IRLR9343PBF [INFINEON]

DIGITAL AUDIO MOSFET; 数字音频MOSFET
IRLR9343PBF
型号: IRLR9343PBF
厂家: Infineon    Infineon
描述:

DIGITAL AUDIO MOSFET
数字音频MOSFET

文件: 总10页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95386A  
DIGITAL AUDIO MOSFET  
IRLR9343PbF  
IRLU9343PbF  
IRLU9343-701PbF  
Features  
l Advanced Process Technology  
Key Parameters  
l Key Parameters Optimized for Class-D Audio  
Amplifier Applications  
l Low RDSON for Improved Efficiency  
l Low Qg and Qsw for Better THD and Improved  
Efficiency  
l Low Qrr for Better THD and Lower EMI  
l 175°C Operating Junction Temperature for  
Ruggedness  
VDS  
-55  
V
m
RDS(ON) typ. @ VGS = -10V  
RDS(ON) typ. @ VGS = -4.5V  
Qg typ.  
93  
m
150  
31  
nC  
°C  
TJ max  
175  
l Repetitive Avalanche Capability for Robustness and  
Reliability  
D
l Multiple Package Options  
l Lead-Free  
D-Pak  
IRLR9343  
I-Pak  
IRLU9343  
G
I-Pak Leadform 701  
IRLU9343-701  
S
Refer to page 10 for package outline  
Description  
This Digital Audio HEXFET® is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest  
processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery  
and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD  
and EMI. Additional features of this MosFET are 175°C operating junction temperature and repetitive avalanche capability.  
These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier  
applications.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
-55  
±20  
-20  
-14  
-60  
79  
Units  
V
VDS  
VGS  
Gate-to-Source Voltage  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ -10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
A
PD @TC = 25°C  
PD @TC = 100°C  
Power Dissipation  
Power Dissipation  
W
39  
Linear Derating Factor  
Operating Junction and  
Storage Temperature Range  
Clamping Pressure  
0.53  
W/°C  
°C  
TJ  
-40 to + 175  
TSTG  
–––  
N
Thermal Resistance  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
1.9  
50  
Units  
Junction-to-Case  
RθJC  
Junction-to-Ambient (PCB Mounted)  
Junction-to-Ambient (free air)  
Rθ  
°C/W  
JA  
RθJA  
110  
Notes  through ‰are on page 10  
www.irf.com  
1
12/07/04  
IRLR/U9343PbF & IRLU9343-701PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
-55  
–––  
–––  
–––  
-1.0  
–––  
–––  
–––  
–––  
–––  
5.3  
–––  
-52  
93  
–––  
V
VGS = 0V, ID = -250µA  
∆ΒVDSS/TJ  
RDS(on)  
––– mV/°C Reference to 25°C, ID = -1mA  
mΩ  
105  
170  
–––  
VGS = -10V, ID = -3.4A  
VGS = -4.5V, ID = -2.7A  
VDS = VGS, ID = -250µA  
150  
–––  
-3.7  
–––  
–––  
–––  
–––  
–––  
31  
VGS(th)  
Gate Threshold Voltage  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
-2.0  
-25  
µA VDS = -55V, VGS = 0V  
V
V
V
V
V
DS = -55V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
-100  
100  
–––  
47  
nA  
S
GS = -20V  
GS = 20V  
gfs  
DS = -25V, ID = -14A  
DS = -44V  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs  
Qgd  
Qgodr  
td(on)  
tr  
VGS = -10V  
Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Turn-On Delay Time  
7.1  
8.5  
15  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
ID = -14A  
See Fig. 6 and 19  
VDD = -28V, VGS = -10V  
ID = -14A  
9.5  
24  
Rise Time  
td(off)  
tf  
Turn-Off Delay Time  
21  
ns R = 2.5  
G
Fall Time  
9.5  
660  
160  
72  
Ciss  
Coss  
Crss  
Coss  
LD  
Input Capacitance  
VGS = 0V  
Output Capacitance  
pF VDS = -50V  
ƒ = 1.0MHz,  
Reverse Transfer Capacitance  
Effective Output Capacitance  
Internal Drain Inductance  
See Fig.5  
280  
4.5  
VGS = 0V, VDS = 0V to -44V  
Between lead,  
nH 6mm (0.25in.)  
from package  
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
Avalanche Characteristics  
Parameter  
Typ.  
Max.  
Units  
mJ  
A
Single Pulse Avalanche Energy  
Avalanche Current  
EAS  
IAR  
–––  
120  
See Fig. 14, 15, 17a, 17b  
Repetitive Avalanche Energy  
EAR  
mJ  
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
IS @ TC = 25°C  
–––  
–––  
-20  
(Body Diode)  
A
showing the  
G
ISM  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
-60  
integral reverse  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
57  
-1.2  
86  
V
TJ = 25°C, IS = -14A, VGS = 0V  
ns TJ = 25°C, IF = -14A  
di/dt = 100A/µs  
nC  
Qrr  
120  
180  
2
www.irf.com  
IRLR/U9343PbF & IRLU9343-701PbF  
100  
100  
10  
1
VGS  
-15V  
-12V  
-10V  
-8.0V  
-5.5V  
-4.5V  
-3.0V  
-2.5V  
VGS  
-15V  
-12V  
-10V  
-8.0V  
-5.5V  
-4.5V  
-3.0V  
-2.5V  
TOP  
TOP  
10  
BOTTOM  
BOTTOM  
1
-2.5V  
-2.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
-V , Drain-to-Source Voltage (V)  
DS  
-V , Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
100.0  
10.0  
1.0  
2.0  
1.5  
1.0  
0.5  
I
= -14A  
D
T
= 25°C  
J
V
= -10V  
GS  
T = 175°C  
J
V
= -25V  
DS  
60µs PULSE WIDTH  
0.1  
0.0  
5.0  
10.0  
15.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
-V , Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
10000  
1000  
100  
20  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = -14A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
V
= -44V  
DS  
= C  
rss  
oss  
gd  
= C + C  
16  
12  
8
VDS= -28V  
VDS= -11V  
ds  
gd  
Ciss  
Coss  
Crss  
4
FOR TEST CIRCUIT  
SEE FIGURE 19  
0
10  
0
10  
Q
20  
30  
40  
50  
1
10  
100  
Total Gate Charge (nC)  
G
-V , Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
www.irf.com  
3
IRLR/U9343PbF & IRLU9343-701PbF  
100.0  
10.0  
1.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
T
= 25°C  
J
Tc = 25°C  
Tj = 175°C  
Single Pulse  
1msec  
V
= 0V  
GS  
10msec  
1
0.1  
1
10  
100  
1000  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
-V  
, Drain-toSource Voltage (V)  
-V , Source-to-Drain Voltage (V)  
SD  
DS  
Fig 7. Typical Source-Drain Diode Forward Voltage  
Fig 8. Maximum Safe Operating Area  
20  
2.5  
2.0  
1.5  
1.0  
16  
12  
8
I
= -250µA  
D
4
0
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
25 50 75 100 125 150 175  
T , Temperature ( °C )  
J
T
, Junction Temperature (°C)  
J
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs. Case Temperature  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.05  
τ
J τJ  
τ
1.162  
0.000512  
τ
Cτ  
0.02  
0.01  
1 τ1  
Ci= τi/Ri  
τ
2τ2  
0.7370  
0.002157  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
4
www.irf.com  
IRLR/U9343PbF & IRLU9343-701PbF  
500  
600  
500  
400  
300  
200  
100  
0
I
D
I
= -14A  
D
TOP  
-4.0A  
-5.5A  
400  
300  
200  
100  
0
BOTTOM -14A  
T
= 125°C  
J
T
= 25°C  
J
4.0  
6.0  
8.0  
10.0  
25  
50  
75  
100  
125  
150  
175  
-V , Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13. Maximum Avalanche Energy Vs. Drain Current  
1000  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
Duty Cycle = Single Pulse  
100  
0.01  
10  
0.05  
0.10  
1
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
tav (sec)  
Fig 14. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 17a, 17b.  
140  
120  
100  
80  
TOP  
BOTTOM 1% Duty Cycle  
= -14A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
60  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
40  
6. Iav = Allowable avalanche current.  
20  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
0
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Fig 15. Maximum Avalanche Energy Vs. Temperature  
EAS (AR) = PD (ave)·tav  
www.irf.com  
5
IRLR/U9343PbF & IRLU9343-701PbF  
Driver Gate Drive  
P.W.  
Period  
D.U.T  
Period  
D =  
P.W.  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor  
Current  
I
SD  
Ripple 5%  
* Reverse Polarity of D.U.T for P-Channel  
* VGS = 5V for Logic Level Devices  
Fig 16. Peak Diode Recovery dv/dt Test Circuit for P-Channel  
HEXFET® Power MOSFETs  
L
V
DS  
RD  
VDS  
D.U.T  
R
G
V
DD  
VGS  
I
A
D.U.T.  
AS  
DRIVER  
-V  
-
GS  
RG  
-
+
0.01  
t
p
VDD  
-10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
15V  
Fig 18a. Switching Time Test Circuit  
Fig 17a. Unclamped Inductive Test Circuit  
I
AS  
t
t
r
t
t
f
d(on)  
d(off)  
V
GS  
10%  
90%  
t
p
V
DS  
V
(BR)DSS  
Fig 18b. Switching Time Waveforms  
Fig 17b. Unclamped Inductive Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 19a. Gate Charge Test Circuit  
Fig 19b Gate Charge Waveform  
6
www.irf.com  
IRLR/U9343PbF & IRLU9343-701PbF  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
D-Pak (TO-252AA) Part Marking Information  
EXAMPLE: THIS IS AN IRFR120  
PART NUMBER  
WIT H AS S E MB LY  
INTERNATIONAL  
LOT CODE 1234  
DAT E CODE  
YEAR 9 = 1999  
WEEK 16  
RECTIFIER  
IRFU120  
916A  
ASSEMBLED ON WW 16, 1999  
LOGO  
IN THE ASSEMBLY LINE "A"  
12  
34  
LINE A  
Note: "P" in assembly line position  
i ndi cates "L ead-F ree"  
AS S E MB L Y  
LOT CODE  
OR  
PART NUMBER  
DAT E CODE  
P = DE S IGNAT E S LE AD-F RE E  
PRODUCT (OPTIONAL)  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFU120  
12  
34  
YEAR 9 = 1999  
ASSEMBLY  
LOT CODE  
WE E K 16  
A = AS S E MB L Y S IT E CODE  
www.irf.com  
7
IRLR/U9343PbF & IRLU9343-701PbF  
I-Pak (TO-251AA) Package Outline  
Dimensions are shown in millimeters (inches)  
I-Pak (TO-251AA) Part Marking Information  
PART NUMBER  
EXAMPLE: THIS IS AN IRFU120  
INTERNATIONAL  
WIT H AS S E MB LY  
DAT E CODE  
YEAR 9 = 1999  
WEE K 19  
RECTIFIER  
LOGO  
IRFU120  
919A  
78  
LOT CODE 5678  
ASSEMBLED ON WW 19, 1999  
IN THE ASSEMBLY LINE "A"  
56  
LINE A  
AS S E MB L Y  
LOT CODE  
Note: "P" in assembly line  
pos ition indicates "Lead-F ree"  
OR  
PART NUMBER  
DAT E CODE  
P = DE S IGNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFU120  
56 78  
YEAR 9 = 1999  
ASSEMBLY  
LOT CODE  
WE E K 19  
A = ASSEMBLYSITE CODE  
8
www.irf.com  
IRLR/U9343PbF & IRLU9343-701PbF  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
www.irf.com  
9
IRLR/U9343PbF & IRLU9343-701PbF  
I-Pak Leadform Option 701 Package Outline ‰  
Dimensions are shown in millimeters (inches)  
Notes:  
† Contact factory for mounting information  
‡ Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 1.24mH,  
RG = 25, IAS = -14A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ This only applies for I-Pak, LS of D-Pak is  
measured between lead and center of die contact  
ˆ
When D-Pak mounted on 1" square PCB (FR-4 or G-10 Material) .  
For recommended footprint and soldering techniques refer to  
application note #AN-994  
‰ Refer to D-Pak package for Part Marking, Tape and Reel information.  
R is measured at TJ of approximately 90°C.  
θ
Data and specifications subject to change without notice.  
This product has been designed for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.12/04  
10  
www.irf.com  

相关型号:

IRLR9343TR

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, DPAK-3
INFINEON

IRLR9343TRL

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, DPAK-3
INFINEON

IRLR9343TRLPBF

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, DPAK-3
VISHAY

IRLR9343TRLPBF

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRLR9343TRPBF

key parameters optimlzed for class-d audio amplifier applications
INFINEON

IRLR9343TRPBF

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, DPAK-3
VISHAY

IRLR9343TRR

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, DPAK-3
INFINEON

IRLR9343TRRPBF

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, DPAK-3
VISHAY

IRLRU110A

Advanced Power MOSFET
FAIRCHILD

IRLRU120A

ADVANCED POWER MOSFET
FAIRCHILD

IRLRU120N

Power MOSFET(Vdss=100V, Rds(on)=0.185ohm, Id=10A)
INFINEON

IRLRU130A

Advanced Power MOSFET
FAIRCHILD