IRU3065CLTRPBF [INFINEON]

POSITIVE TO NEGATIVE DC TO DC CONTROLLER; 正到负的直流到直流控制器
IRU3065CLTRPBF
型号: IRU3065CLTRPBF
厂家: Infineon    Infineon
描述:

POSITIVE TO NEGATIVE DC TO DC CONTROLLER
正到负的直流到直流控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总15页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD94703 revA  
IRU3065(PbF)  
POSITIVE TO NEGATIVE DC TO DC CONTROLLER  
PRODUCT DATASHEET  
FEATURES  
DESCRIPTION  
Generate Negative Output from +5V Input  
1A Maximum Output Current  
The IRU3065 controller is designed to provide solutions  
for the applications requiring low power on board switch-  
ing regulators. The IRU3065 is specifically designed  
for positive to negative conversion and uses few com-  
ponents for a simple solution. The IRU3065 operates at  
high switching frequency (up to 1.5MHz), resulting in  
smaller magnetics. The output voltage can be set by  
using an external resistor divider. The stability over all  
conditions is inherent with this architecture without any  
compensation. The device is available in the standard  
6-Pin SOT-23.  
1.5MHz maximum Switching Frequency  
Few External Components  
Available in 6-Pin SOT-23  
APPLICATIONS  
Hard Disk Drives  
Blue Laser for DVD R-W  
MR Head Bias  
LCD Bias  
GaAs FET Bias  
Positive-to-Negative Conversion  
TYPICAL APPLICATION  
5V  
C4  
D1  
10uF  
BAT54  
VDD  
C1 1uF  
Vcc  
C3  
100pF  
Q1  
V
GATE  
IRLML5203  
D2  
U1  
IRU3065  
VOUT (-5V)  
10BQ015  
1.2uH  
Gnd  
L1  
C6  
10uF  
ISEN  
VSEN  
R1  
0.1  
R3  
10K  
R2  
R3  
R2  
VREF = 5V  
VOUT = -VREF ×  
10K  
Figure 1 - Typical application of IRU3065 for single input voltage.  
PACKAGE ORDER INFORMATION  
Basic Part (Non Lead-Free)  
TA (°C)  
DEVICE  
PACKAGE  
OUTPUT VOLTAGE  
0 To 70  
IRU3065CLTR  
6-Pin SOT-23 (L6)  
Adjustable  
Lead-Free Part  
PACKAGE  
TA (°C)  
DEVICE  
OUTPUT VOLTAGE  
0 To 70 IRU3065CLTRPbF 6-Pin SOT-23 (L6)  
Adjustable  
www.irf.com  
1
IRU3065(PbF)  
ABSOLUTE MAXIMUM RATINGS  
Vcc ......................................................................... 7V  
VDD ......................................................................... 12V  
Operating Junction Temperature Range ..................... 0°C To 125°C  
Operating Ambient Temperature Range ..................... 0°C To 70°C  
Storage Temperature Range ...................................... -65°C To +150°C  
ESD Capability (Human Body Model) ........................ 2000V  
PACKAGE INFORMATION  
6-PIN PLASTIC SOT-23 (L6)  
TOP VIEW  
VGATE 1  
6 Vcc  
5 VDD  
4 ISEN  
Gnd 2  
3
VSEN  
θJA=230C/W  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over Vcc=5V, VDD=7V, CGATE=470pF, RSEN=0.125,  
RFDBK1=RFDBK2=10K(to Vcc), fs=1.2MHz, IFL=0.25A and TJ=0°C to 125°C. Typical values refer to TJ=25°C.  
PARAMETER  
SYM  
TEST CONDITION  
MIN  
4
TYP  
MAX  
UNITS  
Recommended Vcc Supply  
Recommended VDD Supply  
Operating Current  
Vcc Note.1  
VDD  
V
V
5
4
Icc  
mA  
3
Initial Output Voltage Accuracy  
Measured in application  
TJ=25C, Vout=-5V  
Measured in application  
over temp. Vout=-5V.  
-1%  
-2%  
1%  
Output Accuracy  
+2%  
Voltage Feedback Sense  
Voltage Feedback Input Offset VVoff  
Voltage Feedback Bias Current IVBIAS  
VVSEN  
V
0
mV  
µA  
mV  
mV  
µA  
-10  
10  
2
Peak Current Sense Voltage  
Min Current Sense Voltage  
Current Sense Bias Current  
Output Drivers Section  
Switching Frequency  
Max Output Duty Cycle  
Min Output Duty Cycle  
Rise Time  
VIs  
VIs  
145  
50  
IIBIAS  
2
1.5  
0
fs  
Dmax  
Dmin  
Tr  
Tf  
TD  
Note. 1  
MHz  
%
100  
%
10% to 90% Vgate high  
ns  
40  
40  
100  
Fall Time  
Propagation Delay from  
Current Sense to Output  
90% to 10% Vgate going low  
Vsens=1V. Isens from 0 to  
250mV. Delay time between  
90% of Isens to 10% of Vgate  
ns  
ns  
Note. 1. guarantted by design  
www.irf.com  
2
IRU3065(PbF)  
PIN DESCRIPTIONS  
PIN# PIN SYMBOL  
PIN DESCRIPTION  
Output driver for external P Channel MOSFET.  
1
2
3
4
5
6
VGATE  
Gnd  
VSEN  
ISEN  
This pin serves as ground pin and must be connected to the ground plane.  
A resistor divider from this pin to VOUT and Vcc or an external VREF, sets the output  
voltage.  
This pin sets the maximum load current by sensing the inductor current.  
This pin provides biasing for the output driver.  
VDD  
Vcc  
This pin provides biasing for the internal blocks of the IC.  
BLOCK DIAGRAM  
Vcc  
6
V
DD  
5
S
R
Q
1 VGATE  
4
3
I
SEN  
V
SEN  
2
Gnd  
Figure 2 - Simplified block diagram of the IRU3065.  
www.irf.com  
3
IRU3065(PbF)  
APPLICATION INFORMATION  
Introduction  
The IRU3065 is a controller intended for an inverting When the output current is below a critical current IOCP,  
regulator solution. For example, to generate –5V from the output voltage is regulated at the desired value and  
a 5V supply. The controller is simple and only has a the switching frequency increases as output current  
voltage comparator, current hysteretic comparator, flip- increases. At current IOCP, the switching frequency  
flop and MOSFET driver. It controls a typical buck boost reaches its maximum fS(MAX). In this region, the opera-  
converter configured by a P-channel MOSFET, an in- tion is in regulation mode. When the current goes above  
ductor, a diode and an output capacitor. The sensed IOCP, the operation goes into power limit mode. The out-  
inductor current by a sensing resistor compares with put voltage starts to decrease and the output power is  
current comparator. The current comparator uses hys- limited. The switching frequency is also reduced.  
teresis to control the turn-on and turn-off of the transis-  
tor based upon the inductor current and gated by the Analysis shows that the current IOCP is determined by:  
output voltage level. When the inductor current rises  
VISEN(TH)  
VIN  
1
2
past the hysteresis set point, the output of the current  
comparator goes high. The flip-flop is reset and the P-  
channel MOSFET is turned off. In the mean time, the  
current sense reference is reduced to near zero, giving  
a zero reference threshold voltage level. As the induc-  
tor current passes below this threshold, which indicates  
that the inductor’s stored energy has been transferred  
to the output capacitor, the current comparator output  
goes high and turns on the output transistor (if the out-  
put voltage is low). By means of hysteresis, the induc-  
IOCP =  
×
×
--(1)  
Rs  
VIN-VOUT(NOM)+VD  
Where:  
Rs = Current Sensing Resistance  
VISEN(TH) = Upper Threshold Voltage at the current  
comparator (when Vcc=5V, VISEN(TH)=0.145V)  
VIN = Input Voltage  
VD = Diode Forward Voltage  
VOUT(NOM) = Nominal Output Voltage  
tor charges and discharges and functions as self oscil- The maximum switching frequency is determined by:  
lating. The voltage feedback comparator acts as a de-  
VIN×(VD-VOUT(NOM))  
mand governor to maintain the output voltage at the de-  
sired level.  
fS(MAX) =  
(VIN+VD-VOUT(NOM)×L×IPEAK  
VIN×(VD-VOUT(NOM))×RS  
fS(MAX) =  
---(2)  
By hysteresis control, the maximum switch current (also  
equals inductor current) is limited by the internal cur-  
rent sensing reference. The power limit is automatically  
achieved. The switching frequency is determined by a  
combination of factors including the inductance, output  
VISEN(TH)×(VIN+VD-VOUT(NOM))×L  
Where:  
IPEAK = Peak Inductor Current  
load current level and peak inductor current. The theo- IPEAK is determined by:  
retical output voltage and switching frequency versus  
VISEN(TH)  
IPEAK =  
---(3)  
output current is shown in Figure 3.  
RS  
Regulation  
Power limit  
mode  
The detailed operation can be seen in the theoretical  
operation section  
mode  
Output  
voltage  
Vout  
Iout  
fs max  
Switching  
frequency  
fs  
Iout  
Iocp  
Figure 3 - Theoretical output voltage and switching  
frequency vs. output current.  
www.irf.com  
4
IRU3065(PbF)  
APPLICATION EXAMPLE  
The following design example is for the evaluation board  
application for IRU3065. The schematic is shown in fig-  
ure 1:  
Design Example  
The modified current IOCP is:  
VIN  
0.15  
1
2
1
2
IOCP =  
IOCP =  
×
×
×
VIN + VD - VOUT(NOM)  
RS  
5
× 1.5A = 357mA  
Where:  
5 + 0.5 - (-5)  
VIN = 5V  
Output Inductor L  
VOUT(NOM) = -5V  
IOUT = 200mA  
The inductance is chosen by equation (2):  
VIN×(VD - VOUT(NOM))  
fS(MAX) = Maximum Frequency  
fS(MAX) = 1.2MHz  
VD = Diode Forward Voltage  
VD = 0.5V  
L ꢁ  
(VIN+VD-  
VOUT(NOM))×fS(MAX)×IPEAK  
-(-5 - 0.5)  
5
L ꢁ  
×
= 1.45µH  
(5 - (-5) + 0.5)×1.2MHz  
1.5A  
Vcc = 5V  
Select L = 1.2µH  
VISEN(TH)=145mV 150mV  
Voltage Sensing Resistor  
The maximum inductor current is: IPEAK = 1.5A  
The output voltage is determined by the two voltage sens-  
ing resistors R2 and R3:  
The maximum average inductor current equals  
IAVG=(VISENTH_MAX+VISENTH_MIN)/Rs/2  
R3  
VOUT(NOM) = -  
× VREF  
IAVG=(145mV+50mV)/0.1ohm/2=1A  
R2  
If R3 is chosen as 10K, Then R2 is given by:  
MOSFET Selection  
A P-channel MOSFET is required. The peak current in  
this case is equal to IPEAK=1.5A. The MOSFET  
IRLML5203, from international Rectifier with ID=3A and  
BVDSS=30V, is a good choice.  
VREF  
5V  
R2 = -  
× R3 = -  
× 10K = 10KΩ  
VOUT(NOM)  
-5V  
Current Sensing Resistor RS  
In order to select RS, the desired critical current IOCP  
has to be determined. Considering the switching losses, Input Capacitor  
for conservative, the critical current should select to be An input capacitor will help to minimize the induced  
slightly greater than the nominal output current.  
ripple on the +5V supply. A 1µF to 10µF X7R ceramic  
capacitor is recommended.  
Select:  
IOCP = 200mA×1.5 = 300mA  
Output Capacitor  
Where 1.5 is the coefficient to take the efficiency into An output capacitor is required to store energy from  
account.  
transfer to the output inductor. Its capacitance and ESR  
have a great impact on output voltage ripple. A 10µF to  
According to equation (1), the current IOCP is given by: 22µF X7R Tantolum or ceramic capacitor is recom-  
mended.  
0.15  
VIN  
1
2
IOCP =  
×
×
= 300mA  
RS  
VIN - VOUT(NOM) + VD  
Output Diode  
The current sensing resistance is calculated as:  
The average diode current equals output current. In  
this case, select the diode average current larger than  
300mA. The lowest block voltage is VIN+(-VOUT). In this  
case, It is 10V. In order to reduce the switching losses,  
the Schottky diode is recommended. The diode 10BQ015  
from International Rectifier with ID=1A and VBR=15V is  
a good choice.  
0.15  
VIN  
1
2
RS =  
×
×
IOCP  
VIN - VOUT(NOM) + VD  
0.15  
5
1
RS =  
×
×
y0.12Ω  
0.3 5 - (-5) + 0.5  
2
Select RS = 0.1Ω  
Other Components  
From equation (3), the modified inductor peak current In order to speed up the turn off of P-channel MOSFET,  
is:  
a fast diode 1N4148 or a 100ohm resistor and 100pF  
capacitor is connected to the pin VDD and VGATE as shown  
VISEN(TH)  
RS  
IPEAK =  
= 1.5A  
www.irf.com  
5
IRU3065(PbF)  
in figure 1. The schottky diode can be replaced with a  
100resistor (Figure 28.) with a small sacrifice of effi- Demo board Evaluation Results  
ciency but lower cost.  
Fig.1 shows the evaluation board schematic and the  
Thermal Consideration  
selected components. The diode D1 can be replaced  
with a 100ohm resistor. The measured efficiency ver-  
The thermal design is to ensure maximum junction tem- sus load current is shown in Fig. 6. With the boot strap  
perature of IRU3065 will not exceed the maximum op- schottky diode, the efficiency is slight higher compar-  
eration junction temperature, which is 125C. The junc- ing with using 100ohm resistor.  
tion temperature can be estimated by the following:  
If higher efficiency is preferred, lower operation fre-  
TJ = PD×ΘJA+TATJ(MAX) = 125C  
quency should be selected. Figure. 5 shows a effi-  
ciency curve when 4.7uH inductor is chosen. The maxi-  
Where ΘJA is the thermal resistance from junction to mum operation frequency reduces from 800k to 250kHz.  
case which is usually provided in the specification. PD As a results, efficiency is more than 10% higher.  
is the power dissipation. TA is the ambient temperature.  
The package thermal resistance of IRU3065 is estimated  
as 230C/W due to compact package.  
For the application circuit shown in Fig.1. The mea-  
sured output voltage versus output current is shown in  
Assuming the maximum allowed ambient temperature Figure 7. When the load current approaches 400mA,  
is 70C, the maximum power dissipation of IRU3065 will the output voltage starts to drop and goes into power  
be  
limit mode. When output is about 1A, the output voltage  
will goes almost zero.  
PD<(125-70C)/ΘJA=(125-70)/230=240mW  
The measured frequency versus load is listed in Fig-  
ure 8. The highest switching frequency occurs at about  
For High Power Application  
The IR3065 driver is designed to driver PMOS for low 440mA. As load current goes up, the IC goes into  
current applications. Figure 4. shows the rise time ver- power limit mode and frequency automatically goes down  
sus cap load. For big capacitor load, the rise time is to protect the system.  
increasing.  
The current sensing comparator threshold voltage ver-  
sus VCC is shown in Figure. 9. Since this threshold is  
only a divided voltage of VCC, it will changes when  
VCC changes. This should be aware in the application.  
Rise time versus cap load  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
The output voltage versus Vin=VCC is shown in fig-  
ure 11. Since the voltage reference is set by Vin. When  
Vin changes, the output voltage will change along Vin.  
Sometimes this feature is preferrable since Vout may  
want to be tracked with Vin except the polarity. How-  
ever, if more accurate output is required, a external  
voltage reference should set the output voltage.  
For the evaluation board, the measured inductor volt-  
age waveforms are listed in Figure 13-17. Figure 15  
shows the measured inductor voltage waveform when  
output current is 250mA, which the converter is oper-  
ated in regulation mode and output voltage is regulated  
at desired voltage -5V. Figure 16 shows the measured  
inductor voltage waveform when the output current is  
equal to the critical current IOCP. Figure 17 shows the  
measured inductor voltage waveform when the output is  
in short circuit, which indicates that the converter is in  
power limit mode and output voltage is near zero.  
0
0.5  
1
1.5  
2
2.5  
Cap(nF)  
Fig.4. Rise time versus cap load.  
The internal gate driver of IRU3065 is designed for  
load current up to 1A. For higher power applications,  
external driver is recommended to driver the external  
FETs.  
.
www.irf.com  
6
IRU3065(PbF)  
Characteristics of IRU3065  
Vout(V) vs Iout(mA)  
Efficiency versus load current  
6
5
4
3
2
1
0
75  
70  
65  
60  
55  
50  
0
100  
200  
300  
400  
Iout(mA)  
0
200  
400  
600  
800  
1000  
Efficiency(%) with diode  
Efficiency(%) with 100ohm resistor  
Iout(mA)  
Figure.5 Efficiency with 4.7uH inductor, 250kHz op-  
eration  
Fig.7. Output voltage (absolute value) versus load  
current. (Vout= -5V, Iocp=400mA)  
Efficiency versus load current  
Frequency (KHz) versus load current  
75  
70  
65  
60  
55  
50  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
100  
200  
Iout(mA)  
300  
400  
Efficiency(%) with diode  
Efficiency(%) with 100 resistor  
0
200  
400  
600  
800  
1000  
Iout(mA)  
Fig.8. Frequency versus load current. (Vout= -5V,  
Iocp=400mA).  
Figure 6. Efficiency with 1.2uH inductor, 800k  
Hz operation  
www.irf.com  
7
IRU3065(PbF)  
Characteristics of IRU3065( Continued)  
Output voltage versus  
Vin@Iout=200mA, TA=25C  
Current comparator threshold versus  
A
Vin (T =25C)  
-4  
-4.2  
-4.4  
-4.6  
-4.8  
-5  
-5.2  
-5.4  
-5.6  
-5.8  
-6  
180  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
170  
160  
150  
140  
130  
120  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
Vin  
VIn  
Figure. 11. Output voltage versus Vin (Vcc=Vin).  
Figure 9. Current sensing comparator upper  
threshold versus VCC=Vin.  
Output voltage versus temperature  
(Vin=5V,Iout=200mA)  
Current sensing comparator upper  
threshold (mV) versus temperature  
-5  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
-25  
0
25  
50  
75  
100  
125  
-5.02  
-5.04  
-5.06  
-5.08  
-5.1  
-5.12  
-5.14  
-25  
0
25  
50  
75  
100  
125  
Tempeture(C )  
Temperature(C )  
Figure. 10. Current sesning comparator upper thresh-  
old versus temperature (Vcc=5V)  
Figure. 12. Output voltage versus temperature at  
Vcc=Vin=5V and Iout=200mA.  
www.irf.com  
8
IRU3065(PbF)  
.
Operation Waveforms of Demo board in Figure. 5  
Figure. 13 Start up  
Fig. 16. Operation waveform with 450mA, the bound-  
ary of continuous mode and discontinuous mode.  
The output start out of regulation  
Fig. 14. Operation waveform with 20mA load.  
Fig. 17. operation waveform with short output.  
Fig. 15. Operation waveforms with 250mA load  
(normal operation)  
www.irf.com  
9
IRU3065(PbF)  
THEORETICAL OPERATION  
reference of the chip, which is set to be 150mV (for  
Vcc=5V), the flip-flop is reset and the PMOS is turned  
off. The inductor current is discharged through diode  
D2 to the load. The load voltage increases. When the  
inductor current decreases to zero, the output current  
is supplied by the output capacitor and the output volt-  
age decreases until next cycle starts. In this mode, the  
voltage at VSEN pin is controlled near zero. Therefore,  
the output voltage is regulated at:  
Operation-Regulation Mode  
Vgate  
R3  
Vin  
-VOUT =  
× VREF  
R2  
Voltage across  
the inductor  
In the evaluation board, the output voltage is regulated  
at -5V, as shown in figure 7. The steady state of the  
converter should be operated in this mode. One feature  
in this mode is that the shaded inductor current in fig-  
ure 18 stays unchanged. The average output diode cur-  
rent equals output current. When the switching period  
decreases and frequency goes up, the average diode  
current increases to support more output current. The  
switching frequency increases linearly when the load  
current increases as shown in figure 20.  
V
V  
D
out  
Ipeak  
Inductor  
current  
O utputofcurrent  
com parator  
O utputdiode  
current  
6
5
Iout  
5
4
V
I
3
2
1
0
out out  
R 3  
R 2  
V
=
V
ref  
out  
0.75  
0
0.02  
0.16  
0.32  
0.48  
0.64  
0.8  
0.8  
I
out  
ton  
t
1
Ts  
Figure 19 - Theoretical output voltage (-VOUT)  
versus output current for IRU3065 controlled buck  
boost evaluation board.(assume VIsen=0.2V)  
6
6
5
5
5
.
1.5 10  
6
.
Figure 18 - Operation waveforms of IRU3065 con-  
trolled buck boost converter at regulation mode.  
1.083 10  
.
1.2 10  
.
9 10  
In general, IRU3065 controlled buck boost converter  
is operated in two modes depending on the load cur-  
rent. When the load current is small, the buck boost  
operated in first mode (regulation mode). The operation  
waveforms are shown in figure 18. In this mode, the  
inductor current in the buck converter is discontinuous.  
Basic Operation  
f
I
s
out  
.
6 10  
.
3 10  
4
.
4.583 10  
0
0
0.2  
0.4  
0.6  
0.8  
0.8  
0.02  
I
out  
When the voltage at VSEN pin is below zero, the flip-flop  
inside the IC is set and the VGATE pin output low, which  
trigger the PMOS in the power stage, the output induc-  
tor current increases from zero. When sensed inductor  
current voltage at ISEN pin reaches the internal current  
Figure 20 - Theoretical switching frequency versus  
output current for evaluation board.(assume  
VIsen=0.2V)  
www.irf.com  
10  
IRU3065(PbF)  
Power Limit Mode  
Influence of System Parameters  
From above section, there is a critical output current  
When the output current continuous increases, the  
switching period continuous decreases until the induc- IOCP. When the output current is larger than IOCP, the  
tor current goes into the boundary of discontinuous and output voltage is out of the regulation and switching fre-  
continuous mode as shown in Figure 21. Then the quency starts to decreases. When output current equals  
IRU3065 controlled buck boost converter goes into power IOCP, the frequency reaches its maximum fS(MAX). Analy-  
limit mode. In this mode, the output power is limited. sis shows that the current IOCP and maximum frequency  
The output voltage is no longer regulated. The output fS(MAX) strongly depends on the parameters such as cur-  
voltage decreases when the load current increases as rent sensing resistor RS and inductance L as well as the  
shown in Figure 19. In this mode, the shaded inductor input and output voltage.  
current in Figure 18 keeps same. The turn off time pe-  
riod is dependent on the output voltage. When the out-  
6
5
put current increases, the output voltage decreases and  
5
it takes more time for the inductor current to reset from  
.
V
V
V
I
,
,
,
0.1  
4
3
2
1
0
out out  
peak current to zero. Therefore, the turn off period in-  
creases. Overall the switching frequency decreases  
when load current increases as shown in Figure 20.  
.
I
0.11  
0.12  
out out  
.
I
out out  
0.452  
0
0.02  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.7  
Vgate  
I
out  
Figure 22 - Theoretical output voltage versus output  
current with different current sensing resistor RS.  
6
.
Vin  
1.5 10  
6
.
1.3 10  
6
5
5
5
.
1.2 10  
Voltage across  
the inductor  
.
f
f
f
I
I
I
,
,
,
1
µ
H
s
s
s
out  
out  
out  
.
9 10  
.
1.1  
1.2  
µH  
.
.
µ
H
6 10  
Vout VD  
.
3 10  
Ipeak  
4
.
4.583 10  
0
Inductor  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.7  
0.02  
I
out  
current  
Figure 23 - Theoretical operation switching frequency  
versus output current with different inductance L.  
Output of current  
comparator  
Figure 22 shows the calculated output voltage versus  
output current with different current sensing resistor RS.  
With different RS, the critical current IOCP varies, and  
the power process ability changes. Figure 23 shows  
the calculated operation switching frequency versus  
output current with different inductance L when RS=0.1.  
The inductance L determines the maximum switching  
frequency of the buck boost converter.  
Output diode  
Iout  
current  
R3  
R2  
V
ref  
Vout  
t1  
ton  
Ts  
Figure 21 - Operation waveforms of IRU3065 con-  
trolled buck boost converter at power limit mode.  
www.irf.com  
11  
IRU3065(PbF)  
Analysis of Operation  
The expected switching frequency linearly increases  
as output current goes up, as shown in Figure 20.  
Regulation Mode  
From Figure 18, when the PMOS is on, the inductor  
current increases from zero. That is:  
Power Limit Mode  
When output current continuously increases and  
IOUT=IOCP, the converter is in the boundary of regulation  
mode and power limit mode with output voltage is regu-  
lated to nominal voltage VOUT=VOUT(NOM). As current con-  
tinues to increase (IOUT>IOCP), the converter goes into  
power limit mode. In this mode, the maximum inductor  
current is limited by the internal current reference  
VISEN=145mV. Therefore, the turn on time of the PMOS  
VIN  
IL =  
× t  
---(4)  
L
And the peak current is given by:  
VIN  
IPEAK =  
× tON  
---(5)  
L
Where tON is the turn on time of the PMOS.  
Because the switch is turned off when sensed inductor keeps same as equation (7).  
current reaches threshold VISEN, the following equation For turn off time, the inductor current theorectically  
holds:  
should decrease from IPEAK to zero if the threshold  
RS×IPEAK = RS× VIN ×tON = VISEN=150mV  
---(6)  
voltage is close to zero , therefore:  
L
VISEN(TH)  
L × IPEAK  
VISEN × L  
IPEAK =  
t1 =  
=
---(12)  
RS  
-(VOUT - VD)  
-(VOUT - VD) × RS  
The turn on time of the PMOS can be calculated as:  
Where VD is the forward voltage drop of output di-  
ode D2.  
L×IPEAK  
VISEN×L  
RS×VIN  
tON =  
=
---(7)  
VIN  
For inductor, by applying voltage and second balance The switching period is given by:  
approach, we have:  
L × IPEAK  
L × IPEAK  
TS = tON + t1 =  
+
VIN×tON+(VOUT - VD)×t1 = 0  
VIN  
-(VOUT - VD)  
It can be derived as:  
VIN - VOUT + VD  
TS = L × IPEAK ×  
---(13)  
-VIN ×(VOUT - VD)  
VIN×tON  
VISEN×L  
t1 =  
=
---(8)  
-(VOUT - VD)  
-(VOUT - VD)×RS  
The combination of equations (12) and (13) result in  
Where VD is the forward voltage drop of output di- the following:  
ode D2.  
VIN  
t1  
=
---(14)  
VIN - VOUT + VD  
TS  
From Figure 18, the average current of output diode  
should equals the output current, resulting in:  
The output current equals the average diode current,  
which is:  
1
2
t1  
ID(AVG) =  
× IPEAK ×  
= IOUT  
---(9)  
1
TS  
1
2
t1  
×IPEAK×  
TS  
IOUT =  
IOUT =  
Where TS is the switching period and fS =  
TS  
1
2
VISEN  
VIN  
×
×
---(15)  
Combination of equation (6)(8)(9) results in the rela-  
tionship between output current and switching frequency:  
RS  
VIN - VOUT + VD  
Where the peak current is given by equation (6).  
2
-RS ×(VOUT - VD)  
fS =  
×IOUT×2  
---(10)  
VISEN×VISEN×L  
Equation (15) can be rewritten as:  
Because at regulation mode, the output voltage is regu-  
lated, i.e. VOUT=VOUT(NOM). Then the equation (10) can  
be rewritten as:  
VISEN × VIN  
VOUT = VIN + VD -  
---(16)  
2RS × IOUT  
The above equation shows that the output voltage at the  
power limit mode is not regulated. It decreases as the  
output current increases.  
2
-RS ×(VOUT(NOM) - VD)  
fS =  
×IOUT×2  
---(11)  
VISEN×VISEN×L  
www.irf.com  
12  
IRU3065(PbF)  
When IOUT=IOCP, the output voltage equals nominal volt-  
age VOUT=VOUT(NOM). From equation (15),we have  
1
VIN  
VISEN  
IOCP =  
×
×
---(17)  
Vout versus output current  
2
VIN - VOUT +VD  
RS  
6
5
4
3
2
1
0
The above equation is used to select the current sens-  
ing resistor RS.  
Substitution of equation (16) into equation (13) results  
in the relationship between frequency and output cur-  
rent, that is  
0
0.2  
0.4  
0.6  
0.8  
VIN  
2×IOUT  
fS =  
× 1 -  
( )--(18)  
Output current (A)  
L×IPEAK  
IPEAK  
Predicted (-Vout)  
Measured -Vout  
The above equation indicates that the switching fre-  
quency decreases when output current increases dur-  
ing power limit mode.  
Figure 24- The comparison between predicted and  
measured output voltage versus output current  
When IOUT=IOCP, the switching frequency reaches its  
maximum. Substitution of VOUT=VOUT(NOM) and equation  
(6) into equation (13) results in the maximum switching  
frequency:  
Switching frequency versus output current  
VIN×(VD - VOUT(NOM))  
fS(MAX) =  
1200  
1000  
800  
600  
400  
200  
0
(VIN + VD -  
VOUT(NOM))×L×IPEAK  
VIN×(VD - VOUT(NOM))×RS  
fS(MAX) =  
---(19)  
VISEN×(VIN + VD -  
VOUT(NOM))×L  
Therefore, the inductance can be selected according  
to the maximum desired frequency as shown in the fol-  
lowing:  
0
0.2  
0.4  
0.6  
0.8  
Output current (amp)  
Predicted fs(KHz)  
Experiment fs (kHz)  
VIN×(VD - VOUT(NOM))  
L ꢁ  
---(20)  
(VIN + VD -  
VOUT(NOM))×fS(MAX)×IPEAK  
Figure 25 - The comparison between predicted  
and measured switching frequency versus  
output current  
Fig. 24 and Fig.25 shows the theorectical predication  
and calculation results for the output voltage and fre-  
quency versus output current.  
www.irf.com  
13  
IRU3065(PbF)  
Other Applications  
5V  
100ohm  
Vcc  
VDD  
C1  
100pF  
Q1  
V
GATE  
U1  
IRU3065  
IRLML5203  
D2  
VOUT (-5V)  
10BQ015  
Gnd  
C2  
L1  
10uF  
1.2uH  
ISEN  
VSEN  
R1  
0.1  
R3  
10K  
R2  
10K  
VREF= 5V  
Fig. 26 . IRU3065 application with 100ohm resistor and 100pf cap  
www.irf.com  
14  
IRU3065(PbF)  
(L6) SOT-23 Package  
B
e
L
E
E1  
e1  
D
α
C
A2  
A
A1  
C
L
SYMBOL MIN  
MAX  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
3.00  
1.75  
A
A1  
A2  
B
C
D
E
E1  
e
e1  
L
0.90  
0.00  
0.90  
0.35  
0.09  
2.80  
2.60  
1.50  
0.95 REF  
1.90 REF  
0.10  
0.60  
α
0ꢀ  
10ꢀ  
NOTE: ALL MEASUREMENTS  
ARE IN MILLIMETERS.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information  
Data and specifications subject to change without notice. 9/6/2005  
www.irf.com  
15  

相关型号:

IRU3072C

20-PIN SYNCHRONOUS PWM CONTROLLER/ 3 LDO CONTROLLER
INFINEON

IRU3072CH

20-PIN SYNCHRONOUS PWM CONTROLLER/ 3 LDO CONTROLLER
INFINEON

IRU3073

SYNCHRONOUS PWM CONTROLLER WITH OVER-CURRENT PROTECTION / LDO CONTROLLER
INFINEON

IRU3073CQ

SYNCHRONOUS PWM CONTROLLER WITH OVER-CURRENT PROTECTION / LDO CONTROLLER
INFINEON

IRU3073CQTR

暂无描述
INFINEON

IRU3073CQTRPBF

Switching Controller, Voltage-mode, 460kHz Switching Freq-Max, PDSO16, LEAD FREE, PLASTIC, QSOP-16
INFINEON

IRU3137

8-PIN SYNCHRONOUS PWM CONTROLLER
INFINEON

IRU3137CS

8-PIN SYNCHRONOUS PWM CONTROLLER
INFINEON

IRU3138

SYNCHRONOUS PWM CONTROLLER FOR TERMINATION POWER SUPPLY APPLICATIONS
INFINEON

IRU3138CS

SYNCHRONOUS PWM CONTROLLER FOR TERMINATION POWER SUPPLY APPLICATIONS
INFINEON

IRU3138CSPBF

Switching Regulator/Controller, Voltage-mode, 440kHz Switching Freq-Max, BIPolar, PDSO14,
INFINEON

IRU3138CSTR

Switching Regulator/Controller, Voltage-mode, 440kHz Switching Freq-Max, BIPolar, PDSO14
INFINEON