SP001308154 [INFINEON]

RISC Microcontroller,;
SP001308154
型号: SP001308154
厂家: Infineon    Infineon
描述:

RISC Microcontroller,

微控制器
文件: 总89页 (文件大小:1601K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XMC1400 AA-Step  
Microcontroller Series  
for Industrial Applications  
XMC1000 Family  
ARM® Cortex®-M0  
32-bit processor core  
Data Sheet  
V1.3 2016-10  
Microcontrollers  
Edition 2016-10  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2016 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
XMC1400 AA-Step  
Microcontroller Series  
for Industrial Applications  
XMC1000 Family  
ARM® Cortex®-M0  
32-bit processor core  
Data Sheet  
V1.3 2016-10  
Microcontrollers  
XMC1400 AA-Step  
XMC1000 Family  
XMC1400 Data Sheet  
Revision History: V1.3 2016-10  
Previous Versions:  
V1.2 2016-08  
V1.1 2016-06  
V1.0 2016-02  
V0.3 2015-10  
Page  
Subjects  
42,  
43  
In Absolute Maximum Ratings renamed parameter VCM to VINP2, as the  
limitation is related to most P2 pins, also if no ACMP is available.  
Clarified limit to pins P2.[1,2,6:9,11] in Overload specification.  
13  
Corrected XMC1402-T038X0200 and XMC1402-Q048X0200 marking  
variants in Table 2  
V1.2 2016-08  
many  
Added XMC™ trademark  
11, 13, 15 Added XMC1402-T038X0200, XMC1402-Q040X0200 and  
XMC1402-Q048X0200 marking variants  
V1.1 2016-06  
many  
Added TSSOP-38-9 package  
11, 13, 15 Added XMC1402-T038 marking variants in TSSOP-38  
11, 13, 15 Added XMC1403-Q040 marking variants  
V1.0 2016-02  
10  
11  
33  
58  
The device provides four USIC channels.  
XMC1401 devices available for max. ambient temperature of 85°C.  
Reformatted pinout table.  
Updated footnote to the definition of the start-up times of OSC_XTAL and  
RTC_XTAL oscillators.  
73  
85  
Added ΔfLT parameter to on-chip oscillators DCO1 and DCO2.  
Updated package outline drawings.  
Data Sheet  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Trademarks  
C166™, TriCore™, XMC™ and DAVE™ are trademarks of Infineon Technologies AG.  
ARM®, ARM Powered®, Cortex®, Thumb® and AMBA® are registered trademarks of  
ARM, Limited.  
CoreSight™, ETM™, Embedded Trace Macrocell™ and Embedded Trace Buffer™ are  
trademarks of ARM, Limited.  
We Listen to Your Comments  
Is there any information in this document that you feel is wrong, unclear or missing?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Table of Contents  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Device Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Chip Identification Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
1.1  
1.2  
1.3  
1.4  
2
2.1  
2.2  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Logic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Package Pin Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Port Pin for Boot Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Port I/O Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Hardware Controlled I/O Function Description . . . . . . . . . . . . . . . . . . . 32  
3
3.1  
Electrical Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Analog to Digital Converters (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Out of Range Comparator (ORC) Characteristics . . . . . . . . . . . . . . . . . 54  
Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Temperature Sensor Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Power-Up and Supply Threshold Characteristics . . . . . . . . . . . . . . . . . 71  
On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Serial Wire Debug Port (SW-DP) Timing . . . . . . . . . . . . . . . . . . . . . . . . 74  
SPD Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Synchronous Serial Interface (USIC SSC) Timing . . . . . . . . . . . . . . 76  
Inter-IC (IIC) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Inter-IC Sound (IIS) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . 81  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.2  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
3.2.6  
3.2.7  
3.2.8  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
3.3.6.1  
3.3.6.2  
3.3.6.3  
4
Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
4.1  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Data Sheet  
6
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Table of Contents  
4.1.1  
4.2  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
5
Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Data Sheet  
7
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
About this Document  
About this Document  
This Data Sheet is addressed to embedded hardware and software developers. It  
provides the reader with detailed descriptions about the ordering designations, available  
features, electrical and physical characteristics of the XMC1400 series devices.  
The document describes the characteristics of a superset of the XMC1400 series  
devices. For simplicity, the various device types are referred to by the collective term  
XMC1400 throughout this document.  
XMC1000 Family User Documentation  
The set of user documentation includes:  
Reference Manual  
– decribes the functionality of the superset of devices.  
Data Sheets  
– list the complete ordering designations, available features and electrical  
characteristics of derivative devices.  
Errata Sheets  
– list deviations from the specifications given in the related Reference Manual or  
Data Sheets. Errata Sheets are provided for the superset of devices.  
Attention: Please consult all parts of the documentation set to attain consolidated  
knowledge about your device.  
Application related guidance is provided by Users Guides and Application Notes.  
Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions  
of those documents.  
Data Sheet  
8
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Summary of Features  
1
Summary of Features  
The XMC1400 devices are members of the XMC1000 Family of microcontrollers based  
on the ARM Cortex-M0 processor core. The XMC1400 series addresses the real-time  
control needs of motor control and digital power conversion. It also features peripherals  
for LED Lighting applications and Human-Machine Interface (HMI).  
CPU  
Analog  
System  
SWD  
SPD  
ARM®  
Cortex®  
M0  
Debug  
System  
EVR  
2 x DCO  
DTS  
NVIC  
ANACTRL  
AHB to APB  
Bridge  
PRNG  
PAU  
AHB-Lite Bus  
FLASH  
MATH  
WDT  
SCU  
USIC0  
USIC1  
VADC  
SRAM  
CCU40  
CCU41  
CCU80  
ROM  
MultiCAN+  
BCCU0  
PORTS  
RTC  
ACMP &  
ORC  
ERU0  
ERU1  
LEDTS0  
LEDTS1  
LEDTS2  
CCU81  
POSIF0  
POSIF1  
Figure 1  
Block Diagram  
Data Sheet  
9
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Features  
CPU subsystem  
32-bit ARM Cortex-M0 CPU Core  
– 0.84 DMIPS/MHz (Dhrystone 2.1) at  
48 MHz  
Nested Vectored Interrupt Controller  
64 interrupt nodes  
MATH coprocessor  
Analog Frontend Peripherals  
A/D Converters (up to 12 analog inputs)  
– 2 sample and hold stages  
– fast 12-bit ADC (up to 1.1 MS/s),  
adjustable gain  
– 0 V to 5.5 V input range  
– 24-bit  
(CORDIC)  
– 32-bit divide operation  
2x4 channels ERU  
interconnections  
On-Chip Memories  
trigonometric  
calculation  
Up to  
8
channels out of range  
comparators  
Up to 4 fast analog comparators  
Temperature Sensor  
for  
event  
Industrial Control Peripherals  
2x4 16-bit 96 MHz CCU4 timers for signal  
monitoring and PWM  
8 Kbyte ROM  
16 Kbyte SRAM (with parity)  
up to 200 Kbyte Flash (with ECC)  
2x4 16-bit 96 MHz CCU8 timers for  
complex PWM, complementary high/low  
side switches and multi phase control  
2x POSIF for hall and quadrature  
encoders, motor positioning  
Supply, Reset and Clock  
1.8 V to 5.5 V supply with power on reset  
and brownout detector  
On-chip clock monitor  
External crystal oscillator support (32 kHz  
and 4 to 20 MHz)  
Internal slow and fast oscillators without  
the need of PLL  
9 channel BCCU (brightness and color  
control) for LED lighting applications  
Up to 56 Input/Output Ports  
1.8 V to 5.5 V capable  
up to 8 high current pads (50 mA sink)  
System Control  
On-Chip Debug Support  
Window watchdog  
Real time clock module  
Pseudo random number generator  
4 breakpoints, 2 watchpoints  
ARM serial wire debug, single-pin debug  
interfaces  
Communication Peripherals  
Programming Support  
Four USIC channels, usable as  
– UART (up to 12 Mb/s)  
– single-SPI (up to 12 Mb/s)  
– double-SPI (up to 2 × 12 Mb/s)  
– quad-SPI (up to 4 × 12 Mb/s)  
– IIC (up to 400 kb/s)  
Single-pin bootloader  
Secure bootstrap loader SBSL (optional)  
Packages  
TSSOP-38 (9.7 × 6.4 mm2)  
VQFN-40/48/64 (5×5/7×7/8×8 mm2)  
LQFP-64 (12 × 12 mm2)  
– IIS (up to 12 Mb/s)  
Tools  
– LIN interfaces (20kb/s)  
LEDTS in Human-Machine interface  
– up to 24 touch pads  
– drive up to 144 LEDs  
MultiCAN+, Full-CAN/Basic-CAN with 2  
nodes, 32 message objects (up to  
1 MBaud)  
Free DAVE™ toolchain with low  
level drivers and apps  
Data Sheet  
10  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
1.1  
Device Overview  
The following table lists the available features per device type for the XMC1400 series.  
Table 1  
Features of XMC1400 Device Types1)  
Features  
CPU frequency 48 MHz  
Operating  
temperature  
(ambient)  
-40 to  
85 °C  
-40 to 105 °C  
Operating  
voltage  
1.8 V to 5.5 V  
Flash options  
(Kbytes)  
64, 64, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64,  
128 128 64, 64, 64, 128 128 128 128 128 128 128 128  
128 128 128 200 200 200 200 200 200 200 200  
200 200 200  
SRAM (Kbytes) 16 16 16 16 16 16 16 16 16 16 16 16 16  
MATH  
-
-
1
1
1
1
1
-
-
-
1
1
1
CCU4  
2
-
2
-
2
2
1
1
2
2
1
1
2
2
2
1
2
2
2
1
2
2
2
1
2
-
2
-
2
-
2
2
2
1
2
2
2
1
2
2
2
1
CCU8  
POSIF  
BCCU  
-
-
-
-
-
-
-
-
-
-
USIC  
2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /  
(modules /  
channels)  
2
2
2
2
2
2
2
2
2
2
2
2
2
LEDTS  
3
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
3
3
MultiCAN+ -  
(nodes /  
2 / 2 / 2 / 2 / 2 / 2 /  
32 32 32 32 32 32  
MOs)  
Data Sheet  
11  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Table 1  
Features of XMC1400 Device Types1) (cont’d)  
Features  
ADC  
2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /  
(kernels / 12 12 12 12 12 12 12 12 12 12 12 12 12  
analog  
inputs)  
ACMP  
GPIOs  
-
-
3
3
4
4
4
-
-
-
4
4
4
34 48 26 27 34 48 48 27 34 48 34 48 48  
GPIs  
8
8
8
8
8
8
8
8
8
8
8
8
8
Packages  
1) Features that are not included in this table are available in all the derivatives  
1.2  
Ordering Information  
The ordering code for an Infineon microcontroller provides an exact reference to a  
specific product. The code “XMC1<DDD>-<Z><PPP><T><FFFF>” identifies:  
<DDD> the derivatives function set  
<Z> the package variant  
– T: TSSOP  
– Q: VQFN  
– F: LQFP  
<PPP> package pin count  
<T> the temperature range:  
– F: -40°C to 85°C  
– X: -40°C to 105°C  
<FFFF> the Flash memory size in Kbytes.  
For ordering codes for the XMC1400 please contact your sales representative or local  
distributor.  
This document describes several derivatives of the XMC1400 series, some descriptions  
may not apply to a specific product. Please see Table 2.  
For simplicity the term XMC1400 is used for all derivatives throughout this document.  
Data Sheet  
12  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
1.3  
Device Types  
These device types are available and can be ordered through Infineon’s direct and/or  
distribution channels.  
Table 2  
Synopsis of XMC1400 Device Types  
Package  
Derivative  
Flash Kbytes  
64  
XMC1401-Q048F0064  
XMC1401-Q048F0128  
XMC1401-F064F0064  
XMC1401-F064F0128  
XMC1402-T038X0032  
XMC1402-T038X0064  
XMC1402-T038X0128  
XMC1402-T038X0200  
XMC1402-Q040X0032  
XMC1402-Q040X0064  
XMC1402-Q040X0128  
XMC1402-Q040X0200  
XMC1402-Q048X0032  
XMC1402-Q048X0064  
XMC1402-Q048X0128  
XMC1402-Q048X0200  
XMC1402-Q064X0064  
XMC1402-Q064X0128  
XMC1402-Q064X0200  
XMC1402-F064X0064  
XMC1402-F064X0128  
XMC1402-F064X0200  
XMC1403-Q040X0064  
XMC1403-Q040X0128  
XMC1403-Q040X0200  
XMC1403-Q048X0064  
XMC1403-Q048X0128  
PG-VQFN-48  
PG-VQFN-48  
PG-LQFP-64  
PG-LQFP-64  
PG-TSSOP-38  
PG-TSSOP-38  
PG-TSSOP-38  
PG-TSSOP-38  
PG-VQFN-40  
PG-VQFN-40  
PG-VQFN-40  
PG-VQFN-40  
PG-VQFN-48  
PG-VQFN-48  
PG-VQFN-48  
PG-VQFN-48  
PG-VQFN-64  
PG-VQFN-64  
PG-VQFN-64  
PG-LQFP-64  
PG-LQFP-64  
PG-LQFP-64  
PG-VQFN-40  
PG-VQFN-40  
PG-VQFN-40  
PG-VQFN-48  
PG-VQFN-48  
128  
64  
128  
32  
64  
128  
200  
32  
64  
128  
200  
32  
64  
128  
200  
64  
128  
200  
64  
128  
200  
64  
128  
200  
64  
128  
Data Sheet  
13  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Table 2  
Synopsis of XMC1400 Device Types (cont’d)  
Derivative  
Package  
Flash Kbytes  
XMC1403-Q048X0200  
XMC1403-Q064X0064  
XMC1403-Q064X0128  
XMC1403-Q064X0200  
XMC1404-Q048X0064  
XMC1404-Q048X0128  
XMC1404-Q048X0200  
XMC1404-Q064X0064  
XMC1404-Q064X0128  
XMC1404-Q064X0200  
XMC1404-F064X0064  
XMC1404-F064X0128  
XMC1404-F064X0200  
PG-VQFN-48  
PG-VQFN-64  
PG-VQFN-64  
PG-VQFN-64  
PG-VQFN-48  
PG-VQFN-48  
PG-VQFN-48  
PG-VQFN-64  
PG-VQFN-64  
PG-VQFN-64  
PG-LQFP-64  
PG-LQFP-64  
PG-LQFP-64  
200  
64  
128  
200  
64  
128  
200  
64  
128  
200  
64  
128  
200  
Data Sheet  
14  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
1.4  
Chip Identification Number  
The Chip Identification Number allows software to identify the marking. It is an 8 words  
value with the most significant 7 words stored in Flash configuration sector 0 (CS0) at  
address location : 1000 0F00H (MSB) - 1000 0F1BH (LSB). The least significant word and  
most significant word of the Chip Identification Number are the value of registers  
DBGROMID and IDCHIP, respectively.  
Table 3  
XMC1400 Chip Identification Number  
Value  
Derivative  
Marking  
XMC1401-Q048F0064  
XMC1401-Q048F0128  
XMC1401-F064F0064  
XMC1401-F064F0128  
XMC1402-T038X0032  
XMC1402-T038X0064  
XMC1402-T038X0128  
XMC1402-T038X0200  
XMC1402-Q040X0032  
XMC1402-Q040X0064  
XMC1402-Q040X0128  
XMC1402-Q040X0200  
XMC1402-Q048X0032  
00014082 07CF00FF 1E071FF7 20006000  
00000D00 00001000 00011000 10204083H  
AA  
00014082 07CF00FF 1E071FF7 20006000  
00000D00 00001000 00021000 10204083H  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
000140A2 07CF00FF 1E071FF7 20006000  
00000D00 00001000 00011000 10204083H  
000140A2 07CF00FF 1E071FF7 20006000  
00000D00 00001000 00021000 10204083H  
00014013 07FF00FF 1E071FF7 000F900F  
00000D00 00001000 00009000 10204083H  
00014013 07FF00FF 1E071FF7 000F900F  
00000D00 00001000 00011000 10204083H  
00014013 07FF00FF 1E071FF7 000F900F  
00000D00 00001000 00021000 10204083H  
00014013 07FF00FF 1E071FF7 000F900F  
00000D00 00001000 00033000 10204083H  
00014043 07FF00FF 1E071FF7 000F900F  
00000D00 00001000 00009000 10204083H  
00014043 07FF00FF 1E071FF7 000F900F  
00000D00 00001000 00011000 10204083H  
00014043 07FF00FF 1E071FF7 000F900F  
00000D00 00001000 00021000 10204083H  
00014043 07FF00FF 1E071FF7 000F900F  
00000D00 00001000 00033000 10204083H  
00014083 07FF00FF 1E071FF7 100F900F  
00000D00 00001000 00009000 10204083H  
Data Sheet  
15  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Table 3  
XMC1400 Chip Identification Number (cont’d)  
Derivative  
Value  
Marking  
XMC1402-Q048X0064  
XMC1402-Q048X0128  
XMC1402-Q048X0200  
XMC1402-Q064X0064  
XMC1402-Q064X0128  
XMC1402-Q064X0200  
XMC1402-F064X0064  
XMC1402-F064X0128  
XMC1402-F064X0200  
XMC1403-Q040X0064  
XMC1403-Q040X0128  
XMC1403-Q040X0200  
XMC1403-Q048X0064  
XMC1403-Q048X0128  
XMC1403-Q048X0200  
XMC1403-Q064X0064  
XMC1403-Q064X0128  
00014083 07FF00FF 1E071FF7 100F900F  
00000D00 00001000 00011000 10204083H  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
00014083 07FF00FF 1E071FF7 100F900F  
00000D00 00001000 00021000 10204083H  
00014083 07FF00FF 1E071FF7 100F900F  
00000D00 00001000 00033000 10204083H  
00014093 07FF00FF 1E071FF7 100F900F  
00000D00 00001000 00011000 10204083H  
00014093 07FF00FF 1E071FF7 100F900F  
00000D00 00001000 00021000 10204083H  
00014093 07FF00FF 1E071FF7 100F900F  
00000D00 00001000 00033000 10204083H  
000140A3 07FF00FF 1E071FF7 100F900F  
00000D00 00001000 00011000 10204083H  
000140A3 07FF00FF 1E071FF7 100F900F  
00000D00 00001000 00021000 10204083H  
000140A3 07FF00FF 1E071FF7 100F900F  
00000D00 00001000 00033000 10204083H  
00014043 07CF00FF 1E071FF7 00B00000  
00000D00 00001000 00011000 10204083H  
00014043 07CF00FF 1E071FF7 00B00000  
00000D00 00001000 00021000 10204083H  
00014043 07CF00FF 1E071FF7 00B00000  
00000D00 00001000 00033000 10204083H  
00014083 07CF00FF 1E071FF7 00B00000  
00000D00 00001000 00011000 10204083H  
00014083 07CF00FF 1E071FF7 00B00000  
00000D00 00001000 00021000 10204083H  
00014083 07CF00FF 1E071FF7 00B00000  
00000D00 00001000 00033000 10204083H  
00014093 07CF00FF 1E071FF7 00B00000  
00000D00 00001000 00011000 10204083H  
00014093 07CF00FF 1E071FF7 00B00000  
00000D00 00001000 00021000 10204083H  
Data Sheet  
16  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Table 3  
XMC1400 Chip Identification Number (cont’d)  
Derivative  
Value  
Marking  
XMC1403-Q064X0200  
XMC1404-Q048X0064  
XMC1404-Q048X0128  
XMC1404-Q048X0200  
XMC1404-Q064X0064  
XMC1404-Q064X0128  
XMC1404-Q064X0200  
XMC1404-F064X0064  
XMC1404-F064X0128  
XMC1404-F064X0200  
00014093 07CF00FF 1E071FF7 00B00000  
00000D00 00001000 00033000 10204083H  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
AA  
00014083 07FF00FF 1E071FF7 30BFF00F  
00000D00 00001000 00011000 10204083H  
00014083 07FF00FF 1E071FF7 30BFF00F  
00000D00 00001000 00021000 10204083H  
00014083 07FF00FF 1E071FF7 30BFF00F  
00000D00 00001000 00033000 10204083H  
00014093 07FF00FF 1E071FF7 30BFF00F  
00000D00 00001000 00011000 10204083H  
00014093 07FF00FF 1E071FF7 30BFF00F  
00000D00 00001000 00021000 10204083H  
00014093 07FF00FF 1E071FF7 30BFF00F  
00000D00 00001000 00033000 10204083H  
000140A3 07FF00FF 1E071FF7 30BFF00F  
00000D00 00001000 00011000 10204083H  
000140A3 07FF00FF 1E071FF7 30BFF00F  
00000D00 00001000 00021000 10204083H  
000140A3 07FF00FF 1E071FF7 30BFF00F  
00000D00 00001000 00033000 10204083H  
Data Sheet  
17  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
2
General Device Information  
This section summarizes the logic symbols and package pin configurations with a  
detailed list of the functional I/O mapping.  
2.1  
Logic Symbols  
VDDP  
(2)  
VSSP  
(2)  
Port 0  
12 bit  
Port 0 / XTAL  
4 bit  
XMC1400  
TSSOP-38  
Port 1 / High-current  
6 bit  
Port 2 / Analog input  
4 bit  
Port 2 / Analog input  
8 bit  
Figure 2  
XMC1400 Logic Symbol for TSSOP-38-9  
Data Sheet  
18  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
VDD VSS VDDP VSSP  
(1) (1) (2) (1)  
Exp. Die Pad  
VSSP  
(
)
Port 0  
12 bit  
Port 0 / XTAL  
4 bit  
XMC1400  
VQFN-40  
Port 1 / High-current  
7 bit  
Port 2 / Analog input  
4 bit  
Port 2 / Analog input  
8 bit  
Figure 3  
XMC1400 Logic Symbol for PG-VQFN-40-17  
Data Sheet  
19  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
VDD VSS  
VDDP VSSP  
(1) (1) (3) (1)  
Exp. Die Pad  
VSSP  
(
)
Port 0  
12 bit  
Port 0 / XTAL  
4 bit  
Port 1 / High-current  
7 bit  
XMC1400  
VQFN-48  
Port 2 / Analog input  
6 bit  
Port 2 / Analog input  
8 bit  
Port 3  
1 bit  
Port 4  
4 bit  
Figure 4  
XMC1400 Logic Symbol for PG-VQFN-48-73  
Data Sheet  
20  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
VDD VSS VDDP VSSP  
(1) (1)  
(4) (2)  
1) VQFN64 only  
1)  
Exp. Die Pad  
VSSP  
(
)
Port 0  
12 bit  
Port 0 / XTAL  
4 bit  
Port 1 / High-current  
8 bit  
XMC1400  
VQFN-64 / LQFP-64  
Port 1  
1 bit  
Port 2 / Analog input  
6 bit  
Port 2 / Analog input  
8 bit  
Port 3  
5 bit  
Port 4  
12 bit  
Figure 5  
XMC1400 Logic Symbol for PG-LQFP-64-26 / PG-VQFN-64-6  
Data Sheet  
21  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
2.2  
Pin Configuration and Definition  
The following figures summarize all pins, showing their locations on the different  
packages.  
P2.4  
P2.5  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
P2.3  
Top View  
2
P2.2  
P2.6  
3
P2.1  
P2.7  
4
P2.0  
P2.8  
5
P0.15  
P0.14  
P0.13  
P2.9  
6
P2.10  
P2.11  
SSP/VSS  
7
8
P0.12  
P0.11  
P0.10  
V
9
VDDP/VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P1.5  
P1.4  
P1.3  
P0.9  
P0.8  
VDDP  
P1.2  
P1.1  
P1.0  
VSSP  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
P0.0  
P0.1  
P0.2  
Figure 6  
XMC1400 PG-TSSOP-38-9 Pin Configuration (top view)  
Data Sheet  
22  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
30  
Analog input / P2.0  
Analog input / P2.1  
Analog input / P2.2  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
P0.2  
P0.1  
P0.0  
1
2
3
4
5
29  
28  
27  
26  
25  
24  
23  
22  
21  
Analog input / P2.3  
Analog input / P2.4  
Analog input / P2.5  
Analog input / P2.6  
6
7
8
9
Analog input / P2.7  
Analog input / P2.8  
Analog input / P2.9  
P1.0 / High-current  
P1.1 / High-current  
10  
Figure 7  
XMC1400 PG-VQFN-40-17 Pin Configuration (top view)  
Data Sheet  
23  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
P4.6  
P4.7  
1
2
3
36  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
35  
34  
Analog input / P2.0  
Analog input / P2.1  
Analog input / P2.2  
Analog input / P2.3  
Analog input / P2.4  
Analog input / P2.5  
Analog input / P2.6  
4
5
33  
32  
31  
6
7
8
P0.2  
P0.1  
P0.0  
30  
29  
28  
27  
26  
25  
9
P3.0  
VDDP  
10  
11  
12  
Analog input / P2.7  
Analog input / P2.8  
Analog input / P2.9  
P1.0 / High-current  
P1.1 / High-current  
Figure 8  
XMC1400 PG-VQFN-48-73 Pin Configuration (top view)  
Data Sheet  
24  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
VSSP  
VDDP  
1
2
3
48  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
47  
46  
P4.6  
P4.7  
P4.8  
P4.9  
4
5
45  
44  
6
7
43  
42  
P0.2  
P0.1  
P4.10  
P4.11  
8
P0.0  
P3.4  
41  
40  
39  
38  
37  
36  
35  
34  
33  
Analog input / P2.0  
Analog input / P2.1  
Analog input / P2.2  
Analog input / P2.3  
Analog input / P2.4  
Analog input / P2.5  
Analog input / P2.6  
9
10  
11  
12  
P3.3  
P3.2  
P3.1  
13  
14  
15  
P3.0  
VDDP  
P1.0 / High-current  
P1.1 / High-current  
16  
Analog input / P2.7  
Figure 9  
XMC1400 PG-LQFP-64-26 / PG-VQFN-64-6 Pin Configuration (top  
view)  
Data Sheet  
25  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
2.2.1  
Package Pin Summary  
The following general building block is used to describe each pin:  
Table 4  
Function  
Px.y  
Package Pin Mapping Description  
Package A  
Package B  
...  
Pad Type  
N
N
Pad Class  
The table is sorted by the “Function” column, starting with the regular Port pins (Px.y),  
followed by the supply pins.  
The following columns, titled with the supported package variants, lists the package pin  
number to which the respective function is mapped in that package.  
The “Pad Type” indicates the employed pad type:  
STD_INOUT (standard bi-directional pads)  
STD_INOUT/AN (standard bi-directional pads with analog input)  
STD_INOUT/clock (standard bi-directional pads with oscillator function)  
High Current (high current bi-directional pads)  
STD_IN/AN (standard input pads with analog input)  
Power (power supply)  
Details about the pad properties are defined in the Electrical Parameter chapter.  
Table 5 Package Pin Mapping  
Function LQFP  
VQFN  
48  
VQFN  
40  
TSSOP Pad Type  
38  
Notes  
64,  
VQFN  
64  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
41  
42  
43  
44  
45  
46  
47  
48  
51  
29  
30  
31  
32  
33  
34  
35  
36  
39  
23  
24  
25  
26  
27  
28  
29  
30  
33  
17  
18  
19  
20  
21  
22  
23  
24  
27  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
P0.8/  
RTC_  
XTAL1  
STD_INOUT  
/clock_IN  
Data Sheet  
26  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
Table 5  
Package Pin Mapping (cont’d)  
Function LQFP  
VQFN  
48  
VQFN  
40  
TSSOP Pad Type  
38  
Notes  
64,  
VQFN  
64  
P0.9/  
RTC_  
XTAL2  
52  
40  
34  
28  
STD_INOUT  
/clock_O  
P0.10/  
XTAL1  
53  
54  
41  
42  
35  
36  
29  
30  
STD_INOUT  
/clock_IN  
P0.11/  
XTAL2  
STD_INOUT  
/clock_O  
P0.12  
P0.13  
P0.14  
P0.15  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P1.8  
P2.0  
55  
56  
57  
58  
34  
33  
32  
31  
30  
29  
28  
27  
26  
9
43  
44  
45  
46  
26  
25  
24  
23  
22  
21  
20  
-
37  
38  
39  
40  
22  
21  
20  
19  
18  
17  
16  
-
31  
32  
33  
34  
16  
15  
14  
13  
12  
11  
-
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
High Current  
High Current  
High Current  
High Current  
High Current  
High Current  
High Current  
High Current  
STD_INOUT  
-
-
-
-
3
1
35  
STD_INOUT  
/AN  
P2.1  
10  
4
2
36  
STD_INOUT  
/AN  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
11  
12  
13  
14  
15  
16  
5
3
4
5
6
7
8
37  
38  
1
STD_IN/AN  
STD_IN/AN  
STD_IN/AN  
STD_IN/AN  
STD_IN/AN  
STD_IN/AN  
6
7
8
2
9
3
10  
4
Data Sheet  
27  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
Table 5  
Package Pin Mapping (cont’d)  
Function LQFP  
VQFN  
48  
VQFN  
40  
TSSOP Pad Type  
38  
Notes  
64,  
VQFN  
64  
P2.8  
P2.9  
P2.10  
17  
18  
19  
11  
12  
13  
9
5
6
7
STD_IN/AN  
STD_IN/AN  
10  
11  
STD_INOUT  
/AN  
P2.11  
P2.12  
P2.13  
20  
21  
22  
14  
15  
16  
12  
-
8
-
STD_INOUT  
/AN  
STD_INOUT  
/AN  
-
-
STD_INOUT  
/AN  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P4.8  
P4.9  
P4.10  
P4.11  
VSS  
36  
37  
38  
39  
40  
59  
60  
61  
62  
63  
64  
3
28  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
9
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
STD_INOUT  
Power  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
47  
48  
1
2
-
-
-
-
4
-
5
-
6
-
-
7
-
-
8
-
-
23  
17  
13  
Supply GND, ADC  
reference GND  
Data Sheet  
28  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
Table 5  
Package Pin Mapping (cont’d)  
Function LQFP  
VQFN  
48  
VQFN  
40  
TSSOP Pad Type  
38  
Notes  
64,  
VQFN  
64  
VDD  
24  
25  
18  
19  
14  
15  
10  
Power  
Power  
Supply VDD, ADC  
reference voltage/  
ORC reference  
voltage  
VDDP  
10  
When VDD is  
supplied, VDDP  
has to be supplied  
with the same  
voltage.  
VDDP  
VDDP  
VDDP  
VSSP  
VSSP  
VSSP  
2
-
-
-
Power  
Power  
Power  
Power  
Power  
Power  
I/O port supply  
I/O port supply  
I/O port supply  
I/O port ground  
I/O port ground  
35  
50  
1
27  
38  
-
-
-
32  
-
26  
-
49  
37  
31  
25  
-
Exp.  
Pad  
(in  
VQFN  
64 only)  
Exp.  
Pad  
Exp.  
Pad  
Exposed Die Pad  
The exposed die  
pad is connected  
internallytoVSSP.  
For proper  
operation, it is  
mandatory to  
connect the  
exposed pad to  
the board ground.  
For thermal  
aspects, please  
refer to the  
Package and  
Reliability chapter.  
Data Sheet  
29  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
2.2.2  
Port Pin for Boot Modes  
Port functions can be overruled by the boot mode selected. The type of boot mode is  
selected via BMI. Table 6 shows the port pins used for the various boot modes.  
Table 6  
Pin  
Port Pin for Boot Modes  
Boot  
Boot Description  
P0.13  
P0.14  
CS(O)  
SWDIO_0  
SPD_0  
RX/TX  
RX  
SSC BSL mode  
Debug mode (SWD)  
Debug mode (SPD)  
ASC BSL half-duplex mode  
ASC BSL full-duplex mode  
CAN BSL mode  
RX  
SCLK(O)  
SWDCLK_0  
TX  
SSC BSL mode  
P0.15  
Debug mode (SWD)  
ASC BSL full-duplex mode  
CAN BSL mode  
TX  
DATA(I/O)  
SWDCLK_1  
TX  
SSC BSL mode  
P1.2  
P1.3  
Debug mode (SWD)  
ASC BSL full-duplex mode  
CAN BSL mode  
TX  
SWDIO_1  
SPD_1  
RX/TX  
RX  
Debug mode (SWD)  
Debug mode (SPD)  
ASC BSL half-duplex mode  
ASC BSL full-duplex mode  
CAN BSL mode  
RX  
P4.6  
P4.7  
HWCON0  
HWCON1  
Boot Pins  
(Boot from pins mode must be selected)  
Data Sheet  
30  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
2.2.3  
Port I/O Function Description  
The following general building block is used to describe the I/O functions of each PORT  
pin:  
Table 7  
Port I/O Function Description  
Outputs  
Function  
Inputs  
ALT1  
ALTn  
Input  
Input  
P0.0  
Pn.y  
MODA.OUT  
MODC.INA  
MODA.INA  
MODA.OUT  
MODC.INB  
Pn.y  
XMC1000  
Control Logic  
PAD  
VDDP  
Input 0  
...  
MODA.INA  
Input n  
HWI0  
MODA  
MODB  
Pn.y  
HWI1  
SW  
ALT1  
MODB.OUT  
...  
ALTn  
HWO0  
HWO1  
GND  
Figure 10  
Simplified Port Structure  
Pn.y is the port pin name, defining the control and data bits/registers associated with it.  
As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT  
defines the output value.  
Up to nine alternate output functions (ALT1 to ALT9) can be mapped to a single port pin,  
selected by Pn_IOCR.PC. The output value is directly driven by the respective module,  
with the pin characteristics controlled by the port registers (within the limits of the  
connected pad).  
The port pin input can be connected to multiple peripherals. Most peripherals have an  
input multiplexer to select between different possible input sources.  
The input path is also active while the pin is configured as output. This allows to feedback  
an output to on-chip resources without wasting an additional external pin.  
Please refer to the Port I/O Functions table for the complete Port I/O function mapping.  
Data Sheet  
31  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
General Device Information  
2.2.4  
Hardware Controlled I/O Function Description  
The following general building block is used to describe the hardware I/O and pull control  
functions of each PORT pin:  
Table 8  
Hardware Controlled I/O Function Description  
Function  
Outputs  
HWO0  
Inputs  
Pull Control  
HW0_PD  
HWI0  
HW0_PU  
P0.0  
Pn.y  
MODB.OUT  
MODB.INA  
MODC.OUT  
MODC.OUT  
By Pn_HWSEL, it is possible to select between different hardware “masters”  
(HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s).  
Hardware control overrules settings in the respective port pin registers. Additional  
hardware signals HW0_PD/HW1_PD and HW0_PU/HW1_PU controlled by the  
peripherals can be used to control the pull devices of the pin.  
Please refer to the Hardware Controlled I/O Functions table for the complete hardware  
I/O and pull control function mapping.  
Data Sheet  
32  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
Port I/O Function Table  
Table 9  
Port I/O Functions  
Function  
Outputs  
ALT5  
Inputs  
Input  
ALT1  
ALT2  
ALT3  
ALT4  
ALT6  
ALT7  
ALT8  
ALT9  
Input  
Input  
Input  
Input  
Input  
Input  
Input Input  
Input  
Input  
Input  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
ERU0.P LEDTS0 ERU0.G CCU40. CCU80. USIC0_ USIC0_ CCU81. USIC1_ BCCU0. CCU40.I  
DOUT0 .LINE7 OUT0 OUT0 OUT00 CH0.SE CH1.SE OUT00 CH1.DO TRAPIN N0AC  
LO0 LO0 UT0  
USIC1_ USIC0_  
CH1.DX CH0.D  
USIC0_  
CH1.DX  
2A  
B
0A  
X2A  
ERU0.P LEDTS0 ERU0.G CCU40. CCU80. BCCU0. SCU.VD USIC1_ USIC1_  
CCU40.I  
N1AC  
USIC1_ USIC1_  
CH1.DX CH1.D  
DOUT1 .LINE6 OUT1  
OUT1  
OUT01 OUT8  
ROP  
CH1.SC CH1.DO  
LKOUT UT0  
0B  
X1A  
ERU0.P LEDTS0 ERU0.G CCU40. CCU80. VADC0. CCU80. USIC1_ USIC1_  
CCU40.I  
N2AC  
USIC1_ USIC1_  
CH0.DX CH0.D  
DOUT2 .LINE5 OUT2  
OUT2  
OUT02 EMUX02 OUT10 CH0.SC CH0.DO  
LKOUT UT0  
0A  
X1A  
ERU0.P LEDTS0 ERU0.G CCU40. CCU80. VADC0. CCU80. USIC1_ USIC1_  
CCU40.I  
N3AC  
USIC1_  
CH0.DX  
0B  
DOUT3 .LINE4 OUT3  
OUT3  
OUT03 EMUX01 OUT11 CH1.SC CH0.DO  
LKOUT UT0  
BCCU0. LEDTS0 LEDTS0 CCU40. CCU80. VADC0. WWDT. USIC1_ CAN.N0  
CCU41.I CCU80.I  
N0AB N0AB  
CAN.N0  
_RXDA  
OUT0  
.LINE3 .COL3 OUT1  
OUT13 EMUX00 SERVIC CH1.SE _TXD  
E_OUT LO0  
P0.5  
P0.6  
BCCU0. LEDTS0 LEDTS0 CCU40. CCU80. ACMP2. CCU80. VADC0. CAN.N0  
OUT1 .LINE2 .COL2 OUT0 OUT12 OUT OUT01 EMUX10 _TXD  
CCU41.I CCU80.I  
N1AB N1AB  
CAN.N0  
_RXDB  
BCCU0. LEDTS0 LEDTS0 CCU40. CCU80. USIC0_ USIC0_ VADC0. CCU41.  
CCU40.I CCU41.I  
N0AB N2AB  
USIC0_  
CH1.DX  
0C  
OUT2  
.LINE1 .COL1 OUT0  
OUT11 CH1.MC CH1.DO EMUX11 OUT0  
LKOUT UT0  
P0.7  
BCCU0. LEDTS0 LEDTS0 CCU40. CCU80. USIC0_ USIC0_ VADC0. CCU41.  
CCU40.I CCU41.I  
USIC0_ USIC0_ USIC0_  
CH0.D CH1.DX CH1.DX  
OUT3  
.LINE0 .COL0 OUT1  
OUT10 CH0.SC CH1.DO EMUX12 OUT1  
LKOUT UT0  
N1AB  
N3AB  
X1C  
0D  
1C  
P0.8/  
BCCU0. LEDTS1 LEDTS0 CCU40. CCU80. USIC0_ USIC0_ CCU81. CCU41.  
CCU40.I  
N2AB  
USIC0_  
CH0.D  
X1B  
USIC0_  
CH1.DX  
1B  
RTC_XTAL1 OUT4  
.LINE0 .COLA OUT2  
OUT20 CH0.SC CH1.SC OUT20 OUT2  
LKOUT LKOUT  
P0.9/  
BCCU0. LEDTS1 LEDTS0 CCU40. CCU80. USIC0_ USIC0_ CCU81. CCU41.  
.LINE1 .COL6 OUT3 OUT21 CH0.SE CH1.SE OUT21 OUT3  
LO0 LO0  
CCU40.I  
N3AB  
USIC0_  
CH0.D  
X2B  
USIC0_  
CH1.DX  
2B  
RTC_XTAL2 OUT5  
P0.10/  
XTAL1  
BCCU0. LEDTS1 LEDTS0 ACMP0. CCU80. USIC0_ USIC0_ CCU81.  
OUT6 .LINE2 .COL5 OUT OUT22 CH0.SE CH1.SE OUT22  
LO1 LO1  
CCU80.I CCU81.I  
N2AB N2AB  
USIC0_  
CH0.D  
X2C  
USIC0_  
CH1.DX  
2C  
P0.11/  
XTAL2  
BCCU0. LEDTS1 LEDTS0 USIC0_ CCU80. USIC0_ USIC0_ CCU81.  
OUT7 .LINE3 .COL4 CH0.MC OUT23 CH0.SE CH1.SE OUT23  
LKOUT LO2 LO2  
USIC0_  
CH0.D  
X2D  
USIC0_  
CH1.DX  
2D  
P0.12  
BCCU0. LEDTS1 LEDTS0 LEDTS1 CCU80. USIC0_ CCU80.  
CAN.N1 BCCU0. CCU40.I CCU40.I CCU40.I CCU81.I CCU40.I CCU80.I USIC0_ CCU80.I CCU80.I CAN.N1 CCU80.I  
OUT6  
.LINE4 .COL3 .COL3 OUT33 CH0.SE OUT20  
LO3  
_TXD  
TRAPIN N0AA  
A
N1AA  
N2AA  
N0AU  
N3AA  
N0AA  
CH0.D N1AA  
X2E  
N2AA  
_RXDA N3AA  
Table 9  
Port I/O Functions (cont’d)  
Function  
Outputs  
Inputs  
Input  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
Input  
Input  
Input  
Input  
Input  
Input  
Input Input  
Input  
Input  
Input  
P0.13  
P0.14  
P0.15  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P1.8  
P2.0  
P2.1  
WWDT. LEDTS1 LEDTS0 LEDTS1 CCU80. USIC0_ CCU80.  
SERVIC .LINE5 .COL2 .COL2 OUT32 CH0.SE OUT21  
CAN.N1  
_TXD  
CCU80.I CCU81.I POSIF0.  
N3AB N1AU IN0B  
USIC0_  
CH0.D  
X2F  
CAN.N1  
_RXDB  
E_OUT  
LO4  
BCCU0. LEDTS1 LEDTS0 LEDTS1 CCU80. USIC0_ USIC0_  
OUT7 .LINE6 .COL1 .COL1 OUT31 CH0.DO CH0.SC  
UT0 LKOUT  
CAN.N0  
_TXD  
CCU81.I POSIF0. USIC0_ USIC0_ USIC1_  
N2AU IN1B CH0.DX CH0.D CH1.DX  
0A X1A 5B  
CAN.N0  
_RXDC  
BCCU0. LEDTS1 LEDTS0 LEDTS1 CCU80. USIC0_ USIC0_  
OUT8 .LINE7 .COL0 .COL0 OUT30 CH0.DO CH1.MC  
UT0 LKOUT  
CAN.N0  
_TXD  
CCU81.I POSIF0. USIC0_  
USIC1_ USIC1_ CAN.N0  
CH1.DX CH1.DX _RXDD  
N3AU  
IN2B  
CH0.DX  
0B  
3B  
4B  
BCCU0. CCU40. LEDTS0 LEDTS1 CCU80. ACMP1. USIC0_ CCU81. CAN.N0  
POSIF0. USIC0_  
IN2A  
CAN.N0  
_RXDG  
OUT0  
OUT0  
.COL0 .COLA OUT00 OUT  
CH0.DO OUT00 _TXD  
UT0  
CH0.DX  
0C  
ERU1.P CCU40. LEDTS0 LEDTS1 CCU80. USIC0_ USIC0_ CCU81. CAN.N0  
DOUT1 OUT1 .COL1 .COL0 OUT01 CH0.DO CH1.SE OUT01 _TXD  
UT0 LO0  
POSIF0. USIC0_ USIC0_  
IN1A  
USIC0_ CAN.N0  
CH1.DX _RXDH  
2E  
CH0.DX CH0.D  
0D  
X1D  
ERU1.P CCU40. LEDTS0 LEDTS1 CCU80. ACMP2. USIC0_ CCU81. CAN.N1  
POSIF0.  
IN0A  
USIC0_  
CH1.DX  
0B  
CAN.N1  
_RXDG  
DOUT2 OUT2  
.COL2 .COL1 OUT10 OUT  
CH1.DO OUT10 _TXD  
UT0  
ERU1.P CCU40. LEDTS0 LEDTS1 CCU80. USIC0_ USIC0_ CCU81. CAN.N1  
USIC0_ USIC0_ CAN.N1  
CH1.DX CH1.DX _RXDH  
DOUT3 OUT3  
.COL3 .COL2 OUT11 CH1.SC CH1.DO OUT11 _TXD  
LKOUT UT0  
0A  
1A  
ERU1.P USIC0_ LEDTS0 LEDTS1 CCU80. USIC0_ USIC0_ CCU81. CCU41.  
DOUT0 CH1.SC .COL4 .COL3 OUT20 CH0.SE CH1.SE OUT20 OUT0  
USIC0_  
CH0.DX  
5E  
USIC0_  
CH1.DX  
5E  
LKOUT  
LO0  
LO1  
ERU1.P USIC0_ LEDTS0 BCCU0. CCU80. USIC0_ USIC0_ CCU81. CCU41.  
USIC0_  
CH1.DX  
5F  
DOUT1 CH0.DO .COLA OUT1  
UT0  
OUT21 CH0.SE CH1.SE OUT21 OUT1  
LO1 LO2  
ERU1.P USIC0_ LEDTS0 USIC0_ BCCU0. USIC0_ USIC0_ CCU81. CCU41.  
DOUT2 CH1.DO .COL5 CH0.SC OUT2 CH0.SE CH1.SE OUT30 OUT2  
UT0 LKOUT LO2 LO3  
POSIF1. USIC0_  
IN2A  
CH0.DX  
5F  
BCCU0. CCU40. LEDTS0 LEDTS1  
OUT8 OUT3 .COL6 .COL4  
ACMP3. ERU1.P CCU81. CCU41.  
OUT DOUT3 OUT31 OUT3  
POSIF1. USIC1_  
IN1A  
USIC1_  
CH1.DX  
2C  
CH0.DX  
5B  
BCCU0. CCU40. USIC1_ VADC0.  
ACMP1. ERU1.P CCU81.  
OUT DOUT0 OUT32  
POSIF1. USIC1_ USIC1_  
IN0A CH0.DX CH0.D  
3B X4B  
USIC1_  
CH1.DX  
1C  
OUT0  
OUT0  
CH1.SC EMUX02  
LKOUT  
ERU0.P CCU40. ERU0.G LEDTS1 CCU80. USIC0_ USIC0_ CCU81. CAN.N0  
DOUT3 OUT0 OUT3 .COL5 OUT20 CH0.DO CH0.SC OUT20 _TXD  
UT0 LKOUT  
VADC0.  
G0CH5  
USIC0_ USIC0_  
CH0.DX CH0.D  
USIC0_ CAN.N0 ERU0.0  
CH1.DX _RXDE B0  
2F  
0E  
X1E  
ERU0.P CCU40. ERU0.G LEDTS1 CCU80. USIC0_ USIC0_ CCU81. CAN.N0 ACMP2.I VADC0.  
DOUT2 OUT1 OUT2 .COL6 OUT21 CH0.DO CH1.SC OUT21 _TXD NP G0CH6  
UT0 LKOUT  
USIC0_  
CH0.DX  
0F  
USIC0_ USIC0_ CAN.N0 ERU0.1  
CH1.DX CH1.DX _RXDF B0  
3A  
4A  
Table 9  
Port I/O Functions (cont’d)  
Function  
Outputs  
Inputs  
Input  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
Input  
Input  
Input  
Input  
Input  
Input  
Input Input  
Input  
Input  
Input  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P2.8  
P2.9  
P2.10  
P2.11  
P2.12  
P2.13  
P3.0  
P3.1  
ACMP2.I VADC0.  
NN G0CH7  
ORC0.AI USIC1_  
USIC0_ USIC0_ USIC0_  
CH0.DX CH0.D CH1.DX  
ERU0.0  
B1  
N
CH0.DX  
5E  
3A  
X4A  
5A  
VADC0. ORC1.AI USIC1_ USIC1_ USIC1_ USIC0_ USIC0_ USIC0_  
G1CH5 CH0.DX CH0.DX CH1.DX CH0.D CH1.DX CH1.DX  
3E 4E 5C X5B 3C 4C  
ERU0.1  
B1  
N
VADC0. ORC2.AI USIC1_ USIC1_ USIC0_ USIC0_ USIC1_ USIC0_  
G1CH6 CH1.DX CH1.DX CH0.DX CH0.D CH0.DX CH1.DX  
ERU0.0  
A1  
N
3C  
4C  
3B  
X4B  
5F  
5B  
VADC0. ORC3.AI USIC1_  
USIC0_  
CH0.DX  
5D  
USIC0_ USIC0_  
CH1.DX CH1.DX  
3E  
ERU0.1  
A1  
G1CH7  
N
CH1.DX  
5D  
4E  
ACMP1.I VADC0.  
ORC4.AI USIC1_ USIC1_ USIC0_ USIC0_ USIC0_  
N CH1.DX CH1.DX CH0.DX CH0.D CH1.DX  
ERU0.2  
A1  
NN  
G0CH0  
3E  
4E  
3E  
X4E  
5D  
ACMP1.I  
NP  
VADC0. ORC5.AI USIC1_  
USIC0_  
CH0.DX  
5C  
USIC0_ USIC0_  
CH1.DX CH1.DX  
3D  
ERU0.3  
A1  
G1CH1  
N
CH1.DX  
5E  
4D  
ACMP0.I VADC0. VADC0. ORC6.AI  
NN G0CH1 G1CH0  
USIC0_ USIC0_ USIC0_  
CH0.DX CH0.D CH1.DX  
ERU0.3  
B1  
N
3D  
X4D  
5C  
ACMP0.I VADC0. VADC0. ORC7.AI  
USIC0_  
CH0.DX  
5A  
USIC0_ USIC0_  
CH1.DX CH1.DX  
3B  
ERU0.3  
B0  
NP  
G0CH2 G1CH4 N  
4B  
ERU0.P CCU40. ERU0.G LEDTS1 CCU80. ACMP0. USIC0_  
CAN.N1  
_TXD  
VADC0. VADC0.  
G0CH3 G1CH2  
USIC0_ USIC0_ USIC0_  
CH0.DX CH0.D CH1.DX  
CAN.N1 ERU0.2  
_RXDE B0  
DOUT1 OUT2  
OUT1  
.COL4 OUT30 OUT  
CH1.DO  
UT0  
3C  
X4C  
0F  
ERU0.P CCU40. ERU0.G LEDTS1 CCU80. USIC0_ USIC0_  
CAN.N1 ACMP.R VADC0. VADC0.  
USIC0_ USIC0_ CAN.N1 ERU0.2  
CH1.DX CH1.DX _RXDF B1  
0E  
DOUT0 OUT3  
OUT0  
.COL3 OUT31 CH1.SC CH1.DO  
LKOUT UT0  
_TXD  
EF  
G0CH4 G1CH3  
1E  
BCCU0. VADC0. USIC1_ USIC1_  
ACMP2. USIC1_ LEDTS2  
ACMP3.I  
NN  
USIC1_ USIC1_ USIC1_ USIC1_  
CH0.DX CH0.D CH1.DX CH1.DX  
ERU1.3  
A2  
OUT3  
EMUX00 CH0.SC CH1.SC  
LKOUT LKOUT  
OUT  
CH1.DO .COL6  
UT0  
3A  
X4A  
0C  
1B  
BCCU0. CCU40. USIC1_ CCU81.  
