IRLU7843 [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRLU7843
型号: IRLU7843
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 开关 脉冲
文件: 总11页 (文件大小:202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94638A  
IRLR7843  
IRLU7843  
HEXFET® Power MOSFET  
Applications  
VDSS RDS(on) max  
Qg  
l High Frequency Synchronous Buck  
Converters for Computer Processor Power  
l High Frequency Isolated DC-DC  
Converters with Synchronous Rectification  
for Telecom and Industrial Use  
3.3m  
30V  
34nC  
Benefits  
l Very Low RDS(on) at 4.5V VGS  
l Ultra-Low Gate Impedance  
l Fully Characterized Avalanche Voltage  
and Current  
D-Pak  
IRLR7843  
I-Pak  
IRLU7843  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VDS  
Drain-to-Source Voltage  
30  
V
V
Gate-to-Source Voltage  
± 20  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
161  
113  
620  
I
I
I
@ TC = 25°C  
@ TC = 100°C  
D
D
A
DM  
Maximum Power Dissipation  
Maximum Power Dissipation  
P
P
@TC = 25°C  
@TC = 100°C  
140  
71  
W
D
D
Linear Derating Factor  
Operating Junction and  
0.95  
-55 to + 175  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Soldering Temperature, for 10 seconds  
300 (1.6mm from case)  
Thermal Resistance  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
1.05  
50  
Units  
RθJC  
RθJA  
RθJA  
Junction-to-Case  
Junction-to-Ambient (PCB Mount)  
Junction-to-Ambient  
°C/W  
110  
Notes  through are on page 11  
www.irf.com  
1
12/30/03  
IRLR/U7843  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
BVDSS  
∆Β  
Drain-to-Source Breakdown Voltage  
30  
–––  
–––  
V
VGS = 0V, ID = 250µA  
V
DSS/ TJ  
Breakdown Voltage Temp. Coefficient –––  
19  
––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
RDS(on)  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.5  
2.6  
3.2  
–––  
-5.4  
–––  
–––  
–––  
–––  
–––  
34  
3.3  
4.0  
2.3  
VGS = 10V, ID = 15A  
VGS = 4.5V, ID = 12A  
VDS = VGS, ID = 250µA  
VGS(th)  
Gate Threshold Voltage  
V
V
GS(th)/ TJ  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
37  
––– mV/°C  
IDSS  
1.0  
150  
100  
-100  
–––  
50  
µA  
VDS = 24V, VGS = 0V  
VDS = 24V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA VGS = 20V  
VGS = -20V  
gfs  
Qg  
S
VDS = 15V, ID = 12A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
9.1  
2.5  
12  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
V
DS = 15V  
GS = 4.5V  
Qgs2  
Qgd  
nC  
V
ID = 12A  
Qgodr  
Gate Charge Overdrive  
10  
See Fig. 16  
Qsw  
Switch Charge (Qgs2 + Qgd)  
15  
Qoss  
td(on)  
tr  
Output Charge  
21  
nC VDS = 15V, VGS = 0V  
DD = 15V, VGS = 4.5V  
Turn-On Delay Time  
Rise Time  
25  
V
42  
ID = 12A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
34  
ns Clamped Inductive Load  
19  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 4380 –––  
VGS = 0V  
pF VDS = 15V  
ƒ = 1.0MHz  
–––  
–––  
940  
430  
–––  
–––  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
1440  
12  
Units  
mJ  
A
Single Pulse Avalanche Energy  
EAS  
IAR  
Avalanche Current  
Repetitive Avalanche Energy  
EAR  
14  
mJ  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
161  
IS  
Continuous Source Current  
–––  
–––  
(Body Diode)  
A
showing the  
ISM  
Pulsed Source Current  
–––  
–––  
620  
integral reverse  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
39  
1.0  
59  
54  
V
T = 25°C, I = 12A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 12A, VDD = 15V  
J F  
Qrr  
ton  
di/dt = 100A/µs  
36  
nC  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
2
www.irf.com  
IRLR/U7843  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
4.5V  
3.7V  
3.5V  
3.3V  
3.0V  
2.7V  
4.5V  
3.7V  
3.5V  
3.3V  
3.0V  
2.7V  
BOTTOM 2.5V  
BOTTOM 2.5V  
2.5V  
2.5V  
1
20µs PULSE WIDTH  
Tj = 175°C  
20µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.0  
1.5  
1.0  
0.5  
1000  
100  
I
= 30A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
10  
V
= 15V  
DS  
20µs PULSE WIDTH  
1
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
2.0  
3.0  
4.0 5.0  
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
J
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
vs. Temperature  
www.irf.com  
3
IRLR/U7843  
12  
10  
8
100000  
V
= 0V,  
f = 1 MHZ  
GS  
I
= 12A  
D
V
= 24V  
DS  
VDS= 15V  
C
= C + C  
,
C
SHORTED  
iss  
gs gd  
ds  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
10000  
1000  
100  
Ciss  
6
Coss  
Crss  
4
2
0
0
20  
G
40  
60  
80  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
V
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100.0  
10.0  
1.0  
T
= 175°C  
J
100µsec  
T
= 25°C  
1.0  
1msec  
J
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
10msec  
1
0.1  
0.1  
1.0  
10.0  
100.0  
1000.0  
0.0  
0.5  
1.5  
V
, Drain-toSource Voltage (V)  
V
, Source-toDrain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRLR/U7843  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
160  
120  
80  
LIMITED BY PACKAGE  
I
= 250µA  
D
40  
0
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
T
, Case Temperature (°C)  
C
T
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Threshold Voltage vs. Temperature  
Case Temperature  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
τJ  
τ
Cτ  
0.5084  
0.5423  
0.000392  
0.011108  
τJ  
τ
0.05  
1 τ1  
Ci= τi/Ri  
τ
2τ2  
0.02  
0.01  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRLR/U7843  
15V  
6000  
5000  
4000  
3000  
2000  
1000  
0
I
D
TOP  
8.6A  
9.6A  
DRIVER  
+
L
V
DS  
BOTTOM 12A  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
VGS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Fig 12c. Maximum Avalanche Energy  
Vs. Drain Current  
I
AS  
LD  
VDS  
Fig 12b. Unclamped Inductive Waveforms  
+
-
VDD  
D.U.T  
Current Regulator  
Same Type as D.U.T.  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
50KΩ  
.2µF  
12V  
.3µF  
Fig 14a. Switching Time Test Circuit  
VDS  
+
V
DS  
D.U.T.  
-
90%  
V
GS  
3mA  
10%  
VGS  
I
I
D
G
Current Sampling Resistors  
td(on)  
td(off)  
tr  
tf  
Fig 13. Gate Charge Test Circuit  
Fig 14b. Switching Time Waveforms  
6
www.irf.com  
IRLR/U7843  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
RG  
+
-
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16. Gate Charge Waveform  
www.irf.com  
7
IRLR/U7843  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
drive output  
loss  
conduction  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
in rr in  
(
)
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on )  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
Qoss  
)
g
g
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFETdata sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRLR/U7843  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
2.38 (.094)  
2.19 (.086)  
6.73 (.265)  
6.35 (.250)  
1.14 (.045)  
0.89 (.035)  
- A -  
1.27 (.050)  
5.46 (.215)  
0.58 (.023)  
0.46 (.018)  
0.88 (.035)  
5.21 (.205)  
4
6.45 (.245)  
5.68 (.224)  
6.22 (.245)  
5.97 (.235)  
10.42 (.410)  
9.40 (.370)  
1.02 (.040)  
1.64 (.025)  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
0.51 (.020)  
MIN.  
- B -  
3 - SOURCE  
4 - DRAIN  
1.52 (.060)  
1.15 (.045)  
0.89 (.035)  
0.64 (.025)  
3X  
0.58 (.023)  
0.46 (.018)  
1.14 (.045)  
0.76 (.030)  
2X  
0.25 (.010)  
M A M B  
NOTES:  
2.28 (.090)  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH.  
4.57 (.180)  
3 CONFORMS TO JEDEC OUTLINE TO-252AA.  
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,  
SOLDER DIP MAX. +0.16 (.006).  
D-Pak (TO-252AA) Part Marking Information  
Notes: This part marking information applies todevices produced before02/26/2001  
EXAMPLE: THIS IS AN IRFR120  
WITH ASSEMBLY  
LOT CODE 9U1P  
INTERNATIONAL  
RECTIFIER  
LOGO  
DAT E CODE  
YEAR = 0  
WE EK = 16  
IRFU120  
016  
1P  
9U  
AS S E MBL Y  
LOT CODE  
Notes: This part marking information applies todevices produced after 02/26/2001  
EXAMPLE: THIS IS AN IRFR120  
PART NUMBER  
WITH ASSEMBLY  
LOT CODE 1234  
ASSEMBLED ON WW 16, 1999  
IN THE ASSEMBLY LINE "A"  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
YEAR 9 = 1999  
WE E K 16  
IRFU120  
916A  
34  
12  
LINE A  
AS S E MBL Y  
LOT CODE  
www.irf.com  
9
IRLR/U7843  
I-Pak (TO-251AA) Package Outline  
Dimensions are shown in millimeters (inches)  
6.73 (.265)  
6.35 (.250)  
2.38 (.094)  
2.19 (.086)  
- A -  
0.58 (.023)  
0.46 (.018)  
1.27 (.050)  
5.46 (.215)  
0.88 (.035)  
5.21 (.205)  
LEAD ASSIGNMENTS  
1 - GATE  
4
2 - DRAIN  
6.45 (.245)  
5.68 (.224)  
3 - SOURCE  
4 - DRAIN  
6.22 (.245)  
5.97 (.235)  
1.52 (.060)  
1.15 (.045)  
1
2
3
- B -  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH.  
2.28 (.090)  
1.91 (.075)  
9.65 (.380)  
8.89 (.350)  
3 CONFORMS TO JEDEC OUTLINE TO-252AA.  
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,  
SOLDER DIP MAX. +0.16 (.006).  
1.14 (.045)  
0.76 (.030)  
1.14 (.045)  
0.89 (.035)  
3X  
0.89 (.035)  
0.64 (.025)  
3X  
0.25 (.010)  
M A M B  
0.58 (.023)  
0.46 (.018)  
2.28 (.090)  
2X  
I-Pak (TO-251AA) Part Marking Information  
Notes: This part marking information applies to devices produced before02/26/2001  
EXAMPLE: THIS IS AN IRFR120  
INTERNATIONAL  
DAT E CODE  
YEAR = 0  
WEE K = 16  
WIT H AS S E MB LY  
LOT CODE 9U1P  
RECTIFIER  
LOGO  
IRFU120  
016  
1P  
9U  
AS S E MBL Y  
LOT CODE  
Notes: This part marking information applies to devices producedafter 02/26/2001  
PART NUMBER  
EXAMPLE: THIS IS AN IRFR120  
WIT H AS S E MB LY  
INTERNATIONAL  
RECTIFIER  
LOGO  
DAT E CODE  
YEAR 9 = 1999  
WE EK 19  
IRFU120  
919A  
78  
LOT CODE 5678  
AS S E MBLE D ON WW 19, 1999  
IN THE ASSEMBLY LINE "A"  
56  
LINE A  
AS S E MB L Y  
LOT CODE  
10  
www.irf.com  
IRLR/U7843  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Notes:  
„ Calculated continuous current based on maximum allowable  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
junction temperature. Package limitation current is 30A.  
‚ Starting TJ = 25°C, L = 20mH, RG = 25,  
IAS = 12A.  
ƒ Pulse width 400µs; duty cycle 2%.  
When mounted on 1" square PCB (FR-4 or G-10 Material).  
For recommended footprint and soldering techniques refer to  
application note #AN-994.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.12/03  
www.irf.com  
11  

相关型号:

IRLU7843CPBF

HEXFET Power MOSFET
INFINEON

IRLU7843PBF

HEXFET Power MOSFET
INFINEON

IRLU8113

HEXFET Power MOSFET
INFINEON

IRLU8113PBF

HEXFET Power MOSFET
INFINEON

IRLU8203

HEXFET Power MOSFET
INFINEON

IRLU8203PBF

SMPS MOSFET
INFINEON

IRLU8256PBF

HEXFET Power MOSFET
INFINEON

IRLU8259PBF

HEXFET Power MOSFET
INFINEON

IRLU8713PBF

HEXFET Power MOSFET
INFINEON

IRLU8715CPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRLU8721

Power Field-Effect Transistor, 65A I(D), 30V, 0.0084ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-251AA, PLASTIC, IPAK-3
INFINEON

IRLU8721-701PBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON