IRU3072C [INFINEON]

20-PIN SYNCHRONOUS PWM CONTROLLER/ 3 LDO CONTROLLER; 20 -PIN同步PWM控制器/ 3 LDO控制器
IRU3072C
型号: IRU3072C
厂家: Infineon    Infineon
描述:

20-PIN SYNCHRONOUS PWM CONTROLLER/ 3 LDO CONTROLLER
20 -PIN同步PWM控制器/ 3 LDO控制器

控制器
文件: 总24页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD94698  
IRU3072  
20-PIN SYNCHRONOUS PWM CONTROLLER/  
3 LDO CONTROLLER  
FEATURES  
DESCRIPTION  
Synchronous Controller plus 3-LDO controllers  
Current Limit using MOSFET Sensing  
The IRU3072 controller IC is designed to provide a low  
cost synchronous Buck regulator for on-board DC to DC  
converter for multi-output applications. The outputs can  
be programmed as low as 0.8V for low voltage applica-  
Dual Soft-Start Function allows power sequencing  
Single 5V/12V Supply Operation  
Programmable Switching Frequency up to 400KHz tions.  
Fixed Frequency Voltage Mode  
1A Peak Output Drive Capability  
The IRU3072 features dual soft-starts which allows power  
sequencing between outputs.  
Over current limit is provided by using external MOSFET's  
on-resistance for optimum cost and performance.  
This device features a programmable frequency set from  
200KHz to 400KHz, under-voltage lockout for all input  
supplies, dual external programmable soft-start functions  
as well as output under-voltage detection that latches  
off the device when an output short is detected.  
APPLICATIONS  
Graphic Card  
DDR memory source sink VTT application  
Applications with Multiple Outputs  
Low cost on-board DC to DC such as  
5V to 3.3V, 2.5V or 1.8V  
Hard Disk Drive  
TYPICAL APPLICATION  
3.3V  
Vcc  
V
SEN33 / SDB  
+5V  
C1  
1uF  
Q1  
Drv2  
Fb2  
R1  
V
OUT2  
2.5V  
2.15K  
C2  
R2  
1K  
10uF  
Q2  
VccLDO  
Vc  
C3  
1uF  
Drv3  
Fb3  
D1  
R3  
VOUT3  
1.8V  
L1  
1.25K  
C4  
10uF  
R4  
1K  
VIN=12V  
1uH  
C7  
2x 47uF,16V  
U1  
IRU3072  
C6  
0.1uF  
C5  
1uF  
C8  
10uF  
Q3  
Drv4  
Fb4  
R5  
V
OUT4  
1.5V  
Q4  
IRF7460  
866Ω  
HDrv  
C9  
10uF  
R6  
1K  
L2  
1uH  
R7  
OCSet  
LDrv  
V
OUT1  
1.2V @ 8A  
C10 220pF  
6.81K  
Q5  
IRF7460  
R8  
C12  
3x 330uF, 40m  
6TPB330M, Poscap  
C11  
15nF  
Comp  
3.3K  
R9  
46.4K  
R10  
499Ω  
Rt  
SS1  
Fb1  
C13  
0.1uF C14  
33nF  
R11  
1K  
SSLDO  
Gnd  
PGnd  
Figure 1 - Typical application of IRU3072.  
PACKAGE ORDER INFORMATION  
TA (°C)  
DEVICE  
PACKAGE  
0 To 70  
IRU3072CH  
20-Pin MLPQ 4x4 (H)  
Rev. 1.0  
3/25/04  
www.irf.com  
1
IRU3072  
ABSOLUTE MAXIMUM RATINGS  
Vcc and VccLDO Supply Voltage .............................. 25V  
Vc Supply Voltage .................................................... 25V  
Storage Temperature Range ...................................... -65°C To 150°C  
Operating Junction Temperature Range ..................... 0°C To 125°C  
CAUTION: For all pins, voltage should not be below -0.5V.  
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device.  
PACKAGE INFORMATION  
20-PIN MLPQ 4x4 (H)  
θJA=468C/W  
20  
19  
18  
17  
16  
1
2
3
4
5
15  
14  
13  
12  
11  
Drv4  
Drv3  
Comp  
Fb1  
Rt  
Drv2  
VSEN33/SDB  
VccLDO  
Vcc  
OCSet  
6
7
8
9
10  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, the typical specification value applies over Vcc=5V, Vc=12V, VccLDO=5V and  
TA=25°C. the Min and Max limits apply to the temperature range from 0 to 70°C. Low duty cycle pulse testing is  
used which keeps junction and case temperatures equal to the ambient temperature.  
PARAMETER  
SYM  
TEST CONDITION  
MIN  
TYP MAX UNITS  
Feedback Voltage  
Feedback Voltage  
Fb Voltage Line Regulation  
UVLO  
VFB  
LREG  
0.784  
0.8  
0.2  
0.816  
0.625  
V
%
5<Vcc<12  
UVLO Threshold - Vcc  
UVLO Hysteresis - Vcc  
UVLO Threshold - Vc  
UVLO Hysteresis - Vc  
UVLO Threshold - VccLDO  
UVLO Hysteresis - VccLDO  
UVLO Threshold - VSEN33  
UVLO Hysteresis - VSEN33  
UVLO VCC Supply Ramping Up  
UVLO VC Supply Ramping Up  
UVLO VCCLDO Supply Ramping Up  
UVLO VSEN33 Supply Ramping Up  
3.8  
3.2  
4.2  
0.25  
3.5  
0.2  
2.5  
0.15  
1.27  
0.07  
0.4  
4.6  
3.8  
V
V
V
V
V
V
V
V
V
V
2.25  
1.17  
0.3  
2.75  
1.37  
0.5  
UVLO Threshold - Fb1, 2, 3, 4 UVLO Fb1 Fb Ramping Down  
UVLO Hysteresis - Fb1, 2, 3, 4  
0.02  
Supply Current  
Vcc Dynamic Supply Current  
Vc Dynamic Supply Current  
Vcc Static Supply Current  
Vc Static Supply Current  
Dyn ICC  
Dyn IC  
ICCQ  
Freq=200KHz, CL=3000pF  
Freq=200KHz, CL=3000pF  
SS=0V  
11  
11  
5
14  
14  
8
mA  
mA  
mA  
mA  
ICQ  
SS=0V  
3
5
Rev. 1.0  
3/25/04  
www.irf.com  
2
IRU3072  
PARAMETER  
SYM  
TEST CONDITION  
MIN  
TYP MAX UNITS  
Soft-Start Section  
Charge Current  
Error Amp  
Fb Voltage Input Bias Current  
Fb Voltage Input Bias Current  
Transconductance  
Oscillator  
SS IB1,IB2 SS1=SS2=0V  
15  
25  
0.1  
900  
35  
µA  
IFB1  
IFB2  
SS1=3V  
SS1=0V  
1
75  
µA  
µA  
35  
500  
1300 µmho  
Frequency  
Freq  
VRAMP  
Tr  
Rt=100K  
Rt=39K  
Note 1  
170  
340  
200  
400  
1.27  
230  
460  
KHz  
VPP  
ns  
Ramp Amplitude  
Output Drivers  
Rise Time  
CLOAD=3000pF (10% to 90%)  
Vcc=12V  
CLOAD=3000pF (90% to 10%),  
Vcc=12V  
Vcc=12V, CLOAD=3000pF  
HDrv falls,LDrv rises  
Vcc=12V, CLOAD=3000pF  
LDrv falls, HDrv rises  
Fb=0.7V, Freq=200KHz  
Fb=0.9V  
50  
50  
100  
100  
150  
100  
99  
Fall Time  
Tf  
ns  
Dead Band Time 1  
Dead Band Time 2  
TDB  
50  
20  
85  
115  
50  
ns  
ns  
Max Duty Cycle  
Min Duty Cycle  
DMAX  
DMIN  
92  
0
%
%
LDO Controller Section  
Drive Current  
Fb Voltage  
Input Bias Current  
Thermal Shutdown  
Current Limit  
Drv2, 3 and 4  
Note 1  
40  
0.784  
60  
0.8  
0.5  
150  
mA  
V
µA  
8C  
0.816  
2
OC Threshold Set Current  
OC Comp Off-Set Voltage  
IOCSET  
23  
-7  
30  
0
37  
+7  
µA  
mV  
VOC(OFFSET)  
Note 1: Guaranteed by design but not tested in production.  
PIN DESCRIPTIONS  
PIN# PIN SYMBOL  
PIN DESCRIPTION  
1
2
3
4
5
Drv4  
Drv3  
Drv2  
VccLDO  
Vcc  
Outputs of the linear regulator controllers.  
This pin provides power for the LDO controllers.  
This pin provides biasing for the internal blocks of the IC as well as power for the low side  
driver. A minimum of 1µF, high frequency capacitor must be connected from this pin to  
ground to provide peak drive current capability.  
6
7
LDrv  
Gnd  
Output driver for the synchronous power MOSFET.  
This pin serves as the ground pin and must be connected directly to the ground plane. A  
high frequency capacitor (0.1 to 1µF) must be connected from Vcc, Vc and VccLDO pins  
to this pin for noise free operation.  
8
9
PGnd  
HDrv  
This pin serves as the separate ground for MOSFET's driver and should be connected to  
system's ground plane.  
Output driver for the high side power MOSFET. Connect a diode, such as BAT54 or 1N4148,  
from this pin to ground for the application when the inductor current goes negative (Source/  
Sink), soft-start at no load and for the fast load transient from full load to no load.  
Rev. 1.0  
3/25/04  
www.irf.com  
3
IRU3072  
PIN# PIN SYMBOL  
PIN DESCRIPTION  
10  
Vc  
This pin is connected to a voltage that must be at least 4V higher than the bus voltage of  
the switcher (assuming 5V threshold MOSFET) and powers the high side output driver. A  
minimum of 1µF, high frequency capacitor must be connected from this pin to ground to  
provide peak drive current capability.  
11  
OCSet  
This pin is connected to the Drain of the synchronous MOSFET and it provides the posi-  
tive sensing for the internal current sensing circuitry. An external resistor programs the  
current sense (CS) threshold depending on the RDS of the power MOSFET.  
This pin is used to monitor the 3.3V rail. This pin can be pulled-low to shutdown the  
outputs.  
12  
VSEN33/SDB  
13  
14  
Rt  
Fb1  
This pin sets the switching frequency with a resistor to Gnd.  
This pin is connected directly to the output of the switching regulator via resistor divider to  
provide feedback to the Error amplifier.  
15  
16  
Comp  
SS1  
Compensation pin of the error amplifier. An external resistor and capacitor network is  
typically connected from this pin to ground to provide loop compensation.  
This pin provides soft-start for the switching regulator. An internal current source charges  
an external capacitor that is connected from this pin to ground which ramps up the output  
of the switching regulator, preventing it from overshooting as well as limiting the input  
current.  
17  
SSLDO  
This pin provides soft-start for the LDO controllers. An internal current source charges an  
external capacitor that is connected from this pin to ground which ramps up the output of  
the LDO controller, preventing it from overshooting as well as limiting the input current.  
These pins provide feedback for the linear regulator controllers.  
18  
19  
20  
Fb2  
Fb3  
Fb4  
Rev. 1.0  
3/25/04  
www.irf.com  
4
IRU3072  
BLOCK DIAGRAM  
3V  
12  
VSEN33 / SDB  
Bias  
Generator  
1.27V  
0.8V  
20uA  
1.27V / 1.2V  
4.2V / 4.0V  
POR  
64uA  
Max  
64uA  
Max  
64uA  
Max  
UVLO  
Vcc  
Vc  
17  
16  
SSLDO  
3V  
3.5V / 3.3V  
2.5V / 2.35V  
VccLDO  
20uA  
64uA  
Max  
13 Rt  
SS1  
10 Vc  
Rt  
Ct  
Oscillator  
Enbl  
9
HDrv  
POR  
S
R
ErrorComp  
Q
Comp 15  
0.8V  
ErrorAmp  
25K  
25K  
5
6
Vcc  
Reset Dom  
LDrv  
PGnd  
Fb1 14  
3V  
0.4V  
20uA  
8
7
CSComp  
POR  
64uA×  
25K=1.6V  
When SS=0  
11  
OCSet  
FbLo Comp  
Gnd  
4
VccLDO  
0.8V  
3
2
1
Drv2  
Drv3  
Drv4  
25K  
18  
Fb2  
25K  
25K  
19  
Fb3  
Fb4 20  
Figure 2 - Simplified block diagram of the IRU3072.  
Rev. 1.0  
3/25/04  
www.irf.com  
5
IRU3072  
TYPICAL APPLICATION  
3.3V  
Vcc  
VSEN33 / SDB  
+5V  
C1  
1uF  
Q1  
Drv2  
Fb2  
R1  
VOUT2  
2.5V  
2.15K  
C2  
10uF  
R2  
1K  
VccLDO  
Vc  
C3  
1uF  
Q2  
Drv3  
Fb3  
D1  
R3  
VOUT3  
1.8V  
L1  
1.25K  
C4  
10uF  
R4  
1K  
VIN=12V  
1uH  
C7  
2x 47uF,16V  
U1  
IRU3072  
C5  
1uF  
C6  
0.1uF  
C8  
10uF  
Q3  
Drv4  
Fb4  
R5  
VOUT4  
1.5V  
Q4  
IRF7460  
866Ω  
HDrv  
C9  
10uF  
R6  
1K  
L2  
R7  
OCSet  
LDrv  
VOUT1  
1.2V @ 8A  
1uH  
C10 220pF  
6.81K  
Q5  
IRF7460  
R8  
C12  
3x 330uF, 40m  
6TPB330M, Poscap  
C11  
15nF  
Comp  
3.3K  
R9  
46.4K  
Rt  
R10  
499  
SS1  
Fb1  
C13  
0.1uF C14  
33nF  
R11  
1K  
SSLDO  
Gnd  
PGnd  
Figure 3 - Typical application of IRU3072.  
PARTS LIST  
Ref Desig Description  
Q1,Q2,Q3 MOSFET  
Value  
Qty  
3
2
1
1
1
1
2
3
1
2
2
1
1
1
3
1
1
3
1
1
1
1
1
1
1
Part#  
IRLR2703  
IRF7460  
IRU3072  
BAT54S  
DS1608C-102  
DO3316P-102HC  
ECJ-2VF1C105Z  
Manuf  
Web site (www.)  
irf.com  
30V, 65m, 22A  
20V, 10m, 12A  
Synchronous PWM  
IR  
IR  
IR  
IR  
Q4,Q5  
U1  
MOSFET  
Controller  
D1  
Schottky Diode 0.2A, 30V  
L1  
L2  
C1,C3  
Inductor  
Inductor  
Capacitor  
1µH, 2A  
Coilcraft  
Coilcraft  
coilcraft.com  
1µH  
1µF, Y5V, 16V  
10µF  
1µF, X7R, 25V  
0.1µF, Y5V, 25V  
47µF, 16V  
10µF  
220pF, X7R  
15nF  
330µF, 6.3V, 40mΩ  
33nF, X7R  
2.15K, 1%  
1K, 1%  
1.25K, 1%  
866, 1%  
6.81K, 1%  
3.3K, 1%  
46.4K, 1%  
499, 1%  
1K, 1%  
Panasonic maco.panasonic.co.jp  
C2,C4,C9 Capacitor  
C5  
C6,C13  
C7  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Resistor  
ECJ-3YB1E105K  
ECJ-2VF1E104Z  
16TPB47M  
Panasonic  
Panasonic  
Sanyo  
Any  
sanyo.com  
C8  
C10  
C11  
C12  
C14  
R1  
ECU-V1H221KB  
ECJ-2VB1H153K Panasonic  
6TPB330M Sanyo  
Panasonic maco.panasonic.co.jp  
sanyo.com  
ECJ-2VB1H333K Panasonic maco.panasonic.co.jp  
Any  
Any  
Any  
Any  
Any  
Any  
Any  
Any  
Any  
R2,R4,R6 Resistor  
R3  
R5  
R7  
R8  
R9  
R10  
R11  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Rev. 1.0  
3/25/04  
www.irf.com  
6
IRU3072  
APPLICATION INFORMATION  
The IRU3072 controller IC is designed to provide a low The IRU3072 senses four voltages with under-voltage  
cost synchronous Buck regulator for on-board DC to DC lockout (UVLO) block. The voltages Vcc, Vc and VccLDO  
converter as well as three linear regulator controllers. It are sensed through the UVLO block. The LDO input volt-  
is specially designed for multiple output applications. age can be sensed through pin VSEN33. Although syn-  
The outputs can be programmed as low as 0.8V.  
chronous bus voltage (VBUS) is not sensed, in practical,  
it can be sensed indirectly. Typically, only two or three  
The IRU3072 provides two separate soft-starts. It not input voltages are available. Some of the five input volt-  
only allows different output power sequences, but also ages have to either share or be generated by another  
allows shutdown of LDO and PWM output regulators method such as charge pump. One example of IRU3072  
individually.  
application with only two input voltages, 5V and 3.3V, is  
shown in figure 5. In this example:  
The IRU3072 provides cycle-by-cycle current limit and  
output feedback under-voltage lockout.  
VBUS = Vcc = 5V  
Vc = VccLDO created by charge pump  
VSEN33 = 3.3V  
Power Sequence and Under-Voltage Lockout  
For correct operation, proper power sequence should be The IRU3072 will sense all four voltages to ensure all  
ensured. Typically, there are four or five input voltages these voltages enter into steady state before the soft-  
involved.  
start capacitor is charged up. The operation waveforms  
are shown in Figure 6.  
Vcc: IC biasing voltage.  
VSEN33: LDO Input voltage, for example 3.3V  
VccLDO: Input biasing voltage for IRU3072 internal  
LDO controller.  
VBUS: Input voltage for synchronous buck converter.  
Vc: Input biasing voltage for IRU3072 internal high  
side MOSFET drivers.  
3.3V  
V
SEN33 / SDB  
Drv2  
Fb2  
U1  
IRU3072  
The power sequence should be proper such that soft-  
start capacitors (for both LDO and PWM) start to be  
linearly charged up right after the above five voltages enter  
into steady state, as shown in the following figure.  
Vcc  
VccLDO  
UVLO  
L1  
VBUS=5V  
Vc  
C6  
UVLO Threshold Voltage  
Input Voltage  
V
V
CC,VCCLDO,  
BUS,Vc, etc  
Soft-Start  
SS1  
HDrv  
Q4  
Q5  
L2  
VOUT1  
R7  
OCSet  
LDrv  
C10  
Soft-Start Voltage  
for PWM VSS  
SSLDO  
Soft-Start Voltage  
for LDO VSSLDO  
Figure 5 - IRU3072 application with only two  
power inputs: 5V and 3.3V.  
Figure 4 - Desired power sequence.  
Rev. 1.0  
3/25/04  
www.irf.com  
7
IRU3072  
The soft-start operation can ensure the output voltage  
ramps up to the regulated voltage without surge of the  
current. The IRU3072 also has an output feedback UVLO  
block, which will turn off both high side and low side  
MOSFET driver when the voltage at pin Fb1,Fb2,Fb3 or  
Fb4 is below 0.4V. The feedback UVLO is used to pro-  
tect the system when the output is in short circuit. How-  
ever, during the power on of the buck converter, the out-  
put of buck converter starts from zero and the voltage at  
pin Fb1 will be below 0.4V. The feedback UVLO should  
be disabled when soft-start capacitor voltage ramps up  
and down. This is achieved by injecting a current into  
the Fb1 pin (also Fb2, Fb3 and Fb4) during the soft-start  
and the magnitude of this current is inversely propor-  
tional to the voltage at soft-start pin (SS or SSLDO). The  
diagram is shown in Figure 7 and operation waveforms  
are shown in Figure 8. The operation principle is as  
Figure 6 - Power sequence.  
If there are three input voltage sources available, such follows:  
as 3.3V, 5V and 12V, the possible connections to en-  
sure proper operation are shown in the following table.  
Initially, the buck converter’s output voltage and the volt-  
age at pin Fb1 are both zero. The voltage at soft-start pin  
“SS” is almost zero and about 64µA current will inject to  
the pin of Fb1 through a 25Kinternal resistor. The  
voltage at the negative input of Error Amplifier and the  
positive input of the feedback UVLO comparator is ap-  
proximately:  
Option Vcc VBUS  
Vc  
12V  
CP  
CP  
12V  
VccLDO LDO Input  
1
2
5V  
5V  
5V  
12V  
12V  
12V  
12V  
12V  
3.3V  
3.3V  
3.3V  
3.3V  
3
4
12V 12V  
12V 5V  
more  
64µA×25K= 1.6V  
3V  
Table: Possible combination of input voltage source  
connections to ensure proper start-up operation.  
(CP refers to Charge Pump)  
20uA  
HDrv  
SS1  
64uA  
Max  
There are many possible combinations of input voltage  
source connections and the table above lists only a few  
of them. Most importantly for a proper power sequence,  
the soft-start capacitor has to be charged up after all the  
input voltage sources are established.  
POR  
Comp  
0.8V  
Error Amp  
LDrv  
25K  
25K  
Soft-Start  
One of the useful features of IRU3072 is that it allows  
different start-up times for PWM output and LDO output  
by programming two separate soft-start capacitors. Fig-  
ure 7 just shows the soft-start for PWM section.  
Fb1  
0.4V  
64uA  
×
25K=1.6V  
When SS=0  
POR  
Feeback  
UVLO Comp  
Figure 7 - IRU3072 soft-start diagram.  
Rev. 1.0  
3/25/04  
www.irf.com  
8
IRU3072  
From the above analysis, the output start up time is the  
period when soft-start capacitor voltage increases from  
1V to 2V. The start up time will be dependent on the size  
of the external soft-start capacitor. The start up time can  
be estimated by:  
Output of UVLO  
POR  
3V  
@2V  
@1V  
Soft-Start  
Voltage  
0V  
20µA×tSTART/CSS @ 2V-1V  
64uA  
For a given start up time, the soft-start capacitor can be  
estimated as:  
Current flowing  
into Fb1 pin  
0uA  
CSS @ 20µA×tSTART/1V ---(1)  
@
1.6V  
Voltage at negative input  
of Error Amp and Feedback  
UVLO comparator  
0.8V  
0.8V  
For 5ms start up time, a 0.1µF soft-start capacitor is  
required. In practice, the 20µA current will slightly de-  
crease as the soft-start voltage goes up. Therefore, for a  
0.1µF soft-start capacitor, start up time may be slightly  
longer, e.g. 6ms.  
0V  
Voltage at Fb1 pin  
Figure 8 - Theoretical operation waveforms  
during soft-start.  
The soft-start waveforms are shown in Figure 9. In this  
figure, the start up time for the buck converter VOUT1 and  
LDOs is different by selecting separate soft-start capaci-  
When the power voltage such as Vcc go into steady tors.  
state and the output of voltage UVLO “POR” goes high,  
a 20uA current source charges the external soft-start  
capacitors. The soft-start voltage ramps up. In the mean  
time, the current flowing into pin Fb1 starts to decrease  
linearly and so does the voltage at the positive pin of  
feedback UVLO comparator and the voltage at the nega-  
tive input of Error amplifier. When the soft-start capacitor  
voltage is around 1V, the current flowing into the Fb1 pin  
is approximately 32µA. The voltage at the positive input  
of the Error amplifier is approximately:  
For PWM: CSS = 0.1µF, tSTART @ 5ms  
For LDOs: CSSLDO = 33nF, tSTART @ 2ms  
32µA×25K= 0.8V  
The Error Amplifier will start to operate and the output  
voltage starts to increase. As the soft-start capacitor  
voltage continues to go up, the current flowing into the  
Fb1 pin will keep decreasing. Because the voltage at pin  
of Error Amplier is regulated to reference voltage 0.8V,  
the voltage at the Fb1 pin is:  
VFB1 = 0.8V-25KΩ×(Injecting Current)  
The feedback voltage increases linearly as the injecting  
current goes down. The injecting current drops to zero  
when soft-start voltage is around 2V and the output volt-  
age goes into steady state.  
Figure 9 - Soft-start of buck converter  
(PWM) and LDO.  
Shutdown  
The PWM output and LDO output can be turned on and  
off individually by pulling up and down the correspond-  
ing soft start capacitors.  
Figure 8 shows that the voltage at the positive pin of  
feedback UVLO comparator is always higher than 0.4V,  
therefore, feedback UVLO is not functional during soft-  
start.  
Rev. 1.0  
3/25/04  
www.irf.com  
9
IRU3072  
(a). Shutdown and start up PWM output by controlling  
soft start SS1. LDO output such as Vout2 will not be  
affected.  
Figure 11 - Operation waveforms when PWM  
converter is shutdown by pulling  
down the soft-start capacitor.  
Both PWM output and LDO output can be shutdown by  
pulling the pin VSEN33/SDB down. One example is shown  
as follows.  
External  
Shutdown  
3.3V  
4.7K  
VSEN33 / SDB  
Drv2  
Fb2  
U1  
IRU3072  
Vcc  
VccLDO  
UVLO  
L1  
(b). Shutdown and start up LDO output by controlling  
soft-start SSLDO. PWM output VOUT1 will not be affected.  
VBUS=5V  
Vc  
C6  
Figure 10 - Shutdown PWM or LDO by  
controlling soft-start.  
Soft-Start  
SS1  
HDrv  
Q4  
Q5  
L2  
V
OUT1  
R7  
OCSet  
One issue related to shutdown of PWM output by pull-  
ing down the soft-start, there is a small negative voltage  
shown in the output during the shutdown. It is because  
the low side MOSFET driver is on when the soft-start  
capacitor voltage is pulling down. The output inductor  
resonates with output capacitor and load. This occurs  
especially often when output current is small (light load  
or no load condition). The operation waveforms are shown  
as follows.  
LDrv  
C10  
SSLDO  
Figure 12 - External shutdown by  
using pin VSEN33/SDB.  
Rev. 1.0  
3/25/04  
www.irf.com  
10  
IRU3072  
The LDO and PWM output can be shutdown by using a  
transistor to pull down the pin VSEN33/SDB as shown in  
Figure 12. Because the VSEN33/SDB pin also senses the  
LDO input voltage for the power UVLO block, a high im-  
pedance resistor such as 4.7K has to be inserted be-  
tween VSEN33/SDB pin and the input of LDO such as 3.3V.  
The input voltage UVLO operation will not be affected  
due to the high input impedance nature of VSEN33/SDB  
pin. The operation waveforms is shown as follows:  
3V  
VBUS  
IRU3072  
20uA  
Q1  
VOUT  
R
SET  
L
CS Comp  
OCSet  
Enb  
Oscillator  
Q2  
S
R
HDrv  
Q
LDrv  
Fb1  
Rf1  
Rf2  
0.4V  
Err Comp  
Figure 14 - IRU3072 current limit diagram.  
The operation is illustrated in Figure 15.  
VREF  
Feedback  
voltage  
0.4V  
Figure 13 - Shutdown by pulling down pin VSEN33/SDB.  
IOUT  
IOUT  
FS(NOM)  
Switching  
frequency  
One feature of shutdown by pulling down VSEN33/SDB is  
that there is no negative voltage shown in the buck con-  
verter output because both high side and low side  
MOSFET drivers are off after shutdown.  
DMAX  
FS(NOM)  
VOUT  
FS(NOM)×VIN  
High Side MOSFET  
turn on time (tON)  
IOUT  
Over Current Protection  
The IRU3072 over current protection is achieved with a  
cycle-by-cycle current limit and an output voltage under-  
voltage lockout scheme. The diagram is shown in Figure  
14. It includes an over current comparator and an output  
voltage UVLO comparator. The current is sensed through  
the RDS(ON) of the low side MOSFET. A resistor, RSET, is  
connected from OCSet pin to the drain of the low side  
MOSFET in order to set the over-current limit. When the  
low side MOSFET Q2 is ON, the inductor current flows  
through MOSFET Q2. The voltage at OCSet pin is given  
<IL>=IOUT  
Average Inductor  
Current  
IO(NOM)  
IO(LIM)  
IOUT  
Normal  
operation  
Over Current  
Limit Mode  
Shutdown  
by UVLO  
Figure 15 - Operation of IRU3072 current limit  
and UVLO.  
as:  
During the normal operation mode, the synchronous buck  
converter operates in fixed frequency FS(NOM), which is  
VOCSet =20µA×RSET -iL×RDS(ON)  
When voltage VOCSet is below zero, the current sensing the normal operation switching frequency and it is deter-  
comparator flips and disables the oscillator. The high mined by the external resistor Rt. The output voltage is  
side MOSFET is turned off and the low side MOSFET is regulated to the desired voltage and the feedback volt-  
on until the inductor currents reduces to below current age is equal to the reference voltage VREF. The turn on  
setting value. The critical inductor current can be calcu- time of the high side MOSFET is given as:  
lated by setting:  
tON(normal) @ D×TS(NOM) =VOUT/(FS(NOM)×VIN)  
VOCSet = 20µA×RSET-iL×RDS(ON) = 0  
ISET = iL(critical) = 20µA×RSET/RDS(ON) ---(2)  
Rev. 1.0  
3/25/04  
www.irf.com  
11  
IRU3072  
As the load current goes up, the inductor current in- From Figure 16, first, the high side MOSFET is on for tON  
creases and the high side MOSFET’s turn on time in- period and the inductor current increases during this time.  
creases a little due to the voltage drop across the high Then, the high side MOSFET is off and low side MOSFET  
side MOSFET RDS(ON).  
is on. Because the inductor current is higher than the  
critical inductor current ISET, the current sensing com-  
As the output current increases to limit current, IL=IO(LIM), parator goes high and the low side MOSFET keeps on.  
which is set by the resistor RSET. The buck converter will The inductor current is discharged by the output voltage.  
go into cycle-by-cycle current limit mode. The operation When the inductor current is below setting current or  
waveforms of IRU3072 during cycle-by-cycle current critical current ISET, the current sensing comparator goes  
mode is shown in Figure 16.  
low and enables the oscillator. The high side MOSFET  
is turned on again and next cycle starts. The operation  
frequency is only dependent on the current sensing com-  
parator and the internal clock frequency is modified by  
current limit.  
iL(VALLEY)  
L(PEAK)  
i
iL(AVG)  
Inductor  
Current  
ISET  
In conclusion, from Figures 15 and 16, two big differ-  
ences exist between normal operation and current limit  
mode. First, during current limit mode, the valley induc-  
tor current is determined by ISET .  
Current Limit  
Comparator Output  
Internal Clock  
ISET = iL(VALLEY)  
MOSFET  
Driver HDrv  
Second, in Figures 15 and 16, the frequency in current  
limit mode, is lower than normal operation frequency.  
D×TS(NOM)  
TS(NOM)  
In general, the output current is represented by:  
(a) Normal operation.  
IOUT = iL(AVG)=iL(VALLEY)+IPK_PK/2  
Where IPK_PK is the peak to peak inductor current  
ripple which is given by:  
Internal Clock  
IPK_PK = iL(PK)-iL(VALLEY) = (VIN-VOUT )×tON/L  
at normal operation  
Figure 15 shows that the operation frequency of the buck  
converter decreases as output current goes up during  
current limit mode. The on time of high side MOSFET is  
controlled by the output voltage loop so that the voltage  
at Fb pin, still equals the reference voltage, VFB=VREF.  
The output voltage is regulated to the desired voltage.  
Internal Clock  
at current limit  
i
L(PEAK)  
Inductor  
Current  
i
L(AVG)  
ISET=iL(VALLEY)  
Current Limit  
Comparator Output  
As a result:  
tON = VO(NOM)/VIN/FS  
High Side MOSFET  
Driver HDrv  
(VIN-VO(NOM))×VO(NOM)  
IOUT(Current Limit Mode) = ISET +  
t
OFF  
t
ON  
(2×L×VIN×Fs)  
(b). Operation at current limit mode.  
Where VO(NOM) is the nominal output voltage and it is  
determined by the feedback resistor and reference volt-  
age as shown in Figure 14. The above equation indi-  
cates that the operation frequency is inversely propor-  
tional to the output current during the current limit mode.  
For practical application, the most important is setting  
up the over current limit threshold. From Figure 15, at  
the current limit threshold IO(LIM), the frequency is still  
equal to nominal operation frequency.  
Figure 16 - Cycle-by-Cycle operation when IRU3072  
is in over-current limit mode.  
Rev. 1.0  
3/25/04  
www.irf.com  
12  
IRU3072  
FS = FS(NOM)  
Therefore, the output current limit threshhold is set by:  
IPK_PK(LIM)  
IOUT(LIM) =I SET +  
2
Where:  
(VIN-VO(NOM))×VO(NOM)  
(VIN×FS(NOM)×L)  
IPK_PK(LIM) =  
From equation (2), the over current limit set resistor can  
be calculated by:  
ISET ×RDS(ON)  
RSET =  
20µA  
RSET = (IOUT(LIM)-IPK_PK(LIM)/2)×RDS(ON)/20µA ---(3)  
(a). Normal operation.  
Where RDS(ON) has to choose the maximum over the tem-  
perature for the selected MOSFET. Overall, the profile of  
current limit operation is shown in Figure 17.  
Over  
Current  
Limit  
Normal  
Operation  
Shutdown  
by UVLO  
Mode  
FS(NOM)  
Switching  
Frequency  
IO(LIM)  
ISET  
IO(MAX)  
IOUT  
Select inductor L, frequency FS(NOM), IO(LIM)  
(VIN-VO(NOM))×VO(NOM)  
Calculate:  
DI  
PK_PK(LIM)  
=
V
IN× L×FS(NOM)  
(b). Current limit mode.  
Set: ISET = IO(LIM)  
-
DIPK_PK/2  
Figure 18 - Operation waveforms during normal  
and current limit mode.  
Select: RSET = ISET× RDS(ON)/20µA  
Figure 17 - Profile of operation switching frequency  
versus output current.  
Rev. 1.0  
3/25/04  
www.irf.com  
13  
IRU3072  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Fs(measured)  
Fs(predicted)  
0
0
2
4
6
8
10  
Iout (A)  
Figure 19 - Profile of switching frequency versus  
output current -predicted and measured.  
Figure 18 (a) shows normal operation waveforms for a  
12V input 1.6V output 400KHz buck regulator. During  
normal operation, the switching frequency is 400KHz.  
Figure 18 (b) shows the operation waveforms during cur-  
Figure 20 - Operation waveforms when output  
of buck converter is short to ground.  
rent limit mode. The switching frequency is reduced and The output UVLO senses the four feedback pin voltages  
output ripple increases. Figure 19 shows the profile of Fb1,Fb2,Fb3,Fb4. If any of the feedback voltages are  
switching frequency versus output current. When the below 0.4V, all four outputs will be shutdown.  
output current goes up and hit the over current limit, the  
switching frequency starts to decreases. Due to the out-  
put voltage loop, the output voltage will keep the regula-  
tion except the ripple increases. As the output current  
keeps going up. The output voltage will start to decrease  
until the feedback voltage Fb is under 0.4V. The output  
voltage under lockout takes over and turns off both high  
side and low side MOSFET. The output voltage reduces  
to zero.  
Output Feedback UVLO  
Besides the cycle-by-cycle current limit, an output feed-  
back UVLO is included in the IRU3072 for the output  
short protection. The diagram is shown in Figure 14. If  
the output is short or overload, once the voltage at the  
Fb1 pin is below 0.4V, the output feedback UVLO com-  
parator will flip and turn off both high side and low side  
MOSFETs. The output of converter will decrease to zero.  
The operation when PWM output is in short circuit con-  
dition is shown in Figure 20. If either PWM or LDO out-  
put is in short condition, it will turn off all outputs. The  
operation waveforms are shown in Figures 21 and 22.  
Figure 23 shows a soft-start operation when the output  
is short. Because of current limit and output feedback  
UVLO, the output will be turned off and the system pro-  
tected.  
Figure 21 - Operation of PWM output and LDO  
when PWM output is short to ground.  
Rev. 1.0  
3/25/04  
www.irf.com  
14  
IRU3072  
Design Example  
Input voltage for buck converter: VIN=12V  
Output voltage for buck converter: VOUT=1.2V  
Nominal output current from switching regulator: IOUT=8A  
Output current limit is 10A.  
Switching frequency: FS=400KHz  
The maximum dynamic output voltage droop at 8A step  
load is 150mV.  
LDO specification  
LDO input voltage: VIN(LDO)=3.3V  
LDO output1: VOUT2=2.5V @ 2A  
LDO output2: VOUT3=1.8V @ 2A  
LDO output3: VOUT4=1.5V @ 2A  
Figure 22 - Operation of PWM output and LDO  
when LDO VOUT2 is short.  
Output inductor selection  
The inductor is selected based on the inductor current  
ripple, operation frequency and efficiency consideration.  
In general, a large inductor results in a small output ripple  
and higher efficiency but large size. A small value induc-  
tor causes large current ripple and poor efficiency but  
small size. Generally, the inductor is selected based on  
the output current ripple. The optimum point is usually  
found between 20% and 50% ripple of output inductor  
current.  
Suppose the ripple is selected as 40% of the total out-  
put current.  
IPK_PK/IOUT = 40%  
The current ripple is calculated as:  
IPK_PK = (VIN-VOUT )×VOUT /(L×FS×VIN)  
Figure 23 - Soft-start with output is short to ground.  
Combining of above two equations, the inductance can  
be selected by:  
Switching frequency  
The switching frequency of IRU3072 can be selected by  
the following figure.  
L > VOUT ×(VIN-VOUT)/(FS×VIN×40%×IOUT )  
In this example,  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
L > 1.2V×(12 - 1.2)/(400KHz×12V×0.4×8A)  
L > 0.8µH  
Select inductor from Panasonic so that L=1µH. The ripple  
current is calculated as:  
IPK_PK =(12-1.2)×1.2/(1µH×400KHz×12)  
IPK_PK @2.7A  
0
0
50  
100  
150  
200  
Rt (K  
)
Ω  
Figure 24 - Switching frequency versus resistor Rt.  
Rev. 1.0  
3/25/04  
www.irf.com  
15  
IRU3072  
Output capacitor selection  
ment for each MOSFET is almost the same. If logic-  
The voltage rating of the output capacitor is the same as level or 3V driver MOSFET is used, some caution should  
the output voltage. Typical available capacitors on the be taken with devices at very low VGS to prevent undes-  
market are electrolytic, tantalum and ceramic. If electro- ired turn-on of the complementary MOSFET, which re-  
lytic or tantalum capacitors are employed, the criteria is sults a shoot-through circuit.  
normally based on the value of Effective Series Resis-  
tance (ESR) of total output capacitor. In most cases, If output inductor current ripple is neglected, the RMS  
the ESR of the output capacitor is calculated based on current of high side switch is given by:  
the following relationship:  
D = VOUT/VIN = 0.1  
ESR < VRIPPLE(SPEC)/IPK_PK  
or  
ESR < VSTEPLOAD(SPEC)/ISTEPLOAD(MAX)  
IRMS(HI) =  
D×IOUT = 0.1×8A = 2.53A  
The RMS current of low side switch is given as:  
IRMS(HI) =  
1-D×IOUT = 1-0.1×8A = 7.6A  
Depending on which one is the requirement.  
Where:  
For low side MOSFET, if it is driven by 5V, a logic gate  
driver MOSFET is preferred. For RDS(ON) of the MOSFET,  
it should be as small as possible in order to get highest  
efficiency. A logic driver MOSFET such as IRF7460 from  
International Rectifier in a SOIC 8-pin package,  
RDS(ON)=10m, 20V drain source voltage rating and 12A  
IDS is selected for high side and low side MOSFET.  
VRIPPLE(SPEC) is the maximum allowed voltage ripple.  
IPK_PK is the current ripple.  
VSTEPLOAD(SPEC) is the maximum allowed voltage  
droop during the transient or step load.  
ISTEPLOAD(MAX) is the maximum step load current.  
In this example:  
VSTEPLOAD(SPEC) =150mV  
ISTEPLOAD(MAX) =8A  
Power Dissipation for MOSFETs  
The power dissipation for MOSFETS typically includes  
conduction loss and switching losses. For high side  
switch, the conduction loss is estimated as:  
The required ESR is calculated as:  
ESR < 150mV/8A = 18.75mΩ  
PCOND(HI) =D×IOUT×IOUT ×RDS(ON)MAX  
Select three Sanyo POSCAP 6TPB330M with 6.3V  
330µF and 40mESR will give about 13m, which will  
meet the specification.  
The RDS(ON) has to consider the worst case. In the  
datasheet of IRF7460:  
RDS(ON)MAX = 14m@ Vgs = 4.5V  
PCOND(HI) = 0.1×8A×8A×14m@ 0.09W  
Input capacitor Selection  
Input capacitor is dertermined by the voltage rating and  
input RMS current. For this application, the input RMS  
current is given as:  
The switching loss is more difficult to calculate because  
of the parasitic parameters. In general, the switching  
loss can be estimated by the following:  
IIN(RMS) = IOUT× D×(1-D)  
D = VOUT/VIN = 1.2V/12V @ 0.1  
PSW = 0.5×VDS×IOUT×(tr+tf)×FS  
tr is the rising time and tf is the falling time. From IRU3072  
datasheet: tr=50ns and tf=50ns  
The input RMS current is estimated as:  
IIN(RMS) = 8A× 0.1×(1-0.1) @ 2.4A  
PSW(HI) = 0.5×12V×8A×(50ns+50ns)×400KHz  
PSW(HI) @ 1.92W  
Select two Sanyo POSCAP -16TPB47M with 16V, 47µF  
and 1.4A ripple current. A 1µH, 1A small input inductor  
is enough for the input filer.  
The total disspation for the high side switch is:  
PD(HI) = PSW(HI)+PCOND(HI) @ 2W  
Power MOSFET Selection  
For low side switch, most of the loss are conduction  
loss. The low side switch power dissipation is:  
In general, the MOSFET selection criteria depends on  
the maximum drain-source voltage, RMS current and  
ON resistance (RDS(ON)). For both high side and low side  
MOSFETs, a drain-source voltage rating higher than  
maximum input voltage is necessary. In the demo-board,  
20V rating should be satisfied. The gate drive require-  
PD(LO) @ PCOND(LO) =(1-D)×IOUT×IOUT×RDS(ON)MAX  
PD(LO) @ PCOND(LO) = (1-0.1)×8A×8A×14mΩ  
PD(LO) @ PCOND(LO) = 0.81W  
Rev. 1.0  
3/25/04  
www.irf.com  
16  
IRU3072  
Estimated Temperature Rise for MOSFET  
The estimated junction temperature of the MOSFET is  
given by:  
For low side MOSFET IRF7460, with 4.5V gate volt-  
age and maximum RDS(ON) of 14m, then:  
RSET = 8.7A×14m/20µA = 6.09KΩ  
Select R7=RSET=6.8KΩ  
TJ = TA+PD×RθJA  
Where:  
TJ is the junction temperature.  
TA is the ambient temperature.  
PD is the power dissipation.  
(4) Compensation Design  
VOUT  
RθJA is the junction-to-ambient thermal resistance  
with MOSFET on 1" square PCB board and is from  
the data sheet.  
IRU3072  
Rf1  
Error Amp  
VFB  
For MOSFET IRF7460 with SOIC 8-pin package,  
RθJA=508C/W. Assume ambient temperature is TA=358C.  
For high side MOSFET, the junction temperature is given  
as:  
gm  
Rf2  
1V  
TJ = TA+PD×RθJA = 35+2×50 = 1358C < 1508C  
Rc1  
Cc1  
Comp  
For low side MOSFET IRF7460, the maximum junction  
temperature can be calculated as:  
Cc2  
(Optional)  
TJ = TA+PD×RθJA = 35+0.81×50 = 768C < 1508C  
The maximum junction temperature of both MOSFETs  
is below the maximum rating of 1508C.  
Figure 25 - Type II compensator.  
Controller Parameter Calculation  
(1) Frequency Selection  
For electrolytic capacitor, the frequency caused by  
ESR is typically at a few KHz range. A type II com-  
pensator is a good option. The detailed description  
is shown in application note AN-1043 from:  
From Figure 23, the frequency setting resistor can  
be chosen to be Rt=47K, which gives us approxi-  
mately 400KHz frequency.  
http://www.irf.com/technical-info/appnotes.htm  
(2) Soft-Start Capacitor  
Select the zero crossover frequency to be 1/10 of  
switching frequency that is 40KHz:  
Soft-start capacitor for PWM secton is selected from  
equation (1). Select start up time tSTART=5ms:  
FO = 40KHz  
CSS = 20µA×tSTART = 20µA×5ms = 0.1µF  
Select C11=CSS=0.1µF  
The compensation resistor can be calculated as:  
2π×FO×L×VOSC×VOUT  
Rc1=  
(ESR×VIN×gm×VREF)  
(3) Over Current Limit Setting  
The over current limit resistor can be calculated based  
on Figure 17. The output current limit is set by:  
Where VOSC is the oscillator peak to peak voltage  
and gm is the transconductance of the error ampli-  
fier. From the datasheet we get VOSC=1.25V and  
gm=1000µmho. The calculated compensation resis-  
tor is:  
IO(LIM) = 10A  
The current ripple during nomral operation (400KHz)  
is given by:  
Rc1=2π×40×1×1.25×1.2/(13×12×1000×0.8)  
Rc1=2.98K  
IPK_PK =(12-1.2)×1.2/(1µH×400KHz×12)  
IPK_PK @ 2.7A  
Select R8=Rc1=3.3K  
The over current setting ISET is:  
The compensator capacitor is given as:  
ISET =I O(LIM)-IPK_PK/2 = 10A-2.7A/2 @ 8.7A  
Cc1 = (L×COUT)/0.75/Rc1  
The over current setting resistor:  
Cc1 = (1µH×450µF)/0.75/3.3K = 10nF  
Select C9=Cc1=15nF  
RSET =I SET×RDS(ON)/20µA  
Rev. 1.0  
3/25/04  
www.irf.com  
17  
IRU3072  
(Optional) an additional capacitor Cc2 can be The required thermal resistance of heat sink should be  
adopted, where:  
RθSA<(TJ-TA)/PD-RθJC-RθCS  
Cc2 @ 1/(π×Rc1×FS) @ 220pF  
In this example, the MOSFET is mounted in the copper  
area more than 1 square inch. The estimated junction  
temperaure is:  
(5) Feedback resistor  
The output of PWM is determined by:  
VOUT =VREF×(RT+RB)/RB  
or  
RT =(VOUT/VREF-1)×RB  
TJ=TA+PD×RθJA  
Where RθJA is the thermal resistance from junction to  
ambient with PCB mounted.  
Where VREF=0.8V  
RT is the top feedback resistor and RB is bottom  
feedback resistor.For 1.2V output, RT=499,RB=1K.  
For IRLR2703s, RθJA=508C/W, Assume:  
TA = 358C  
TJ = 35+1.5W×508C/W = 1108C < 1508C  
LDO Regulator Component Selection  
and LDO Power MOSFET Selection  
The first step in selecting the power MOSFET for the  
linear regulator is to select its maximum RDS(ON) based  
on the input to output dropout voltage and maximum  
load current.  
The thermal managment can meet the requirement.  
VccLDO Selection  
For LDO, the LDO controller supply voltage has to sat-  
isfy the following:  
For VOUT2=2.5V, VIN(LDO)=3.3V and IOUT2=2A:  
VCC(LDO) > VLDO(OUT)MAX+VGS(TH)MIN+2VBE  
RDS(ON)MAX =(VIN(LDO)-VOUT2)/IOUT2  
RDS(ON)MAX = (3.3V-2.5V)/2.0A = 0.4Ω  
Where:  
VLDO(OUT)MAX is the maximum output voltage  
VGS(TH)MIN is the minimum LDO MOSFET gate thresh-  
old voltage  
Note that the MOSFET’s RDS(ON) increases with tem-  
perature, the calculated RDS(ON) has to be divided by the  
RDS(ON) temperature coefficienct (about 1.5) in order to  
get typical RDS(ON).  
VBE is the diode drop, approximately 0.6V  
For this example, VGS(TH)MIN of MOSFET IRLR2703s, is  
1V. Then:  
IRLR2703s from Internation Rectifier with D2 package,  
30V, VDS logic drive and 65mis good enough to meet  
the requirement.  
VCC(LDO) > 2.5V+1V+2×0.6V = 4.7V  
Select VCCLDO=12V for proper power sequence  
LDO Feedback Resistor Selection  
The output of LDO is determined by:  
To select the heat sink for the LDO MOSFET, the first  
step is to calculate the maximum power dissipation of  
the device:  
VOUT =VREF×(RT+RB)/RB  
Where:  
VREF=0.8V  
PD =(VIN(LDO)-VOUT)×IOUT  
PD = (3.3V-2.5V)×2A = 1.4W  
RT is the top feedback resistor and RB is bottom  
feedback resistor.  
The junction temperature of MOSFET can be estimated  
by the following formula:  
For 2.5V output, if RB=1K then:  
RT = (VOUT /VREF-1)×RB = (2.5/0.8-1)×1K = 2.12K  
Select Rt=2.15K  
TJ = TA+PD×(RθJC+RθCS+RθSA)  
TJ should be < TJ(MAX) @ 1508C  
Where:  
TJ = the estimated junction temperature.  
TA = the ambient temperature.  
PD = the power disspation.  
RθJC = the thermal resistance from junction to case.  
RθCS = the thermal resistance from case to heat sink.  
RθSA = the thermal resistance from heat sink to am-  
bient.  
LDO Soft-Start Capacitor  
The soft-start capacitor can be estimated from equation  
(1). Select start up time as 2ms:  
CSS(LDO) = 20µA×tSTART = 20µA×2ms = 0.04µF  
Select C12=CSS(LDO)=33nF  
Rev. 1.0  
3/25/04  
www.irf.com  
18  
IRU3072  
Layout Consideration  
directly to the drain of the high-side MOSFET, to reduce  
The layout is very important when designing high fre- the ESR replace the single input capacitor with two par-  
quency switching converters. Layout will affect noise allel units. The feedback part of the system should be  
pickup and can cause a good design to perform with kept away from the inductor and other noise sources,  
less than expected results.  
and be placed close to the IC. In multilayer PCB use  
one layer as power ground plane and have a control cir-  
Start to place the power components, make all the con- cuit ground (analog ground), to which all signals are ref-  
nection in the top layer with wide, copper filled areas. erenced. The goal is to localize the high current path to  
The inductor, output capacitor and the MOSFET should a separate loop that does not interfere with the more  
be close to each other as possible. This helps to reduce sensitive analog control function. These two grounds  
the EMI radiated by the power traces due to the high must be connected together on the PC board layout at a  
switching currents through them. Place input capacitor single point.  
APPLICATION EXPERIMENTAL WAVEFORMS  
for Application Circuit in Figures 1 and 3  
Figure 26 - Transient response with 8A load.  
Figure 27 - Transient response (zoomed).  
Figure 28 - Transient response (zoomed).  
Rev. 1.0  
3/25/04  
www.irf.com  
19  
IRU3072  
TYPICAL APPLICATIONS  
3.3V  
VSEN33 / SDB Vcc  
C1  
1uF  
Q1  
IRLR2703  
Drv2  
Fb2  
R1  
VOUT2  
2.5V  
2.15K  
C2  
R2  
1K  
VccLDO  
Vc  
Q2  
C4  
Drv3  
Fb3  
R3  
VOUT3  
1.8V  
L1  
1.24K  
R4  
1K  
C5  
1uF  
C6  
0.1uF  
VIN=5V  
1uH  
U1  
IRU3072  
C7  
16TPB47M  
47uF, 16V  
C8  
10uF  
Q3  
C9  
Drv4  
Fb4  
R5  
V
1.5V  
OUT4  
Q4  
IRF7460  
866  
HDrv  
R6  
1K  
L2 1uH  
R7  
6.8K  
OCSet  
LDrv  
VOUT1  
1.2V @ 8A  
C10 100pF  
Q5  
IRF7460  
R8  
C12  
3x 6TPB330M  
6.3V, 330uF, 40m  
C11  
10nF  
Comp  
6.8K  
R9  
Rt  
46.4K  
R10  
1K  
SS1  
Fb1  
C13  
0.1uF C14  
33nF  
R11  
1K  
SSLDO  
Gnd  
PGnd  
Figure 29 - IRU3072 typical application with one bus input voltage VCC=VBUS=5V and 3.3V for LDO.  
3.3V  
Vcc  
V
SEN33 / SDB  
C1  
1uF  
Q1  
IRLR2703  
Drv2  
Fb2  
R1  
V
OUT2  
2.15K  
2.5V  
R2  
1K  
C2  
VccLDO  
Vc  
12V  
Q2  
C4  
Drv3  
Fb3  
R3  
C3  
1uF  
VOUT3  
1.8V  
L1  
1.24K  
R4  
1K  
VIN=5V  
U1  
IRU3072  
1uH  
C7  
16TPB47M  
47uF, 16V  
C8  
10uF  
Q3  
C9  
Drv4  
Fb4  
R5  
V
1.5V  
OUT4  
Q4  
IRF7460  
866  
HDrv  
R6  
1K  
L2  
1uH  
R7  
6.8K  
OCSet  
LDrv  
VOUT1  
0.8V  
C10 100pF  
Q5  
IRF7460  
R8  
C11  
C12  
3x6TPB330M  
6.3V, 330uF, 40m  
Comp  
10nF  
6.8K  
R9  
Rt  
46.4K  
SS1  
Fb1  
C13  
0.1uF C14  
33nF  
SSLDO  
Gnd  
PGnd  
Figure 30 - IRU3072 Typical application with 5VBUS input and 12V for the driver (charge pump is saved).  
Rev. 1.0  
3/25/04  
www.irf.com  
20  
IRU3072  
TYPICAL APPLICATIONS  
3.3V  
VSEN33 / SDB Vcc  
+5V  
C1  
1uF  
Q1  
IRLR2703  
Drv2  
Fb2  
R1  
VOUT2  
2.5V  
2.15K  
C2  
R2  
1K  
VccLDO  
Vc  
C3  
1uF  
Q2  
C4  
D1  
D2  
Drv3  
Fb3  
R3  
VOUT3  
1.8V  
L1  
1.24K  
R4  
1K  
VIN=12V  
1uH  
U1  
IRU3072  
C5  
1uF  
C6  
0.1uF  
C8  
10uF  
C7  
47uF,16V  
Q3  
C9  
Drv4  
Fb4  
R5  
V
1.5V  
OUT4  
Q4  
IRF7460  
866  
HDrv  
R6  
1K  
L2  
R7  
4.7K  
OCSet  
LDrv  
VOUT1  
1.2V @ 5A  
1uH  
C10 82pF  
C12  
2x 47uF  
Ceramic  
Q5  
IRF7460  
R8  
C11  
3.3nF  
Comp  
10K  
R9  
47K  
Rt  
R11  
4.64K  
R10  
62K  
SS1  
C13  
0.1uF C14  
33nF  
C15  
220pF  
SSLDO  
Fb1  
Gnd PGnd  
R12  
124K  
Figure 31 - IRU3072 typical application with ceramic capacitor output.  
R12  
3.3V  
VSEN33 / SDB Vcc  
C1  
1uF  
200Ω  
Q1  
IRLR2703  
Drv2  
Fb2  
R1  
V
OUT2  
2.15K  
2.5V  
C2  
R2  
1K  
VccLDO  
Vc  
Q2  
C4  
Drv3  
Fb3  
R3  
VOUT3  
1.8V  
L1  
1.24K  
R4  
1K  
C5  
1uF  
C6  
0.1uF  
VIN=12V  
1uH  
16TPB47M  
47uF, 16V  
U1  
IRU3072  
C7  
C8  
10uF  
Q3  
C9  
Drv4  
Fb4  
R5  
V
1.5V  
OUT4  
Q4  
IRF7460  
HDrv  
866  
R6  
1K  
L2 1uH  
R7  
6.8K  
OCSet  
LDrv  
VOUT1  
1.2V  
C10 220pF  
Q5  
IRF7460  
R8  
C12  
3x 6TPB330M  
6.3V, 330uF, 40m  
C11  
15nF  
Comp  
3.3K  
R9  
47K  
Rt  
R10  
1K  
SS1  
Fb1  
C13  
0.1uF C14  
33nF  
R11  
1K  
SSLDO  
Gnd  
PGnd  
Figure 32 - IRU3072 typical application with one bus input voltage VCC=VBUS=12V and 3.3V for LDO.  
Rev. 1.0  
3/25/04  
www.irf.com  
21  
IRU3072  
TYPICAL APPLICATION  
R13  
1K  
R12  
200  
3.3V  
VSEN33 / SDB Vcc  
C1  
1uF  
Q1  
IRLR2703  
Drv2  
Fb2  
R1  
V
OUT2  
2.15K  
2.5V  
R2  
1K  
C2  
VccLDO  
Vc  
Q2  
C4  
Drv3  
Fb3  
R3  
VOUT3  
1.8V  
L1  
1.24K  
R4  
1K  
C5  
1uF  
C6  
0.1uF  
VIN=12V  
1uH  
U1  
IRU3072  
C7  
16TPB47M  
47uF, 16V  
C8  
10uF  
Q3  
C9  
Drv4  
Fb4  
R5  
V
1.5V  
OUT4  
Q4  
IRF7460  
866  
HDrv  
R6  
1K  
L2  
1uH  
R7  
6.8K  
OCSet  
LDrv  
VOUT1  
3.3V  
C10 220pF  
Q5  
IRF7460  
R8  
C12  
3x 6TPB330M  
6.3V, 330uF, 40m  
C11  
15nF  
Comp  
3.3K  
R9  
Rt  
47K  
R10  
3.125K  
SS1  
Fb1  
C13  
0.1uF C14  
33nF  
R11  
1K  
SSLDO  
Gnd  
PGnd  
Figure 33 - IRU3072 typical application with one bus input voltage  
VCC=VBUS=12V to generate all LDO output.  
Rev. 1.0  
3/25/04  
www.irf.com  
22  
IRU3072  
(H) MLPQ Package  
20-Pin  
D
D/2  
D2  
EXPOSED PAD  
PIN NUMBER 1  
PIN 1 MARK AREA  
(See Note1)  
E/2  
E2  
E
R
L
TOP VIEW  
e
B
BOTTOM VIEW  
Note 1: Details of pin #1 are optional, but  
must be located within the zone indicated.  
The identifier may be molded, or marked  
features.  
A
A3  
A1  
SIDE VIEW  
20-PIN 4x4  
SYMBOL  
DESIG  
A
MIN  
NOM  
0.90  
MAX  
1.00  
0.05  
0.80  
0.00  
A1  
A3  
B
0.02  
0.20 REF  
0.23  
0.18  
2.00  
2.00  
0.30  
2.25  
2.25  
D
4.00 BSC  
2.15  
D2  
E
4.00 BSC  
2.15  
E2  
e
0.50 BSC  
0.55  
L
0.45  
0.09  
0.65  
---  
R
---  
NOTE: ALL MEASUREMENTS  
ARE IN MILLIMETERS.  
Rev. 1.0  
3/25/04  
www.irf.com  
23  
IRU3072  
PACKAGE SHIPMENT METHOD  
PKG  
PACKAGE  
PIN  
COUNT  
20  
PARTS  
PER TUBE  
TBD  
PARTS  
PER REEL  
TBD  
T & R  
Orientation  
Fig A  
DESIG  
DESCRIPTION  
H
MLPQ 4x4  
Feed Direction  
Figure A  
This product has been designed and qualified for the industrial market.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information  
Data and specifications subject to change without notice. 02/01  
Rev. 1.0  
3/25/04  
www.irf.com  
24  

相关型号:

IRU3072CH

20-PIN SYNCHRONOUS PWM CONTROLLER/ 3 LDO CONTROLLER
INFINEON

IRU3073

SYNCHRONOUS PWM CONTROLLER WITH OVER-CURRENT PROTECTION / LDO CONTROLLER
INFINEON

IRU3073CQ

SYNCHRONOUS PWM CONTROLLER WITH OVER-CURRENT PROTECTION / LDO CONTROLLER
INFINEON

IRU3073CQTR

暂无描述
INFINEON

IRU3073CQTRPBF

Switching Controller, Voltage-mode, 460kHz Switching Freq-Max, PDSO16, LEAD FREE, PLASTIC, QSOP-16
INFINEON

IRU3137

8-PIN SYNCHRONOUS PWM CONTROLLER
INFINEON

IRU3137CS

8-PIN SYNCHRONOUS PWM CONTROLLER
INFINEON

IRU3138

SYNCHRONOUS PWM CONTROLLER FOR TERMINATION POWER SUPPLY APPLICATIONS
INFINEON

IRU3138CS

SYNCHRONOUS PWM CONTROLLER FOR TERMINATION POWER SUPPLY APPLICATIONS
INFINEON

IRU3138CSPBF

Switching Regulator/Controller, Voltage-mode, 440kHz Switching Freq-Max, BIPolar, PDSO14,
INFINEON

IRU3138CSTR

Switching Regulator/Controller, Voltage-mode, 440kHz Switching Freq-Max, BIPolar, PDSO14
INFINEON

IRU3138CSTRPBF

Switching Regulator/Controller, Voltage-mode, 440kHz Switching Freq-Max, BIPolar, PDSO14,
INFINEON