Breakdown Voltage  
Collector-to-Emitter Saturation Voltage  
1200  
0.18  
1.7  
2.1  
V
V(BR)CES/TJ  
VCE(on)  
VGE = 0V, IC = 2.0mA (25°C-150°C)  
IC = 30A, VGE = 15V, TJ = 25°C  
IC = 30A, VGE = 15V, TJ = 150°C  
VCE = VGE, IC = 1.0mA  
V/°C  
2.0  
V
V
VGE(th)  
Gate Threshold Voltage  
3.0  
6.0  
VGE(th)/TJ  
VCE = VGE, IC = 1.0mA (25°C - 150°C)  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-14  
32  
mV/°C  
S
V
CE = 50V, IC = 30A, PW = 80µs  
VGE = 0V, VCE = 1200V  
GE = 0V, VCE = 1200V, TJ = 150°C  
gfe  
ICES  
Collector-to-Emitter Leakage Current  
4.4  
1200  
2.0  
2.2  
150  
µA  
V
VFM  
IGES  
IF = 30A  
Diode Forward Voltage Drop  
2.4  
V
IF = 30A, TJ = 150°C  
VGE = ±30V  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 30A  
157  
236  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
VGE = 15V  
VCC = 600V  
21  
32  
nC  
µJ  
ns  
69  
104  
IC = 30A, VCC = 600V, VGE = 15V  
2105 2374  
1182 1424  
3287 3798  
RG = 10 , L = 200µH,TJ = 25°C  
Energy losses include tail & diode reverse recovery  
25  
32  
34  
41  
271  
86  
td(off)  
tf  
Turn-Off delay time  
Fall time  
229  
63  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 30A, VCC = 600V, VGE=15V  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
2978  
1968  
4946  
19  
RG=10 , L=200µH, TJ = 150°C  
µJ  
ns  
pF  
Energy losses include tail & diode reverse recovery  
32  
td(off)  
tf  
Turn-Off delay time  
Fall time  
290  
154  
3338  
124  
75  
Cies  
Coes  
Cres  
VGE = 0V  
Input Capacitance  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
f = 1.0Mhz  
TJ = 150°C, IC = 120A  
VCC = 960V, Vp =1200V  
RBSOA  
Reverse Bias Safe Operating Area  
FULL SQUARE  
Rg = 10 , VGE = +20V to 0V  
TJ = 150°C  
Erec  
trr  
Reverse Recovery Energy of the Diode  
Diode Reverse Recovery Time  
1475  
153  
34  
µJ  
ns  
A
VCC = 600V, IF = 30A  
Rg = 10 , L =1.0mH  
Irr  
Peak Reverse Recovery Current  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 22µH, RG = 10.  
‚ Pulse width limited by max. junction temperature.  
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
„ Rθ is measured at TJ of approximately 90°C.  
Calculated continuous current based on maximum allowable junction temperature.  
Bond wire current limit is 78A. Note that current limitations arising from heating of  
the device leads may occur with some lead mounting arrangements.  
2
www.irf.com  
IRG7PH42UDPbF/IRG7PH42UD-EP  
60  
50  
40  
30  
20  
10  
0
For both:  
Duty cycle : 50%  
Tj = 150°C  
Tsink = 90°C  
Gate drive as specified  
Power Dissipation = 95W  
Square wave:  
60% of rated  
voltage  
I
Ideal diodes  
0.1  
1
10  
100  
f , Frequency ( kHz )  
Fig. 1 - Typical Load Current vs. Frequency  
(Load Current = IRMS of fundamental)  
100  
80  
60  
40  
20  
0
350  
300  
250  
200  
150  
100  
50  
0
25  
50  
75  
100  
125  
150  
175  
0
20 40 60 80 100 120 140 160  
T
(°C)  
C
T
(°C)  
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
CaseTemperature  
Temperature  
1000  
1000  
100  
100  
10  
1
10µsec  
10  
100µsec  
1msec  
DC  
1
Tc = 25°C  
Tj = 150°C  
Single Pulse  
0.1  
10  
100  
1000  
10000  
1
10  
100  
(V)  
1000  
10000  
V
(V)  
V
CE  
CE  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 150°C; VGE =15V  
Fig. 4 - Reverse Bias SOA  
TJ = 150°C; VGE = 20V  
www.irf.com  
3
IRG7PH42UDPbF/IRG7PH42UD-EP  
120  
120  
100  
80  
60  
40  
20  
0
V
= 18V  
V
= 18V  
GE  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
100  
80  
60  
40  
20  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
120  
120  
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
100  
100  
80  
60  
40  
20  
0
-40°C  
25°C  
150°C  
80  
60  
40  
20  
0
0.0  
1.0  
2.0  
3.0  
(V)  
4.0  
5.0  
6.0  
0
2
4
6
8
10  
V
V
(V)  
F
CE  
Fig. 7 - Typ. IGBT Output Characteristics  
Fig. 8 - Typ. Diode Forward Characteristics  
TJ = 150°C; tp = 80µs  
tp = 80µs  
12  
10  
8
12  
10  
8
I
I
I
= 15A  
= 30A  
= 60A  
I
I
I
= 15A  
= 30A  
= 60A  
CE  
CE  
CE  
CE  
CE  
CE  
6
4
2
0
6
4
2
0
4
8
12  
16  
20  
4
8
12  
16  
20  
V
(V)  
GE  
V
(V)  
GE  
Fig. 10 - Typical VCE vs. VGE  
Fig. 9 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = -40°C  
4
www.irf.com  
IRG7PH42UDPbF/IRG7PH42UD-EP  
12  
10  
8
120  
100  
80  
I
I
I
= 15A  
= 30A  
= 60A  
CE  
CE  
CE  
T
= 25°C  
J
= 150°C  
60  
40  
20  
0
6
T
J
4
2
0
4
6
8
10  
12  
4
8
12  
16  
20  
V
, Gate-to-Emitter Voltage (V)  
GE  
V
(V)  
GE  
Fig. 12 - Typ. Transfer Characteristics  
Fig. 11 - Typical VCE vs. VGE  
VCE = 50V  
TJ = 150°C  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
1000  
t
F
td  
OFF  
E
100  
ON  
t
E
R
OFF  
td  
ON  
10  
0
10  
20  
30  
(A)  
40  
50  
60  
0
10  
20  
30  
(A)  
40  
50  
60  
I
I
C
C
Fig. 13 - Typ. Energy Loss vs. IC  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 150°C; L = 200µH; VCE = 600V, RG = 10; VGE = 15V  
TJ = 150°C; L = 200µH; VCE = 600V, RG = 10; VGE = 15V  
6000  
10000  
5000  
1000  
E
td  
ON  
OFF  
4000  
E
OFF  
t
F
3000  
2000  
1000  
100  
t
R
td  
ON  
10  
0
20  
40  
60  
()  
80  
100  
0
20  
40  
60  
()  
80  
100  
R
R
G
G
Fig. 16 - Typ. Switching Time vs. RG  
TJ = 150°C; L = 200µH; VCE = 600V, ICE = 30A; VGE = 15V  
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 150°C; L = 200µH; VCE = 600V, ICE = 30A; VGE = 15V  
www.irf.com  
5
IRG7PH42UDPbF/IRG7PH42UD-EP  
50  
40  
35  
30  
25  
20  
R
5.0Ω  
G =  
40  
30  
20  
10  
47Ω  
R
R
10Ω  
G =  
G =  
R
100Ω  
G =  
15 20 25 30 35 40 45 50 55 60  
(A)  
0
20  
40  
60  
(Ω)  
80  
100  
I
R
F
G
Fig. 17 - Typ. Diode IRR vs. IF  
Fig. 18 - Typ. Diode IRR vs. RG  
TJ = 150°C  
TJ = 150°C  
40  
35  
30  
25  
20  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
60A  
5.0Ω  
10Ω  
47Ω  
30A  
100Ω  
15A  
0
200 400 600 800 1000 1200 1400  
0
200  
400  
600  
800 1000 1200  
di /dt (A/µs)  
F
di /dt (A/µs)  
F
Fig. 19 - Typ. Diode IRR vs. diF/dt  
VCC = 600V; VGE = 15V; IF = 30A; TJ = 150°C  
Fig. 20 - Typ. Diode QRR vs. diF/dt  
VCC = 600V; VGE = 15V; TJ = 150°C  
3500  
= 5.0  
R
R
G
= 10  
3000  
2500  
2000  
1500  
1000  
500  
G
R
=
=
47Ω  
G
R
100Ω  
G
15 20 25 30 35 40 45 50 55 60  
(A)  
I
F
Fig. 21 - Typ. Diode ERR vs. IF  
TJ = 150°C  
6
www.irf.com  
IRG7PH42UDPbF/IRG7PH42UD-EP  
16  
10000  
1000  
100  
14  
12  
10  
8
V
V
= 600V  
= 400V  
CES  
CES  
Cies  
6
Coes  
4
2
Cres  
200  
10  
0
0
100  
300  
(V)  
400  
500  
600  
0
20 40 60 80 100 120 140 160 180  
, Total Gate Charge (nC)  
Q
V
CE  
G
Fig. 23 - Typical Gate Charge vs. VGE  
Fig. 22 - Typ. Capacitance vs. VCE  
ICE = 30A; L = 600µH  
VGE= 0V; f = 1MHz  
1
D = 0.50  
0.1  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.01  
0.001  
0.02  
0.01  
0.1306  
0.1752  
0.0814  
0.0031  
0.000313  
0.002056  
0.008349  
0.043100  
τ
τ
J τJ  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.02  
0.01  
0.01  
0.1254  
0.0937  
0.1889  
0.1511  
0.000515  
0.000515  
0.001225  
0.018229  
τ
τ
J τJ  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1 1  
t
, Rectangular Pulse Duration (sec)  
1
Fig. 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRG7PH42UDPbF/IRG7PH42UD-EP  
L
L
80 V  
+
-
DUT  
VCC  
0
DUT  
VCC  
1K  
Rg  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
R = VCC  
ICM  
L
-5V  
VCC  
DUT  
DUT /  
DRIVER  
VCC  
Rg  
Rg  
Fig.C.T.4 - Resistive Load Circuit  
Fig.C.T.3 - Switching Loss Circuit  
C force  
100K  
D1 22K  
C sense  
DUT  
G force  
0.0075µF  
E sense  
E force  
Fig.C.T.5 - BVCES Filter Circuit  
8
www.irf.com  
IRG7PH42UDPbF/IRG7PH42UD-EP  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
tf  
tr  
TEST CURRENT  
90% test  
current  
90% ICE  
5% VCE  
5% ICE  
10% test  
current  
5% VCE  
Eoff Loss  
Eon Loss  
-100  
-10  
-100  
-10  
-0.5  
0
0.5  
1
1.5  
2
9.4  
9.6  
9.8  
10  
10.2  
time(µs)  
time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 150°C using Fig. CT.4  
@ TJ = 150°C using Fig. CT.4  
40  
30  
20  
10  
0
EREC  
tRR  
10%  
Peak  
IRR  
-10  
Peak  
IRR  
-20  
-30  
-40  
-0.25 0.00 0.25 0.50 0.75 1.00  
time (µS)  
Fig. WF3 - Typ. Diode Recovery Waveform  
@ TJ = 150°C using Fig. CT.4  
www.irf.com  
9
IRG7PH42UDPbF/IRG7PH42UD-EP  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
IRG7PH42UDPbF/IRG7PH42UD-EP  
TO-247AD Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AD Part Marking Information  
TO-247AD package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 10/2009  
www.irf.com  
11  

相关型号:

IRG7PH42UD1-EP

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRG7PH42UD1MPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE
INFINEON

IRG7PH42UD1MPBF_15

1300Vpk repetitive transient capacity
INFINEON

IRG7PH42UD1PBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRG7PH42UD2-EPBF

Insulated Gate Bipolar Transistor, 60A I(C), 1200V V(BR)CES, N-Channel, TO-247AD, LEAD FREE PACKAGE-3
INFINEON

IRG7PH42UD2PBF

Insulated Gate Bipolar Transistor, 60A I(C), 1200V V(BR)CES, N-Channel, TO-247AC, LEAD FREE PACKAGE-3
INFINEON

IRG7PH42UDPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRG7PH42UPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH44K10D-EPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRG7PH44K10DPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRG7PH44K10DPBF_15

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRG7PH46U-EP

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON