IRLR8721TRRPBF [INFINEON]

Power Field-Effect Transistor, 65A I(D), 30V, 0.0084ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3;
IRLR8721TRRPBF
型号: IRLR8721TRRPBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 65A I(D), 30V, 0.0084ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3

文件: 总12页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRLR8721PbF  
IRLU8721PbF  
HEXFET® Power MOSFET  
Applications  
VDSS RDS(on) max  
Qg  
l High Frequency Synchronous Buck  
Converters for Computer Processor Power  
l High Frequency Isolated DC-DC  
Converters with Synchronous Rectification  
for Telecom and Industrial Use  
l Lead-Free  
8.4m  
30V  
8.5nC  
D
S
S
D
G
G
Benefits  
D-Pak  
IRLR8721PbF  
l Very Low RDS(on) at 4.5V VGS  
l Ultra-Low Gate Impedance  
l Fully Characterized Avalanche Voltage  
and Current  
I-Pak  
IRLU8721PbF  
G
D
S
Gate  
Drain  
Source  
Base Part Number Package Type  
Standard Pack  
Form  
Tube  
Orderable part number  
Quantity  
75  
2000  
3000  
3000  
75  
IRLR8721PbF  
D-Pak  
IRLR8721PbF  
IRLR8721TRPbF  
IRLR8721TRLPbF  
IRLR8721TRRPbF  
IRLU8721PbF  
Tape and Reel  
Tape and Reel Left  
Tape and Reel Right  
Tube  
IRLU8721PbF  
I-Pak  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VDS  
Drain-to-Source Voltage  
30  
± 20  
65  
V
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TC = 25°C  
@ TC = 100°C  
D
D
46  
A
260  
65  
DM  
P
P
@TC = 25°C  
@TC = 100°C  
Maximum Power Dissipation  
Maximum Power Dissipation  
D
D
W
33  
Linear Derating Factor  
Operating Junction and  
0.43  
-55 to + 175  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
–––  
–––  
Max.  
2.3  
Units  
RJC  
RJA  
RJA  
Junction-to-Ambient (PCB Mount)  
50  
°C/W  
Junction-to-Ambient  
110  
Notes  through are on page 11  
www.irf.com © 2012 International Rectifier  
December 4, 2012  
1
IRLR/U8721PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250μA  
BVDSS  
30  
–––  
–––  
V
VDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient –––  
21  
––– mV/°C Reference to 25°C, ID = 1mA  
m
Static Drain-to-Source On-Resistance  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
46  
6.3  
8.4  
VGS = 10V, ID = 25A  
10.1 11.8  
2.35  
––– mV/°C  
VGS = 4.5V, ID = 20A  
VGS(th)  
VGS(th)  
IDSS  
Gate Threshold Voltage  
1.9  
-6.8  
–––  
–––  
–––  
–––  
–––  
8.5  
1.9  
1.2  
3.4  
2.0  
4.6  
7.9  
2.3  
8.8  
30  
V
VDS = VGS, ID = 25μA  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
1.0  
150  
100  
-100  
–––  
13  
μA  
V
DS = 24V, VGS = 0V  
VDS = 24V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA VGS = 20V  
VGS = -20V  
gfs  
Qg  
S
VDS = 15V, ID = 20A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
–––  
–––  
–––  
–––  
–––  
–––  
3.8  
V
DS = 15V  
GS = 4.5V  
nC  
V
ID = 20A  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
See Fig. 16  
Output Charge  
nC  
VDS = 16V, VGS = 0V  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
td(on)  
tr  
td(off)  
tf  
–––  
–––  
–––  
–––  
V
DD = 15V, VGS = 4.5V  
ID = 20A  
Turn-Off Delay Time  
Fall Time  
9.4  
6.5  
ns  
RG = 1.8  
See Fig. 14  
VGS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 1030 –––  
–––  
–––  
350  
110  
–––  
–––  
pF VDS = 15V  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
Units  
mJ  
A
Single Pulse Avalanche Energy  
EAS  
IAR  
93  
20  
Avalanche Current  
Repetitive Avalanche Energy  
EAR  
6.5  
mJ  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
65  
IS  
Continuous Source Current  
–––  
–––  
A
D
S
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
ISM  
G
–––  
–––  
260  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
17  
1.0  
26  
36  
V
T = 25°C, I = 20A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 20A, VDD = 15V  
J F  
Qrr  
ton  
di/dt = 300A/μs  
24  
nC  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
www.irf.com © 2012 International Rectifier  
December 4, 2012  
2
IRLR/U8721PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
8.0V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.7V  
8.0V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.7V  
BOTTOM  
BOTTOM  
1
2.7V  
2.7V  
60μs PULSE WIDTH  
Tj = 175°C  
60μs PULSE WIDTH  
Tj = 25°C  
0.1  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
2.0  
I
= 25A  
D
V
= 10V  
GS  
100  
10  
1
T
= 175°C  
J
1.5  
1.0  
0.5  
T
= 25°C  
V
J
= 15V  
DS  
60μs PULSE WIDTH  
0.1  
0
2
4
6
8
10  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
vs. Temperature  
3
www.irf.com © 2012 International Rectifier  
December 4, 2012  
IRLR/U8721PbF  
10000  
1000  
100  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 20A  
D
V
V
V
= 24V  
= 15V  
= 6.0V  
C
C
C
+ C , C  
SHORTED  
DS  
DS  
DS  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
10  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
2
4
6
8
10  
V
Q , Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100μsec  
1msec  
T
= 175°C  
J
T
= 25°C  
J
10msec  
1
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
0
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
December 4, 2012  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
www.irf.com © 2012 International Rectifier  
4
IRLR/U8721PbF  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2.0  
1.5  
1.0  
0.5  
Limited By Package  
I
= 25μA  
D
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
25 50 75 100 125 150175 200  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Threshold Voltage vs. Temperature  
Case Temperature  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) i (sec)  
0.3501 0.000072  
0.1  
0.01  
0.02  
0.01  
J J  
C  
11  
2 2  
33  
1.1877 0.001239  
0.7635 0.010527  
Ci= iRi  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com © 2012 International Rectifier December 4, 2012  
5
IRLR/U8721PbF  
400  
350  
300  
250  
200  
150  
100  
50  
15V  
I
D
TOP  
1.1A  
1.4A  
BOTTOM 20A  
DRIVER  
+
L
V
DS  
D.U.T  
R
G
V
DD  
-
I
A
AS  
20V  
t
0.01  
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
0
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Fig 12c. Maximum Avalanche Energy  
vs. Drain Current  
I
AS  
RD  
VDS  
Fig 12b. Unclamped Inductive Waveforms  
VGS  
D.U.T.  
RG  
+VDD  
Current Regulator  
Same Type as D.U.T.  
-
VGS  
PulseWidth µs  
Duty Factor   
50K  
.2F  
12V  
.3F  
Fig 14a. Switching Time Test Circuit  
+
V
V
DS  
DS  
D.U.T.  
-
90%  
V
GS  
3mA  
10%  
V
GS  
I
I
D
G
t
t
r
t
t
f
d(on)  
d(off)  
Current Sampling Resistors  
Fig 13. Gate Charge Test Circuit  
Fig 14b. Switching Time Waveforms  
December 4, 2012  
www.irf.com © 2012 International Rectifier  
6
IRLR/U8721PbF  
100  
10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
tav (sec)  
1.0E-01  
1.0E+00  
1.0E+01  
1.0E+02  
Fig 15. Typical Avalanche Current vs. Pulsewidth  
7
www.irf.com © 2012 International Rectifier  
December 4, 2012  
IRLR/U8721PbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
 Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 16. Gate Charge Waveform  
www.irf.com © 2012 International Rectifier  
December 4, 2012  
8
IRLR/U8721PbF  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power  
losses in the switching elements of the circuit - Q1  
and Q2. Power losses in the high side switch Q1,  
also called the Control FET, are impacted by the Rds(on)  
of the MOSFET, but these conduction losses are only  
about one half of the total losses.  
P
P  
P P*  
loss  
conduction  
drive  
output  
P
Irms 2 Rds(on)  
loss    
Q V f  
Power losses in the control switch Q1 are given  
by;  
g
g
  
Qoss  
  
V f Q V f  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
  
  
in  
rr  
in  
 2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
I 2 Rds(on )  
rms  
loss  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
  
  
Qgd  
ig  
  
Qgs2  
ig  
  
  
  
   
I   
V f I   
V f  
in  
in  
  
   
  
Q V f  
g
g
Qoss  
  
  
V f  
in  
  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFETdata sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
9
www.irf.com © 2012 International Rectifier  
December 4, 2012  
IRLR/U8721PbF  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
D-Pak (TO-252AA) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com © 2012 International Rectifier  
December 4, 2012  
10  
IRLR/U8721PbF  
I-Pak (TO-251AA) Package Outline  
Dimensions are shown in millimeters (inches)  
I-Pak (TO-251AA) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
11  
www.irf.com © 2012 International Rectifier  
December 4, 2012  
IRLR/U8721PbF  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Notes:  
„ Calculated continuous current based on maximum allowable  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
junction temperature. Package limitation current is 50A.  
‚ Starting TJ = 25°C, L = 0.47mH  
RG = 25, IAS = 20A.  
ƒ Pulse width 400μs; duty cycle 2%.  
When mounted on 1" square PCB (FR-4 or G-10 Material).  
For recommended footprint and soldering techniques refer to  
application note #AN-994.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
Visit us at www.irf.com for sales contact information.  
www.irf.com © 2012 International Rectifier  
December 4, 2012  
12  

相关型号:

IRLR8726

Power Field-Effect Transistor, 86A I(D), 30V, 0.058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, DPAK, 3 PIN
INFINEON

IRLR8726PBF

HEXFET Power MOSFET
INFINEON

IRLR8726PBF_09

HEXFET Power MOSFET
INFINEON

IRLR8726TR

Power Field-Effect Transistor, 86A I(D), 30V, 0.058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, DPAK, 3 PIN
INFINEON

IRLR8726TRL

Power Field-Effect Transistor, 86A I(D), 30V, 0.058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, DPAK, 3 PIN
INFINEON

IRLR8726TRLPBF

Power Field-Effect Transistor, 86A I(D), 30V, 0.058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, DPAK, 3 PIN
INFINEON

IRLR8726TRPBF

HEXFET Power MOSFET
INFINEON

IRLR8726TRR

Power Field-Effect Transistor, 86A I(D), 30V, 0.058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, DPAK, 3 PIN
INFINEON

IRLR8729PBF

HEXFET Power MOSFET
INFINEON

IRLR8729PBF-1

Compatible with Existing Surface Mount Techniques
INFINEON

IRLR8729PBF-1_15

Compatible with Existing Surface Mount Techniques
INFINEON

IRLR8729PBF_09

HEXFETPower MOSFET
INFINEON