IRGP50B60PD1 [INFINEON]

SMPS IGBT; SMPS IGBT
IRGP50B60PD1
型号: IRGP50B60PD1
厂家: Infineon    Infineon
描述:

SMPS IGBT
SMPS IGBT

晶体 晶体管 功率控制 瞄准线 双极性晶体管 局域网
文件: 总10页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94625A  
IRGP50B60PD1  
SMPS IGBT  
WARP2 SERIES IGBT WITH  
ULTRAFAST SOFT RECOVERY DIODE  
C
VCES = 600V  
VCE(on) typ. = 2.00V  
@ VGE = 15V IC = 33A  
Applications  
Telecom and Server SMPS  
PFC and ZVS SMPS Circuits  
Uninterruptable Power Supplies  
Consumer Electronics Power Supplies  
Equivalent MOSFET  
Parameters  
G
RCE(on) typ. = 61mΩ  
ID (FET equivalent) = 50A  
E
Features  
NPT Technology, Positive Temperature Coefficient  
Lower VCE(SAT)  
n-channel  
Lower Parasitic Capacitances  
Minimal Tail Current  
HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode  
Tighter Distribution of Parameters  
Higher Reliability  
E
C
G
Benefits  
Parallel Operation for Higher Current Applications  
Lower Conduction Losses and Switching Losses  
Higher Switching Frequency up to 150kHz  
TO-247AC  
Absolute Maximum Ratings  
Parameter  
Max.  
600  
Units  
V
VCES  
Collector-to-Emitter Voltage  
IC @ TC = 25°C  
Continuous Collector Current  
Continuous Collector Current  
Pulse Collector Current (Ref. Fig. C.T.4)  
Clamped Inductive Load Current  
Diode Continous Forward Current  
Diode Continous Forward Current  
Maximum Repetitive Forward Current  
Gate-to-Emitter Voltage  
75  
IC @ TC = 100°C  
45  
ICM  
150  
ILM  
150  
A
IF @ TC = 25°C  
IF @ TC = 100°C  
IFRM  
40  
15  
60  
VGE  
±20  
V
PD @ TC = 25°C  
PD @ TC = 100°C  
TJ  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
390  
W
156  
-55 to +150  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
°C  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
–––  
Typ.  
–––  
Max.  
0.32  
1.7  
Units  
°C/W  
RθJC (IGBT)  
RθJC (Diode)  
RθCS  
Thermal Resistance Junction-to-Case-(each IGBT)  
Thermal Resistance Junction-to-Case-(each Diode)  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
–––  
0.50  
–––  
40  
RθJA  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
Weight  
–––  
6.0 (0.21)  
–––  
g (oz)  
1
www.irf.com  
6/7/04  
IRGP50B60PD1  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Collector-to-Emitter Breakdown Voltage  
Temperature Coeff. of Breakdown Voltage  
Internal Gate Resistance  
Min. Typ. Max. Units  
Conditions  
GE = 0V, IC = 500µA  
Ref.Fig  
4, 5,6,8,9  
7,8,9  
V(BR)CES  
V(BR)CES/TJ  
RG  
V
V
600  
3.0  
0.31  
1.7  
V
V/°C  
GE = 0V, IC = 1mA (25°C-125°C)  
1MHz, Open Collector  
IC = 33A, VGE = 15V  
2.00  
2.45  
2.60  
3.20  
4.0  
2.35  
2.85  
2.95  
3.60  
5.0  
VCE(on)  
IC = 50A, VGE = 15V  
Collector-to-Emitter Saturation Voltage  
V
IC = 33A, VGE = 15V, TJ = 125°C  
IC = 50A, VGE = 15V, TJ = 125°C  
IC = 250µA  
VGE(th)  
VGE(th)/TJ  
gfe  
Gate Threshold Voltage  
V
mV/°C  
S
V
V
V
V
CE = VGE, IC = 1.0mA  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-10  
CE = 50V, IC = 33A, PW = 80µs  
GE = 0V, VCE = 600V  
41  
ICES  
Collector-to-Emitter Leakage Current  
5.0  
500  
µA  
GE = 0V, VCE = 600V, TJ = 125°C  
1.0  
mA  
V
VFM  
IGES  
IF = 15A, VGE = 0V  
Diode Forward Voltage Drop  
1.30  
1.20  
1.70  
1.60  
±100  
10  
IF = 15A, VGE = 0V, TJ = 125°C  
V
GE = ±20V, VCE = 0V  
Gate-to-Emitter Leakage Current  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter Min. Typ. Max. Units  
Total Gate Charge (turn-on)  
Conditions  
Ref.Fig  
17  
IC = 33A  
Qg  
Qgc  
Qge  
Eon  
Eoff  
Etotal  
td(on)  
tr  
205  
70  
308  
105  
45  
V
V
CC = 400V  
GE = 15V  
Gate-to-Collector Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
nC  
µJ  
ns  
CT1  
30  
IC = 33A, VCC = 390V  
255  
375  
630  
30  
305  
445  
750  
40  
CT3  
CT3  
V
GE = +15V, RG = 3.3, L = 200µH  
TJ = 25°C  
IC = 33A, VCC = 390V  
V
GE = +15V, RG = 3.3, L = 200µH  
10  
15  
td(off)  
tf  
TJ = 25°C  
Turn-Off delay time  
Fall time  
130  
11  
150  
15  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 33A, VCC = 390V  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
580  
480  
700  
550  
CT3  
11,13  
V
GE = +15V, RG = 3.3, L = 200µH  
µJ  
ns  
TJ = 125°C  
1060 1250  
WF1,WF2  
CT3  
IC = 33A, VCC = 390V  
26  
13  
35  
20  
165  
20  
V
GE = +15V, RG = 3.3, L = 200µH  
12,14  
td(off)  
tf  
TJ = 125°C  
Turn-Off delay time  
Fall time  
146  
15  
WF1,WF2  
Cies  
Coes  
Cres  
V
V
GE = 0V  
Input Capacitance  
Output Capacitance  
3648  
322  
56  
16  
15  
CC = 30V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Time Related)  
pF f = 1Mhz  
Coes eff.  
V
GE = 0V, VCE = 0V to 480V  
215  
163  
Effective Output Capacitance (Energy Related)  
Coes eff. (ER)  
TJ = 150°C, IC = 150A  
3
V
CC = 480V, Vp =600V  
RBSOA  
Reverse Bias Safe Operating Area  
Diode Reverse Recovery Time  
Diode Reverse Recovery Charge  
Peak Reverse Recovery Current  
FULL SQUARE  
CT2  
Rg = 22, VGE = +15V to 0V  
trr  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
IF = 15A, VR = 200V,  
42  
74  
60  
120  
180  
600  
6.0  
10  
ns  
nC  
A
19  
21  
di/dt = 200A/µs  
Qrr  
Irr  
IF = 15A, VR = 200V,  
di/dt = 200A/µs  
80  
220  
4.0  
6.5  
IF = 15A, VR = 200V,  
di/dt = 200A/µs  
19,20,21,22  
CT5  
Notes:  
 RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 2.00V and IC =33A. ID (FET Equivalent) is the equivalent MOSFET ID  
rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.  
‚ VCC = 80% (VCES), VGE = 20V, L = 28 µH, RG = 22 Ω.  
ƒ Pulse width limited by max. junction temperature.  
„ Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06.  
Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES  
.
Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES  
.
2
www.irf.com  
IRGP50B60PD1  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
20 40 60 80 100 120 140 160  
(°C)  
0
20 40 60 80 100 120 140 160  
T
T
(°C)  
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
1000  
100  
10  
200  
180  
160  
140  
120  
100  
80  
V
= 15V  
GE  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 6.0V  
60  
40  
20  
0
1
10  
100  
(V)  
1000  
0
1
2
3
4
5
6
7
8
9
10  
V
V
(V)  
CE  
CE  
Fig. 3 - Reverse Bias SOA  
Fig. 4 - Typ. IGBT Output Characteristics  
TJ = 150°C; VGE =15V  
TJ = -40°C; tp = 80µs  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
V
= 15V  
V
= 15V  
GE  
GE  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 6.0V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 6.0V  
60  
60  
40  
40  
20  
20  
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 6 - Typ. IGBT Output Characteristics  
Fig. 5 - Typ. IGBT Output Characteristics  
TJ = 125°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
www.irf.com  
3
IRGP50B60PD1  
900  
10  
9
8
7
6
5
4
3
2
1
T
T
= 25°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
J
J
= 125°C  
I
I
I
= 15A  
= 33A  
= 50A  
CE  
CE  
CE  
T
= 125°C  
J
T
= 25°C  
15  
J
0
5
10  
20  
0
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 7 - Typ. Transfer Characteristics  
Fig. 8 - Typical VCE vs. VGE  
VCE = 50V; tp = 10µs  
TJ = 25°C  
100  
10  
1
10  
9
8
7
6
5
4
3
2
1
I
I
I
= 15A  
= 33A  
= 50A  
CE  
CE  
CE  
T = 150°C  
J
T = 125°C  
J
T = 25°C  
J
0.8  
1.2  
1.6  
2.0  
2.4  
0
5
10  
15  
20  
Forward Voltage Drop - V  
(V)  
FM  
V
(V)  
GE  
Fig. 9 - Typical VCE vs. VGE  
Fig. 10 - Maximum. Diode Forward  
TJ = 125°C  
Characteristics tp = 80µs  
1200  
1000  
800  
600  
400  
200  
0
1000  
100  
10  
td  
OFF  
E
ON  
E
OFF  
t
F
td  
ON  
t
R
0
10  
20  
30  
(A)  
40  
50  
60  
0
10  
20  
30  
(A)  
40  
50  
60  
I
I
C
C
Fig. 11 - Typ. Energy Loss vs. IC  
Fig. 12 - Typ. Switching Time vs. IC  
TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3; VGE = 15V.  
TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3; VGE = 15V.  
Diode clamp used: 30ETH06 (See C.T.3)  
Diode clamp used: 30ETH06 (See C.T.3)  
4
www.irf.com  
IRGP50B60PD1  
1000  
900  
800  
700  
600  
500  
400  
300  
1000  
100  
10  
td  
OFF  
E
ON  
E
OFF  
td  
ON  
t
F
t
R
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
R
( )  
R
( )  
G
G
Fig. 13 - Typ. Energy Loss vs. RG  
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V  
Fig. 14 - Typ. Switching Time vs. RG  
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V  
Diode clamp used: 30ETH06 (See C.T.3)  
Diode clamp used: 30ETH06 (See C.T.3)  
10000  
40  
30  
20  
10  
0
Cies  
1000  
Coes  
100  
Cres  
10  
0
100 200 300 400 500 600 700  
(V)  
0
20  
40  
60  
(V)  
80  
100  
V
V
CE  
CE  
Fig. 16- Typ. Capacitance vs. VCE  
Fig. 15- Typ. Output Capacitance  
VGE= 0V; f = 1MHz  
Stored Energy vs. VCE  
16  
14  
12  
10  
8
1.4  
1.2  
1.0  
0.8  
400V  
6
4
2
0
0
50  
Q
100  
150  
200  
250  
-50  
0
50  
100  
(°C)  
150  
200  
, Total Gate Charge (nC)  
T
G
J
Fig. 17 - Typical Gate Charge vs. VGE  
Fig. 18 - Normalized Typ. VCE(on)  
vs. Junction Temperature  
IC = 33A, VGE= 15V  
ICE = 33A  
www.irf.com  
5
IRGP50B60PD1  
100  
100  
10  
1
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
80  
60  
40  
20  
I
= 30A  
F
I
= 30A  
F
I
= 15A  
F
I
= 15A  
F
I
= 5.0A  
F
I
= 5.0A  
F
100  
1000  
100  
1000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 20 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Reverse Recovery vs. dif/dt  
800  
1000  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
600  
I
= 30A  
F
I
= 5.0A  
F
400  
200  
0
I
= 15A  
F
I
= 15A  
F
I
= 30A  
F
I
= 5.0A  
F
100  
100  
100  
1000  
1000  
di /dt - (A/µs)  
di /dt - (A/µs)  
f
f
Fig. 21 - Typical Stored Charge vs. dif/dt  
Fig. 22 - Typical di(rec)M/dt vs. dif/dt,  
6
www.irf.com  
IRGP50B60PD1  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
τ
0.01  
J τJ  
τ
0.157  
0.000346  
τ
0.01  
0.02  
Cτ  
τ
1τ1  
2τ2  
0.163  
4.28  
Ci= τi/Ri  
SINGLE PULSE  
0.001  
0.0001  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
t
, Rectangular Pulse Duration (sec)  
1
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.05  
0.1  
τ
JτJ  
τ
Cτ  
0.363  
0.864  
0.473  
0.000112  
0.001184  
0.032264  
0.01  
0.02  
τ
τ
1τ1  
τ
2 τ2  
3τ3  
Ci= τi/Ri  
τ /  
0.01  
0.001  
Notes:  
SINGLE PULSE  
( THERMAL RESPONSE )  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
1000  
100  
100µsec  
10  
1
0.1  
0.01  
1msec  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
10msec  
1
10  
100  
1000  
10000  
V
, Collector-to-Emitter Voltage (V)  
CE  
Fig. 25 - Forward SOA, TC = 25°C; TJ 150°C  
www.irf.com  
7
IRGP50B60PD1  
L
L
VCC  
80 V  
DUT  
DUT  
0
480V  
Rg  
1K  
Fig.C.T.2 - RBSOA Circuit  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
V
CC  
L
R =  
PFC diode  
I
CM  
DUT /  
DRIVER  
VCC  
DUT  
VCC  
Rg  
Rg  
Fig.C.T.4 - Resistive Load Circuit  
Fig.C.T.3 - Switching Loss Circuit  
REVERSE RECOVERY CIRCUIT  
V
= 200V  
R
0.01  
L = 70µH  
D.U.T.  
D
dif/dt  
ADJUST  
IRFP250  
G
S
Fig. C.T.5 - Reverse Recovery Parameter  
Test Circuit  
8
www.irf.com  
IRGP50B60PD1  
450  
400  
350  
300  
250  
200  
150  
100  
50  
90  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
60  
50  
40  
30  
20  
10  
0
80  
90% ICE  
70  
tf  
60  
tr  
TEST CURRENT  
90% ICE  
50  
40  
5% VCE  
5% ICE  
30  
5% VCE  
20  
10% ICE  
10  
0
0
0
-50  
Eof f  
Eon Loss  
-100  
-10  
-50  
-10  
-0.20  
0.00  
0.20  
0.40  
-0.10  
0.00  
0.10  
0.20  
Time (µs)  
Time(µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 25°C using Fig. CT.3  
@ TJ = 25°C using Fig. CT.3  
3
t
rr  
I
F
t
t
a
b
0
4
Q
rr  
2
I
0.5  
I
RRM  
RRM  
5
di(rec)M/dt  
0.75  
I
RRM  
1
di /dt  
f
4. Qrr - Area under curve defined by trr  
1. dif/dt - Rate of change of current  
through zero crossing  
and IRRM  
trr X IRRM  
Qrr  
=
2. IRRM - Peak reverse recovery current  
2
3. trr - Reverse recovery time measured  
from zero crossing point of negative  
going IF to point where a line passing  
through 0.75 IRRM and 0.50 IRRM  
extrapolated to zero current  
5. di(rec)M/dt - Peak rate of change of  
current during tb portion of trr  
Fig. WF3 - Reverse Recovery Waveform and  
Definitions  
www.irf.com  
9
IRGP50B60PD1  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC package is not recommended for Surface Mount Application.  
TO-247AC Part Marking Information  
EXAMPLE: THIS IS AN IRFPE30  
WIT H AS S E MBLY  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
LOT CODE 5657  
ASSEMBLED ON WW 35, 2000  
IN THE ASSEMBLY LINE "H"  
IRFPE30  
035H  
57  
56  
DATE CODE  
YEAR 0 = 2000  
WEE K 35  
Note: "P" in assembly line  
position indicates "Lead-Free"  
AS S E MB L Y  
LOT CODE  
LINE H  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/04  
10  
www.irf.com  

相关型号:

IRGP50B60PD1-E

暂无描述
INFINEON

IRGP50B60PD1-EP

WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP50B60PD1PBF

WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP50B60PD1_06

WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP50B60PDPBF

WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP6630DPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRGP6630DPBF_15

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRGP6650DPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRGP6650DPBF_15

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRGP6660DPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRGP6660DPBF_15

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRGP6690D

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON