IRU3004CW-TR [INFINEON]

Switching Controller, Voltage-mode, 500kHz Switching Freq-Max, PDSO20, PLASTIC, SOIC-20;
IRU3004CW-TR
型号: IRU3004CW-TR
厂家: Infineon    Infineon
描述:

Switching Controller, Voltage-mode, 500kHz Switching Freq-Max, PDSO20, PLASTIC, SOIC-20

控制器
文件: 总17页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD94140  
IRU3004  
5-BIT PROGRAMMABLE SYNCHRONOUS BUCK  
CONTROLLER IC WITH DUAL LDO CONTROLLER  
FEATURES  
DESCRIPTION  
The IRU3004 controller IC is specifically designed to meet  
Meets latest VRM 8.4 specification for PentiumIII  
Provides single chip solution for Vcore, GTL+ and Intel specifications for Pentium IIIä microprocessor  
clock supply applications as well as the next generation P6 family  
On-Board DAC programs the output voltage from processors. The IC provides a single chip controller IC  
1.3V to 3.5V. The IRU3004 remains on for VID code for the Vcore, GTL+ and clock supplies required for the  
of (11111)  
Pentium III applications. The IRU3004 features a pat-  
Dual linear regulator controller on-board for 1.5V ented topology, that in combination with a few external  
GTL+ and 2.5V clock supplies  
Loss-less Short Circuit Protection  
components as shown in the typical application circuit,  
will provide in excess of 20A of output current for an on-  
Synchronous operation allows maximum efficiency board DC-DC converter while automatically providing the  
Patented architecture allows fixed frequency opera- right output voltage via the 5-bit internal DAC meeting  
tion as well as 100% duty cycle during dynamic the latest VRM specification. The IRU3004 also features  
load  
loss-less current sensing by using the RDS(on) of the high  
side power MOSFET as the sensing resistor and a Power  
Good window comparator that switches its open collec-  
Minimum Part Count, No External Compensation  
Soft-Start Function  
High current totem pole driver for direct driving of the tor output low when the output is outside of a ±10%  
external power MOSFET  
Power Good Function  
window. Other features of the device are: under-voltage  
lockout for both 5V and 12V supplies, an external pro-  
grammable soft-start function as well as programming  
the oscillator frequency by using an external capacitor.  
APPLICATIONS  
Pentium III & next generation processor DC to DC  
converter application  
Low Cost Pentium with AGP  
TYPICAL APPLICATION  
Note:Pentium III is trademark of Intel Corp.  
L2  
Q1  
5V  
L1  
VOUT3  
R16  
R17  
C16  
C5  
R1  
C7  
R4  
Q2  
C13  
C3  
C10  
R2  
R3  
R12  
R13  
3.3V  
C4  
C6  
Q3  
VOUT1  
12V  
C11  
R18  
R7  
R8  
V12  
Ct  
V5  
D3  
CS+  
HDrv  
CS-  
LDrv  
Gnd  
VFB3  
R11  
C9  
Lin1  
C15  
C1  
IRU3004  
SS  
D4  
VFB1  
Q4  
C2  
VOUT2  
D2  
D1  
D0  
VFB2  
PGd  
Lin2  
3.3V  
C12  
R14  
R15  
VID4  
VID3  
VID2  
VID1  
VID0  
R5  
C8  
R9  
Power Good  
C14  
Figure 1 - Typical application of the IRU3004.  
PACKAGE ORDER INFORMATION  
TA (8C)  
DEVICE  
PACKAGE  
0 To 70  
0 To 70  
IRU3004CW  
IRU3004CF  
20-Pin Plastic SOIC (W)  
20-Pin Plastic TSSOP (F)  
Rev. 1.7  
07/16/02  
www.irf.com  
1
IRU3004  
ABSOLUTE MAXIMUM RATINGS  
V5 Supply Voltage .................................................... 10V  
V12 Supply Voltage .................................................. 20V  
Storage Temperature Range ...................................... -65°C To 150°C  
Operating Junction Temperature Range .....................  
0°C To 125°C  
PACKAGE INFORMATION  
20-PIN WIDE BODY PLASTIC SOIC (W)  
20-PIN PLASTIC TSSOP (F)  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
7
8
9
20  
Ct  
Lin1  
VFB1  
VFB2  
V5  
1
2
20 Lin2  
Ct  
Lin1  
VFB1  
Lin2  
19 D 0  
18  
19  
18  
D 0  
D 1  
3
D 1  
V
17 D 2  
16 D 3  
4
17 D 2  
16  
FB2  
V5  
5
D 3  
15 D 4  
14  
15  
D 4  
PGd  
CS-  
6
PGd  
CS-  
7
14 VFB3  
13 SS  
VFB3  
13 SS  
CS+  
HDrv  
Gnd  
8
CS+  
HDrv  
9
12  
11  
12  
V12  
V12  
10  
Gnd 10  
11 LDrv  
LDrv  
θJA =858C/W  
θJA =908C/W  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over V12=12V, V5=5V and TA=0 to 70°C. Typical values refer  
to TA=25°C. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the ambient  
temperature.  
PARAMETER  
SYM  
TEST CONDITION  
MIN  
TYP  
MAX  
UNITS  
VID Section  
DAC Output Voltage (Note 1)  
DAC Output Line Regulation  
DAC Output Temp Variation  
VID Input LO  
0.98Vs  
Vs  
1.02Vs  
0.1  
0.5  
V
%
%
V
0.4  
VID Input HI  
2
V
VID Input Internal Pull-Up  
Resistor to V5  
27  
KΩ  
Power Good Section  
Under-Voltage lower trip point  
Under-Voltage upper trip point  
UV Hysteresis  
Over-Voltage upper trip point  
Over-Voltage lower trip point  
OV Hysteresis  
Power Good Output LO  
Power Good Output HI  
Soft-Start Section  
VOUT Ramping Down  
VOUT Ramping Up  
0.89Vs 0.90Vs 0.91Vs  
V
V
V
V
V
V
V
V
0.92Vs  
0.015Vs 0.02Vs 0.025Vs  
1.09Vs 1.10Vs 1.11Vs  
VOUT Ramping Up  
VOUT Ramping Down  
1.08Vs  
0.015Vs 0.02Vs 0.025Vs  
RL=3mA  
RL=5K Pull-Up to 5V  
0.4  
4.8  
Soft-Start Current  
CS+=0V, CS-=5V  
10  
µA  
Rev. 1.7  
07/16/02  
www.irf.com  
2
IRU3004  
PARAMETER  
SYM  
TEST CONDITION  
Supply Ramping Up  
Supply Ramping Up  
MIN  
TYP  
MAX  
UNITS  
UVLO Section  
UVLO Threshold-12V  
UVLO Hysteresis-12V  
UVLO Threshold-5V  
UVLO Hysteresis-5V  
Error Comparator Section  
Input Bias Current  
9.2  
0.3  
4.1  
0.2  
10  
10.8  
0.5  
4.5  
0.4  
V
V
V
V
0.4  
4.3  
0.3  
2
+2  
µA  
mV  
ns  
Input Offset Voltage  
Delay to Output  
-2  
VDIFF=10mV  
100  
Current Limit Section  
CS Threshold Set Current  
CS Comp Offset Voltage  
Hiccup Duty Cycle  
Supply Current  
160  
-5  
200  
240  
+5  
2
µA  
mV  
%
Css=0.1µF  
Operating Supply Current  
CL=3000pF:  
V5  
20  
14  
mA  
V12  
Output Drivers Section  
Rise Time  
Fall Time  
CL=3000pF  
CL=3000pF  
CL=3000pF  
70  
70  
100  
130  
300  
ns  
ns  
ns  
Dead Band Time  
Oscillator Section  
Osc Frequency  
Osc Valley  
100  
160  
200  
Ct=150pF  
220  
V5  
260  
0.2  
KHz  
V
V
Osc Peak  
LDO Controller Section  
VFB1 & VFB2  
Input Bias Current  
Lin1 or Lin2 Drive Current  
1.455  
1.500  
50  
1.545  
2
V
µA  
mA  
Note 1: Vs refers to the set point voltage given in Table 1.  
D4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D3  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
D2  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
D1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
D0  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Vs  
D4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D3  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
D2  
D1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
D0  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Vs  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
Table 1 - Set point voltage vs. VID codes.  
Rev. 1.7  
07/16/02  
www.irf.com  
3
IRU3004  
PIN DESCRIPTIONS  
PIN# PIN SYMBOL  
PIN DESCRIPTION  
1
2
Ct  
This pin programs the oscillator frequency in the range of 50KHz to 500KHz with an  
external capacitor connected from this pin to the ground.  
This pin controls the gate of an external transistor for either the GTL+ linear regulator or  
Clock supply.  
Lin1  
3
4
5
6
VFB1  
VFB2  
V5  
This pin provides the feedback for the linear regulator that its output drive is Lin1 pin.  
This pin provides the feedback for the linear regulator that its output drive is Lin2 pin.  
5V supply voltage.  
This pin is an open collector output that switches LO when the output of the converter is  
not within ±10% (typical) of the nominal output voltage. When Power Good pin switches  
LO the sat voltage is less than 0.4V at 3mA.  
PGd  
7
8
CS-  
This pin is connected to the Source of the power MOSFET for the Core supply and it  
provides the negative sensing for the internal current sensing circuitry.  
This pin is connected to the Drain of the power MOSFET of the Core supply and it  
provides the positive sensing for the internal current sensing circuitry. An external resis-  
tor programs the CS threshold depending on the RDS of the power MOSFET. An external  
capacitor is placed in parallel with the programming resistor to provide high frequency  
noise filtering.  
CS+  
9
10  
HDrv  
Gnd  
Output driver for the high-side power MOSFET.  
This pin serves as the ground pin and must be connected directly to the ground plane. A  
high frequency capacitor (0.1 to 1µF) must be connected from V5 and V12 pins to this  
pin for noise free operation.  
11  
12  
LDrv  
V12  
Output driver for the synchronous power MOSFET.  
This pin is connected to the 12 V supply and serves as the power Vcc pin for the output  
drivers. A high frequency capacitor (0.1 to 1µF) must be connected directly from this pin  
to ground pin in order to supply the peak current to the power MOSFET duringthe transi-  
tions.  
13  
SS  
This pin provides the soft-start for the switching regulator. An internal current source  
charges an external capacitor that is connected from this pin to the ground which ramps  
up the outputs of the switching regulator, preventing the outputs from overshooting as  
well as limiting the input current. The second function of the Soft-Start cap is to provide  
long off time (HICCUP) for the synchronous MOSFET during current limiting.  
This pin is connected directly to the output of the Core supply to provide feedback to the  
Error comparator.  
This pin selects a range of output voltages for the DAC. When in the LOW state the  
range is 1.3V to 2.05V. For VID codes of all "1" the IRU3004 keeps all the outputs on.  
MSB input to the DAC that programs the output voltage. This pin can be pulled-up exter-  
nally by a 10K resistor to either 3.3V or 5V supply.  
Input to the DAC that programs the output voltage. This pin can be pulled up externally  
by a 10K resistor to either 3.3V or 5V supply.  
Input to the DAC that programs the output voltage. This pin can be pulled up externally  
by a 10Kresistor to either 3.3V or 5V supply.  
LSB input to the DAC that programs the output voltage. This pin can be pulled-up exter-  
nally by a 10K resistor to either 3.3V or 5V supply.  
This pin controls the gate of an external transistor for either the GTL+ linear regulator or  
Clock supply.  
14  
15  
16  
17  
18  
19  
20  
VFB3  
D4  
D3  
D2  
D1  
D0  
Lin2  
Rev. 1.7  
07/16/02  
www.irf.com  
4
IRU3004  
BLOCK DIAGRAM  
14  
VFB3  
Enable  
V12  
V12  
Vset  
Enable  
9
HDrv  
12  
V12  
UVLO  
PWM  
Control  
5
V5  
+
Vset  
11  
Slope  
Comp  
LDrv  
19  
18  
17  
16  
15  
Enable  
D0  
D1  
D2  
D3  
D4  
Osc  
5Bit  
DAC,  
Ctrl  
7
8
CS-  
Over  
Current  
Soft  
Start &  
Fault  
CS+  
Logic  
200uA  
Logic  
Enable  
1
Ct  
4
VFB2  
13  
SS  
20  
1.1Vset  
Lin2  
6
PGd  
Gnd  
1.5V  
2
10  
Lin1  
0.9Vset  
VFB1 3  
Figure 2 - Simplified block diagram of the IRU3004.  
Rev. 1.7  
07/16/02  
www.irf.com  
5
IRU3004  
TYPICAL APPLICATION  
Pentium III  
L2  
L1  
Q1  
VOUT3  
5V  
R16  
R17  
C16  
C 5  
R 1  
C 7  
Q2  
C13  
C 3  
C 4  
C10  
R 4  
R 2  
R 3  
R12  
R13  
3.3V  
12V  
C 6  
Q3  
VOUT1  
C11  
R18  
R 7  
R 8  
V12  
Ct  
V5  
CS+  
HDrv  
CS-  
LDrv  
Gnd  
V FB3  
Lin1  
R11  
C15  
C 1  
IRU3004  
SS  
D 4  
VFB1  
Q4  
C 2  
VOUT2  
D 3  
D 2  
D 1  
D 0  
V
PGd  
Lin2  
3.3V  
FB2  
C 9  
C12  
VID4  
VID3  
VID2  
VID1  
VID0  
R14  
R15  
R 5  
R 9  
C14  
C 8  
Power Good  
Figure 3 - Typical application of IRU3004 in an on-board DC-DC converter providing the Core, GTL+,  
and Clock supplies for the Pentium II microprocessor.  
Rev. 1.7  
07/16/02  
www.irf.com  
6
IRU3004  
IRU3004 APPLICATION PARTS LIST  
Ref Desig Description  
Qty  
1
1
1
1
1
1
1
2
2
1
1
3
1
1
6
1
1
1
1
1
3
2
2
1
3
1
1
1
1
Part #  
IRL3103S, TO-263 package  
IRL3103D1S, TO-263 package  
MPS2222A, SOT-23 package  
IRLR024, TO-252 package  
L=1µH, 5052 core with 4 turns of 1.0mm wire  
L=2.7µH, 5052B core with 7 turns of 1.2mm wire  
150pF, 0603  
Manuf  
IR  
Q1  
Q2  
Q3  
Q4  
L1  
MOSFET  
MOSFET  
IR  
Bipolar Trans, GP  
MOSFET  
Motorola  
IR  
Inductor  
MicroMetal  
Micro Metal  
L2  
Inductor  
C1  
C2, 6  
C3  
C4  
C5  
Capacitor, Ceramic  
Capacitor, Ceramic  
Capacitor, Electrolytic  
Capacitor, Ceramic  
Capacitor, Ceramic  
1µF, 0603  
10MV1200GX, 1200µF,10V  
1µF, 0805  
Sanyo  
220pF, 0603  
C7, 14, 15 Capacitor, Ceramic  
1000pF, 0603  
C8  
Capacitor, Ceramic  
Capacitor, Electrolytic  
Capacitor, Electrolytic  
Capacitor, Electrolytic  
Capacitor, Electrolytic  
Capacitor, Electrolytic  
Capacitor, Ceramic  
Resistor  
0.1µF, 0603  
C9  
6MV1000GX, 1000µF, 6.3V  
6MV1500GX, 1500µF, 6.3V  
6MV150GX, 150µF, 6.3V  
6MV1000GX, 1000µF, 6.3V  
10MV470GX, 470µF, 10V  
4.7µF, 1206  
Sanyo  
Sanyo  
Sanyo  
Sanyo  
Sanyo  
C10  
C11  
C12  
C13  
C16  
R1  
3.3K, 5%, 0603  
R2, 3, 4  
R5, 15  
R7, 12  
R8  
Resistor  
4.7, 5%, 1206  
Resistor  
10K, 5%, 0603  
Resistor  
100, 1%, 0603  
Resistor  
150, 1%, 0603  
R9, 11, 14 Resistor  
100, 5%, 0603  
R13  
R16  
R17  
R18  
Resistor  
Resistor  
Resistor  
Resistor  
22K, 1%, 0603  
220, 1%, 0603  
330, 1%, 0603  
10, 5%, 0603  
Note 1: R16, R17, C16, R12, and R13 set the Vcore 2% higher for level shift to reduce CPU transient  
voltage.  
Note 2: R14 and R15 set the 1.5V approximately 1% higher to account for the trace resistance drop.  
Rev. 1.7  
07/16/02  
www.irf.com  
7
IRU3004  
TYPICAL APPLICATION  
Pentium with AGP  
L2  
L1  
Q1  
V
OUT3  
5V  
R16  
R17  
C16  
C5  
R1  
C7  
R4  
Q2  
C13  
C3  
C4  
C10  
R2  
R3  
R12  
R13  
3.3V  
12V  
Q3  
C6  
C9  
C11  
R18  
R7  
R8  
V12  
Ct  
V5  
D3  
CS+  
HDrv  
CS-  
LDrv  
Gnd  
VFB3  
R11  
Lin1  
C15  
C1  
IRU3004  
VFB1  
SS  
D4  
C2  
Q4  
D2  
D1  
D0  
V
FB2  
PGd  
Lin2  
3.3V  
3.3V  
C12  
VID4  
R14  
R15  
VID3  
VID2  
VID1  
VID0  
R5  
C8  
R9  
C14  
Power Good  
Figure 4 - Typical application of IRU3004 in a Pentium with AGP where the power dissipation of the 3.3V  
linear regulator is equally distributed between Q3 and Q4 pass transistors. This equal distribution is  
possible by accurately regulating the first regulator using the IRU3004 linear controller and its internal  
1% reference voltage while the second controller regulates the output of the first regulator from 4.17V to  
3.3V, thereby distributing the power dissipation equally.  
Rev. 1.7  
07/16/02  
www.irf.com  
8
IRU3004  
IRU3004 APPLICATION PARTS LIST  
Ref Desig Description  
Qty  
Part #  
Manuf  
Q1  
MOSFET  
MOSFET  
MOSFET  
Inductor  
1
IRL3103s, TO-263 package  
IR  
Q2  
1
2
1
IRL3103D1S, TO-263 package  
IRL3303S, TO-263 package  
L=1µH, 5052 core with 4 turns of  
1.0mm wire  
IR  
IR  
Q3, 4  
L1  
Micro Metal  
L2  
Inductor  
1
L=2.7µH, 5052B core with 7 turns of  
1.2mm wire  
Micro Metal  
Sanyo  
C1  
Capacitor, Ceramic  
Capacitor, Ceramic  
Capacitor, Electrolytic  
Capacitor, Ceramic  
Capacitor, Ceramic  
1
2
2
1
1
3
1
1
6
1
1
1
1
1
3
2
1
2
3
1
1
1
1
1
150pF, 0603  
C2, 6  
C3  
1µF, 0603  
10MV1200GX, 1200µF, 10V  
1µF, 0805  
C4  
C5  
220pF, 0603  
C7, 14, 15 Capacitor, Ceramic  
1000pF, 0603  
C8  
Capacitor, Ceramic  
Capacitor, Electrolytic  
Capacitor, Electrolytic  
Capacitor, Electrolytic  
Capacitor, Electrolytic  
Capacitor, Electrolytic  
Capacitor, Ceramic  
Resistor  
0.1µF, 0603  
C9  
6MV1000GX, 1000µF, 6.3V  
6MV1500GX, 1500µF, 6.3V  
6MV150GX, 150µF, 6.3V  
6MV1000GX, 1000µF, 6.3V  
10MV470GX, 470µF, 10V  
4.7µF, 1206  
Sanyo  
Sanyo  
Sanyo  
Sanyo  
Sanyo  
C10  
C11  
C12  
C13  
C16  
R1  
3.3K, 5%, 0603  
R2, 3, 4  
R5, 15  
R7  
Resistor  
4.7, 5%, 1206  
Resistor  
10K, 5%, 0603  
Resistor  
267, 1%, 0603  
R8  
Resistor  
150, 1%, 0603  
R9, 11, 14 Resistor  
100, 5%, 0603  
R12  
R13  
R16  
R17  
R18  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
100, 1%, 0603  
22K, 1%, 0603  
220, 1%, 0603  
330, 1%, 0603  
10, 5%, 0603  
Note 1: R16, R17, C16, R12, and R13 set the Vcore 2% higher for level shift to reduce CPU transient  
voltage.  
Rev. 1.7  
07/16/02  
www.irf.com  
9
IRU3004  
APPLICATION INFORMATION  
An example of how to calculate the components for the output capacitor ESR at the cost of load regulation. One  
application circuit is given below.  
can show that the new ESR requirement eases up by  
half the total trace resistance. For example, if the ESR  
Assuming, two sets of output conditions that this regu- requirement of the output capacitors without voltage level  
lator must meet:  
a) Vo=2.8V, Io=14.2A, Vo=185mV, Io=14.2A  
b) Vo=2V, Io=14.2A, Vo=140mV, Io=14.2A  
shifting must be 7m, then after level shifting the new  
ESR will only need to be 9.5mif the trace resistance  
is 5m(7 + 5/2=9.5). However, one must be careful that  
the combined “voltage level shifting” and the transient  
The regulator design will be done such that it meets the response is still within the maximum tolerance of the  
worst case requirement of each condition.  
Intel specification. To insure this, the maximum trace  
resistance must be less than:  
Output Capacitor Selection  
(Vspec - 0.02 × Vo - Vo)  
The first step is to select the output capacitor. This is  
done primarily by selecting the maximum ESR value  
that meets the transient voltage budget of the total Vo  
specification. Assuming that the regulators DC initial  
accuracy plus the output ripple is 2% of the output volt-  
age, then the maximum ESR of the output capacitor is  
calculated as:  
Rs 2 ×  
I  
Where:  
Rs = Total maximum trace resistance allowed  
Vspec = Intel total voltage specification  
Vo = Output voltage  
Vo = Output ripple voltage  
I = load current step  
100  
14.2  
ESR ≤  
= 7mΩ  
For example, assuming:  
Vspec = ±140mV = ±0.1V for 2V output  
Vo = 2V  
The Sanyo MVGX series is a good choice to achieve  
both the price and performance goals. The 6MV1500GX,  
1500µF, 6.3V has an ESR of less than 36mtypical.  
Selecting 6 of these capacitors in parallel has an ESR  
of » 6mwhich achieves our low ESR goal.  
Vo = assume 10mV = 0.01V  
I = 14.2A  
Then the Rs is calculated to be:  
Other type of Electrolytic capacitors from other manu-  
facturers to consider are the Panasonic FA series or the  
Nichicon PL series.  
(0.140 - 0.02 × 2 - 0.01)  
Rs 2 ×  
= 12.6mΩ  
14.2  
Reducing the Output Capacitors Using Voltage Level However, if a resistor of this value is used, the maximum  
Shifting Technique power dissipated in the trace (or if an external resistor is  
The trace resistance or an external resistor from the output being used) must also be considered. For example if  
of the switching regulator to the Slot 1 can be used to Rs=12.6m, the power dissipated is:  
the circuit advantage and possibly reduce the number of  
output capacitors, by level shifting the DC regulation point  
Io2×Rs = 14.22×12.6 = 2.54W  
when transition from light load to full load and vice versa. This is a lot of power to be dissipated in a system. So, if  
To accomplish this, the output of the regulator is typi- the Rs=5m, then the power dissipated is about 1W  
cally set about half the DC drop that results from light which is much more acceptable. If level shifting is not  
load to full load. For example, if the total resistance from implemented, then the maximum output capacitor ESR  
the output capacitors to the Slot 1 and back to the Gnd was shown previously to be 7mwhich translated to » 6  
pin of the device is 5mand if the total I, the change of the 1500µF, 6MV1500GX type Sanyo capacitors. With  
from light load to full load is 14A, then the output voltage Rs=5m, the maximum ESR becomes 9.5mwhich is  
measured at the top of the resistor divider which is also equivalent to » 4 caps. Another important consideration  
connected to the output capacitors in this case, must is that if a trace is being used to implement the resistor,  
be set at half of the 70mV or 35mV higher than the DAC the power dissipated by the trace increases the case  
voltage setting. This intentional voltage level shifting temperature of the output capacitors which could seri-  
during the load transient eases the requirement for the ously effect the life time of the output capacitors.  
Rev. 1.7  
07/16/02  
www.irf.com  
10  
IRU3004  
Output Inductor Selection  
In our example for Vo=2.8V and 14.2A load, assuming  
The output inductance must be selected such that un- IRL3103 MOSFET for both switches with maximum on-  
der low line and the maximum output voltage condition, resistance of 19m, we have:  
the inductor current slope times the output capacitor  
1
T =  
= 5µs  
ESR is ramping up faster than the capacitor voltage is  
drooping during a load current step. However, if the in-  
ductor is too small, the output ripple current and ripple  
voltage become too large. One solution to bring the ripple  
current down is to increase the switching frequency,  
however that will be at the cost of reduced efficiency and  
higher system cost. The following set of formulas are  
derived to achieve the optimum performance without  
many design iterations.  
200000  
Vsw = Vsync = 14.2 × 0.019 = 0.27V  
2.8 + 0.27  
5 - 0.27 + 0.27  
TON = 0.61 × 5 = 3.1µs  
D »  
= 0.61  
TOFF = 5 - 3.1 = 1.9µs  
1.9  
Ir = (2.8 + 0.27) ×  
= 1.94A  
3
Vo = 1.94 × 0.006 = 0.011V = 11mV  
The maximum output inductance is calculated using the  
following equation:  
Power Component Selection  
Assuming IRL3103 MOSFETs as power components,  
we will calculate the maximum power dissipation as fol-  
lows:  
VIN(MIN) - Vo(MAX)  
L = ESR×C×  
(
)
2 × DI  
Where:  
VIN(MIN) = Minimum input voltage  
Vo = 2.8V , I = 14.2A  
For high-side switch the maximum power dissipation  
happens at maximum Vo and maximum duty cycle.  
(2.8 + 0.27)  
(4.75 - 0.27 + 0.27)  
PDH = DMAX × Io2 × RDS(MAX)  
4.75 - 2.8  
L = 0.006×9000×  
= 3.7µH  
DMAX »  
= 0.65  
( 2×14.2 )  
Assuming that the programmed switching frequency is  
set at 200KHz, an inductor is designed using the  
Micrometals’ powder iron core material. The summary  
of the design is outlined below:  
PDH = 0.65 × 14.22 × 0.029 = 3.8W  
RDS(MAX) = Maximum RDS(ON) of the MOSFET (1258C)  
For synchronous MOSFET, maximum power dissipa-  
The selected core material is Powder Iron, the selected tion happens at minimum Vo and minimum duty cycle.  
core is T50-52D from Micro Metal wound with 8 turns of  
#16 AWG wire, resulting in 3µH inductance with » 3mΩ  
of DC resistance.  
(2 + 0.27)  
(5.25 - 0.27 + 0.27)  
DMIN »  
= 0.43  
PDS = (1 - DMIN) × Io2 × RDS(MAX)  
PDS = (1 - 0.43) × 14.22 × 0.029 = 3.33W  
Assuming L=3µH and Fsw=200KHz (switching fre-  
quency), the inductor ripple current and the output ripple  
voltage is calculated using the following set of equations: Heat Sink Selection  
Selection of the heat sink is based on the maximum  
T º Switching Period  
D º Duty Cycle  
allowable junction temperature of the MOSFETS. Since  
we previously selected the maximum RDS(on) at 1258C,  
then we must keep the junction below this temperature.  
Selecting TO-220 package gives θJC=1.88C/W (from the  
venders’ data sheet) and assuming that the selected  
heat sink is black anodized, the heat-sink-to-case ther-  
mal resistance is θCS=0.058C/W, the maximum heat sink  
temperature is then calculated as:  
Vsw º High side Mosfet ON Voltage  
RDS º Mosfet On Resistance  
Vsync º Synchronous MOSFET ON Voltage  
Ir º Inductor Ripple Current  
Vo º Output Ripple Voltage  
1
Fsw  
TON = D×T  
T =  
TOFF = T - TON  
Ts = TJ - PD × (θJC + θCS)  
Vsw = Vsync = Io×RDS  
TOFF  
L
Ir = (Vo + Vsync)×  
Vo = Ir×ESR  
Ts = 125 - 3.82 × (1.8 + 0.05) = 1188C  
Vo + Vsync  
VIN - Vsw + Vsync  
D »  
Rev. 1.7  
07/16/02  
www.irf.com  
11  
IRU3004  
With the maximum heat sink temperature calculated in Switcher Timing Capacitor Selection  
the previous step, the heat-sink-to-air thermal resistance The switching frequency can be programmed using an  
(θSA) is calculated as follows:  
Assuming TA = 358C:  
external timing capacitor. The value of Ct can be ap-  
proximated using the equation below:  
3.5 × 10-5  
Fsw y  
T = Ts - TA = 118 - 35 = 838C  
Temperature Rise Above Ambient  
Ct  
Where:  
Ct = Timing Capacitor  
Fsw = Switching Frequency  
T 83  
PD 3.82  
θSA =  
=
= 228C/W  
Next, a heat sink with lower θSA than the one calculated If Fsw = 200KHz:  
in the previous step must be selected. One way is to  
3.5 × 10-5  
Ct y  
= 175pF  
simply look at the graphs of the “Heat Sink Temp Rise  
Above the Ambient” vs. the “Power Dissipation” given in  
the heat sink manufacturers’ catalog and select a heat  
200 × 103  
LDO Power MOSFET Selection  
sink that results in lower temperature rise than the one The first step in selecting the power MOSFET for the  
calculated in previous step. The following heat sinks from linear regulators is to select its maximum RDS(ON) based  
AAVID and Thermalloy meet this criteria.  
on the input to output Dropout voltage and the maximum  
load current.  
Company Part #  
Thermalloy............................6078B  
AAVID..................................577002  
For Vo = 1.5V, VIN = 3.3V and IL = 2A:  
(VIN - Vo) (3.3 - 1.5)  
RDS(max) =  
=
= 0.9Ω  
IL  
2
Following the same procedure for the Schottky diode  
results in a heat sink with θSA=258C/W. Although it is Note that since the MOSFETs RDS(ON) increases with  
possible to select a slightly smaller heat sink, for sim- temperature, this number must be divided by » 1.5, in  
plicity, the same heat sink as the one for the high side order to find the RDS(on) max at room temperature. The  
MOSFET is also selected for the synchronous MOSFET. Motorola MTP3055VL has a maximum of 0.18RDS(ON)  
at room temperature, which meets our requirement.  
Switcher Current Limit Protection  
The PWM controller uses the MOSFET RDS(ON) as the To select the heat sink for the LDO MOSFET the first  
sensing resistor to sense the MOSFET current and com- step is to calculate the maximum power dissipation of  
pares to a programmed voltage which is set externally the device and then follow the same procedure as for the  
via a resistor (Rcs) placed between the drain of the switcher.  
MOSFET and the “CS+” terminal of the IC as shown in  
the application circuit. For example, if the desired cur-  
PD = (VIN - Vo) × IL  
rent limit point is set to be 22A and from our previous  
selection, the maximum MOSFET RDS(ON)=19m, then  
the current sense resistor, Rcs is calculated as:  
Where:  
PD = Power Dissipation of the Linear Regulator  
IL = Linear Regulator Load Current  
Where:  
For the 1.5V and 2A load:  
PD = (3.3 - 1.5) × 2 = 3.6W  
Assuming TJ(max) = 1258C then:  
IB = 200µA is the internal current setting of the de-  
vice  
Vcs = ICL × RDS = 22 × 0.019 = 0.418V  
Ts = TJ - PD × (θJC + θCS)  
Vcs  
0.418V  
200µA  
Rcs =  
=
= 2.1KΩ  
Ts = 125 - 3.6 × (1.8 + 0.05) = 118°C  
IB  
Rev. 1.7  
07/16/02  
www.irf.com  
12  
IRU3004  
With the maximum heat sink temperature calculated in Disabling the LDO Regulators  
the previous step, the heat-sink-to-air thermal resistance The LDO controllers can easily be disabled by connect-  
(θSA) is calculated as follows:  
ing the feedback pins (VFB1 and VFB2) to a voltage higher  
than 1.5V such as 5V for all devices.  
Assuming TA = 358C:  
Switcher Output Voltage Adjust  
T = Ts - TA = 118 - 35 = 838C  
Temperature Rise Above Ambient  
As was discussed earlier, the trace resistance from the  
output of the switching regulator to the Slot 1 can be  
used to the circuit advantage and possibly reduce the  
number of output capacitors, by level shifting the DC  
T  
PD  
83  
3.6  
qSA =  
=
= 238C/W  
The same heat sink as the one selected for the switcher regulation point when transitioning from light load to full  
MOSFETs is also suitable for the 1.5V regulator. It is load and vice versa. To account for the DC drop, the  
also possible to use TO-263 package or even the output of the regulator is typically set about half the DC  
MTD3055VL in D-Pak if the load current is less than drop that results from light load to full load. For example,  
1.5A. For the 2.5V regulator, since the dropout voltage if the total resistance from the output capacitors to the  
is only 0.8V and the load current is less than 0.5A, for Slot 1 and back to the Gnd pin of the part is 5mand if  
most applications, the same MOSFET without heat sink the total I, the change from light load to full load is  
or for low cost applications, one can use PN2222A in 14A, then the output voltage measured at the top of the  
TO-92 or SOT-23 package.  
resistor divider which is also connected to the output  
capacitors in this case, must be set at half of the 70mV  
or 35mV higher than the DAC voltage setting. To do this,  
LDO Regulator Component Selection  
Since the internal voltage reference for the linear regula- the top resistor of the resistor divider (R12 in the appli-  
tors is set at 1.5V for all devices, there is no need to cation circuit) is set at 100, and the R13 is calculated.  
divide the output voltage for the 1.5V, GTL+ regulator.  
For example, if DAC voltage setting is for 2.8V and the  
For the 2.5V Clock supply, the resistor dividers are se- desired output under light load is 2.835V, then R13 is  
lected per following:  
calculated using the following formula:  
VDAC  
Rt  
R13 = 100×  
()  
Vo =  
×VREF  
1+  
(
(
)
( )  
RB  
(Vo - 1.004×VDAC)  
Where:  
2.8  
R13 = 100×  
= 11.76KΩ  
)
Rt = Top resistor divider  
RB = Bottom resistor divider  
Vref = 1.5V typical  
(2.835 - 1.004×2.800)  
Select 11.8K, 1%  
Note:The value of the top resistor must not exceed 100.  
The bottom resistor can then be adjusted to raise the  
output voltage.  
Assuming Rt = 100, for Vo = 2.5V:  
Rt  
Vo  
100  
2.5  
RB =  
=
= 150Ω  
- 1  
- 1  
Soft-Start Capacitor Selection  
The soft-start capacitor must be selected such that dur-  
ing the start up, when the output capacitors are charg-  
(VREF) (1.5 )  
For 1.5V output, Rt can be shorted and RB left open. ing up, the peak inductor current does not reach the  
However, it is recommended to leave the resistor divid- current limit threshold. A minimum of 1µF capacitor in-  
ers as shown in the typical application circuit so that sures this for most applications. An internal 10µA cur-  
the output voltage can be adjusted higher to account for rent source charges the soft-start capacitor which slowly  
the trace resistance in the final board layout.  
ramps up the inverting input of the PWM comparator  
VFB3. This insures the output voltage to ramp at the same  
It is also recommended that an external filter be added rate as the soft-start cap thereby limiting the input cur-  
on the linear regulators to reduce the amount of the high rent. For example, with 1µF and the 10µA internal cur-  
frequency ripple at the output of the regulators. This can rent source the ramp up rate is (V/t)=(I/C)=1V/100ms.  
simply be done by the resistor capacitor combination Assuming that the output capacitance is 9000µF, the  
as shown in the application circuit.  
maximum start up current will be:  
I = 9000µF × (1V / 100ms) = 0.09A  
Rev. 1.7  
07/16/02  
www.irf.com  
13  
IRU3004  
Input Filter  
Note:Although, the PWM controller does not require  
R12-15 resistors, and the feedback pins 3 and 14  
can be directly connected to their respective outputs,  
they can be used to set the outputs slightly higher to  
account for any output drop at the load due to the  
trace resistance.  
It is recommended to place an inductor between the  
system 5V supply and the input capacitors of the switch-  
ing regulator to isolate the 5V supply from the switching  
noise that occurs during the turn on and off of the switch-  
ing components. Typically an inductor in the range of 1  
to 3µH will be sufficient in this type of application.  
8) Place R11, C15, Q3 and C11 close to each other and  
do the same with R9, C14, Q4 and C12.  
Switcher External Shutdown  
The best way to shutdown the switcher is to pull down  
on the soft-start pin using an external small signal tran-  
sistor such as 2N3904 or 2N7002 small signal MOSFET.  
This allows slow ramp up of the output, the same as the  
power up.  
Note: It is better to place the linear regulator compo-  
nents close to the IC and then run a trace from the  
output of each regulator to its respective load such  
as 2.5V to the clock and 1.5V for GTL + termination.  
However, if this is not possible then the trace from  
the linear drive output pins, pins 2 and 20 must be  
routed away from any high frequency data signals.  
It is critical, to place high frequency ceramic capaci-  
tors close to the clock chip and termination resistors  
to provide local bypassing.  
Layout Considerations  
Switching regulators require careful attention to the lay-  
out of the components, specifically power components  
since they switch large currents. These switching com-  
ponents can create large amount of voltage spikes and  
high frequency harmonics if some of the critical compo-  
nents are far away from each other and are connected 9) Place timing capacitor C1 close to pin 1 and soft  
with inductive traces. The following is a guideline of how  
to place the critical components and the connections  
between them in order to minimize the above issues.  
start capacitor C2 close to pin 13.  
Component connections:  
Note: It is extremely important that no data bus should  
Start the layout by first placing the power components: be passing through the switching regulator section spe-  
1) Place the input capacitors C3 and the high side cifically close to the fast transition nodes such as PWM  
MOSFET, Q1 as close to each other as possible.  
drives or the inductor voltage.  
2) Place the synchronous MOSFET, Q2 and the Q1 as Using the 4 layer board, dedicate on layer to ground,  
close to each other as possible with the intention another layer as the power layer for the 5V, 3.3V, Vcore,  
that the source of Q1 and drain of the Q2 has the 1.5V and if it is possible for the 2.5V. Connect all grounds  
shortest length.  
to the ground plane using direct vias to the ground plane.  
Use large low inductance/low impedance plane to con-  
nect the following connections either using component  
side or the solder side:  
3) Place the snubber R4 & C7 between Q1 & Q2.  
4) Place the output inductor, L2 and the output capaci-  
tors, C10 between the MOSFET and the load with  
output capacitors distributed along the slot 1 and  
close to it.  
a) C3 to Q1 Drain  
b) Q1 Source to Q2 Drain  
c) Q2 drain to L2  
d) L2 to the output capacitors, C10  
e) C10 to the slot 1  
f) Input filter L1 to the C3  
g) C9 to Q4 drain  
5) Place the bypass capacitors, C4 and C6 right next to  
12V and 5V pins. C4 next to the 12V, pin 12 and C6  
next to the 5V, pin 5.  
h) C12 to the Q4 source  
6) Place the controller IC such that the PWM output Connect the rest of the components using the shortest  
drives, pins 9 and 11 are relatively short distance from connection possible.  
gates of Q1 and Q2.  
IR WORLD HEADQUARTERS : 233 Kansas St.,  
El Segundo,California 90245,  
7) Place resistor dividers, R7 & R8 close to pin 3, R12  
USA Tel: (310) 252-7105  
& R13 (see note) close to pin 14 and R14 and R15  
(see note) close to pin 20.  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information  
Data and specifications subject to change without notice. 02/01  
Rev. 1.7  
07/16/02  
www.irf.com  
14  
IRU3004  
(F) TSSOP Package  
20-Pin  
A
L
Q
R 1  
C
B
1.0 DIA  
R
E
N
M
P
O
PIN NUMBER 1  
F
D
DETAIL A  
DETAIL A  
G
J
H
K
20-PIN  
NOM  
0.65 BSC  
SYMBOL  
DESIG  
A
MIN  
4.30  
0.19  
MAX  
4.50  
0.30  
B
4.40  
C
6.40 BSC  
---  
D
E
1.00  
1.00  
6.50  
---  
F
6.40  
---  
6.60  
1.10  
0.95  
0.15  
G
H
J
0.85  
0.05  
0.90  
---  
K
L
128 REF  
M
N
128 REF  
08  
---  
88  
O
P
1.00 REF  
0.60  
0.20  
---  
0.50  
0.75  
Q
R
0.09  
0.09  
---  
---  
R1  
---  
NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.  
Rev. 1.7  
07/16/02  
www.irf.com  
15  
IRU3004  
(W) SOIC Package  
20-Pin Surface Mount, Wide Body  
H
A
B
C
R
E
DETAIL-A  
L
PIN NO. 1  
D
0.51±0.020 x 458  
DETAIL-A  
I
K
F
T
G
J
SYMBOL  
20-PIN  
MIN MAX  
A
B
C
D
E
F
G
I
12.598 12.979  
1.018 1.524  
0.66 REF  
0.33  
7.40  
0.508  
7.60  
2.64  
0.30  
0.32  
2.032  
0.10  
0.229  
J
10.008 10.654  
08 88  
0.406 1.270  
0.63 0.89  
2.337 2.642  
K
L
R
T
NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.  
Rev. 1.7  
07/16/02  
www.irf.com  
16  
IRU3004  
PACKAGE SHIPMENT METHOD  
PKG  
PACKAGE  
PIN  
PARTS  
PARTS  
T & R  
DESIG  
DESCRIPTION  
COUNT  
PER TUBE  
PER REEL  
Orientation  
F
TSSOP Plastic  
20  
20  
74  
38  
2500  
1000  
Fig A  
Fig B  
W
SOIC, Wide Body  
1
1
1
1
1
1
Feed Direction  
Figure A  
Feed Direction  
Figure B  
IR WORLD HEADQUARTERS:233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information  
Data and specifications subject to change without notice. 02/01  
Rev. 1.7  
07/16/02  
www.irf.com  
17  

相关型号:

IRU3004CWPBF

Switching Controller, 500kHz Switching Freq-Max, PDSO20, PLASTIC, SOIC-20
INFINEON

IRU3004CWTR

IC CTRL/REG SYNC BUCK 20-SOIC
INFINEON

IRU3005CW-TR

Switching Controller, 250kHz Switching Freq-Max, PDSO20, PLASTIC, SOIC-20
INFINEON

IRU3005CW-TRPBF

Switching Controller, 250kHz Switching Freq-Max, PDSO20, PLASTIC, SOIC-20
INFINEON

IRU3005CWPBF

Switching Controller, 250kHz Switching Freq-Max, PDSO20, PLASTIC, SOIC-20
INFINEON

IRU3007

5-BIT PROGRAMMABLE SYNCHRONOUS BUCK, NON-SYNCHRONOUS,ADJUSTABLE LDO AND 200mA ON-BOARD LDO
INFINEON

IRU3007CW

5-BIT PROGRAMMABLE SYNCHRONOUS BUCK, NON-SYNCHRONOUS,ADJUSTABLE LDO AND 200mA ON-BOARD LDO
INFINEON

IRU3007CWPBF

Dual Switching Controller, 200kHz Switching Freq-Max, PDSO28, PLASTIC, SOIC-28
INFINEON

IRU3011

5-BIT PROGRAMMABLE SYNCHRONOUS BUCK CONTROLLER IC
INFINEON

IRU3011CW

5-BIT PROGRAMMABLE SYNCHRONOUS BUCK CONTROLLER IC
INFINEON

IRU3011CWPBF

暂无描述
INFINEON