VADC0. USIC1_ CCU81. CCU41. ACMP3.I  
USIC1_  
CH0.DX  
5A  
USIC1_  
CH1.DX  
0D  
ERU1.3  
A3  
OUT4  
OUT3  
CH0.MC OUT31  
LKOUT  
EMUX01 CH1.DO OUT33 OUT3  
UT0  
NP  
BCCU0. USIC1_ USIC1_ LEDTS2 CCU80. ACMP1. USIC1_ CCU81. CCU41. BCCU0. CCU41.I CCU41.I CCU41.I CCU41.I CCU81.I CCU81.I CCU81. USIC1_ USIC1_ CCU81.I ERU1.0  
OUT0  
CH1.DO CH1.SC .COLA OUT21 OUT  
UT0 LKOUT  
CH0.SE OUT21 OUT0  
LO1  
TRAPIN N0AA  
C
N1AA  
N2AA  
N3AA  
N0AA  
N1AA  
IN2AA CH1.DX CH1.DX N3AA  
A1  
0E  
1D  
BCCU0. USIC1_  
LEDTS2 CCU80. ACMP3. USIC1_ CCU81. CCU41.  
USIC1_ USIC1_  
CH0.D CH1.DX  
ERU1.1  
A1  
OUT1  
CH1.DO  
UT0  
.COL0 OUT20 OUT  
CH0.SE OUT20 OUT1  
LO0  
X2F  
0F  
Table 9  
Port I/O Functions (cont’d)  
Function  
Outputs  
Inputs  
Input  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
Input  
Input  
Input  
Input  
Input  
Input  
Input Input  
Input  
Input  
Input  
P3.2  
P3.3  
P3.4  
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P4.8  
P4.9  
BCCU0. USIC1_  
LEDTS2 CCU80. ACMP2. USIC1_ CCU81. CCU41.  
USIC1_ USIC1_ USIC1_ USIC1_  
CH0.DX CH0.D CH1.DX CH1.DX  
ERU1.2  
A1  
OUT2  
CH1.SC  
LKOUT  
.COL1 OUT11 OUT  
CH0.SC OUT11 OUT2  
LKOUT  
3C  
X4C  
3D  
4D  
BCCU0. USIC1_  
LEDTS2 CCU80. ACMP0. USIC1_ CCU81. CCU41.  
USIC1_  
CH0.DX  
0E  
USIC1_  
CH1.DX  
2A  
ERU1.1  
A3  
OUT5  
CH0.DO  
UT0  
.COL2 OUT10 OUT  
CH1.SE OUT10 OUT3  
LO0  
BCCU0. USIC1_ USIC1_ LEDTS2 CCU80. USIC1_ USIC1_ CCU81.  
OUT6 CH0.DO CH0.SC .COL3 OUT01 CH1.MC CH1.SE OUT01  
UT0 LKOUT LKOUT LO1  
USIC1_ USIC1_  
CH0.DX CH0.D  
USIC1_  
CH1.DX  
2B  
ERU1.2  
A3  
0F  
X1E  
BCCU0. ERU1.P LEDTS2 ERU1.G CCU40. ACMP1. USIC1_ CCU81. CCU41.  
CCU40.I CCU41.I CCU80.I  
N0BA N0AC N0AU  
USIC1_ USIC1_  
CH0.DX CH0.D  
OUT0  
DOUT0 .COL5 OUT0  
OUT0  
OUT  
CH1.SE OUT10 OUT0  
LO1  
3D  
X4D  
BCCU0. ERU1.P LEDTS2 ERU1.G CCU40. ACMP3. USIC1_ CCU81. CCU41.  
CCU40.I CCU41.I CCU80.I  
N1BA N1AC N1AU  
POSIF1. USIC1_  
OUT8  
DOUT1 .COL4 OUT1  
OUT1  
OUT  
CH1.SE OUT11 OUT1  
LO2  
IN0B  
CH0.DX  
5C  
BCCU0. ERU1.P CCU81. ERU1.G CCU40. ACMP2. USIC1_ CCU81. CCU41.  
CCU40.I CCU41.I CCU80.I CCU81.I POSIF1. USIC1_  
OUT4  
DOUT2 OUT20 OUT2  
OUT2  
OUT  
CH1.SE OUT12 OUT2  
LO3  
N2BA  
N2AC  
N2AU  
N1AB  
IN1B  
CH0.DX  
5D  
BCCU0. ERU1.P CCU81. ERU1.G CCU40. ACMP0. USIC1_ CCU81. CCU41.  
CCU40.I CCU41.I CCU80.I  
POSIF1.  
IN2B  
USIC1_  
CH0.D  
X1B  
OUT5  
DOUT3 OUT21 OUT3  
OUT3  
OUT  
CH0.SC OUT13 OUT3  
LKOUT  
N3BA  
N3AC  
N3AU  
BCCU0. LEDTS2  
OUT0 .LINE0  
LEDTS1 CCU80. USIC1_  
.COLA OUT00 CH0.DO  
UT0  
CCU81. CCU41.  
OUT00 OUT0  
CCU41.I  
N0AV  
USIC1_  
CH0.DX  
0C  
USIC1_  
CH1.DX  
5F  
ERU1.0  
A2  
BCCU0. LEDTS2  
OUT8 .LINE1  
LEDTS1 CCU80. USIC1_ USIC1_ CCU81. CCU41.  
.COL6 OUT01 CH0.DO CH0.SC OUT01 OUT1  
CCU41.I  
N1AV  
USIC1_ USIC1_  
CH0.DX CH0.D  
ERU1.1  
A2  
UT0  
LKOUT  
0D  
X1C  
BCCU0. LEDTS2 CCU81. LEDTS1 CCU80.  
OUT2 .LINE2 OUT10 .COL5 OUT10  
USIC1_ CCU81. CCU41.  
CH0.SC OUT02 OUT2  
LKOUT  
CCU41.I  
N2AV  
CCU81.I  
N0AB  
USIC1_  
CH0.D  
X1D  
ERU1.2  
A2  
BCCU0. LEDTS2 CCU81. LEDTS1 CCU80.  
OUT5 .LINE3 OUT11 .COL4 OUT11  
USIC1_ CCU81. CCU41.  
CH0.SE OUT03 OUT3  
LO0  
CCU41.I  
N3AV  
USIC1_  
CH0.D  
X2A  
ERU1.0  
A3  
BCCU0. LEDTS2 LEDTS2 LEDTS1 CCU80. CCU40. USIC1_ CCU81. CAN.N1  
CCU40.I CCU41.I  
N0AV N0BA  
USIC1_  
CH0.D  
X2B  
CAN.N1  
_RXDC  
OUT7  
.LINE4 .COL3 .COL3 OUT30 OUT0  
CH0.SE OUT30 _TXD  
LO1  
BCCU0. LEDTS2 LEDTS2 LEDTS1 CCU80. CCU40. USIC1_ CCU81. CAN.N1  
CCU40.I CCU41.I  
N1AV N1BA  
USIC1_  
CH0.D  
X2C  
CAN.N1  
_RXDD  
OUT3  
.LINE5 .COL2 .COL2 OUT31 OUT1  
CH0.SE OUT31 _TXD  
LO2  
Table 9  
Port I/O Functions (cont’d)  
Function  
Outputs  
Inputs  
Input  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
Input  
Input  
Input  
Input  
Input  
Input  
Input Input  
Input  
Input  
Input  
P4.10  
P4.11  
LEDTS2 LEDTS2 LEDTS1 CCU80. CCU40. USIC1_ CCU81. CCU81. BCCU0. CCU40.I CCU41.I  
CCU81.I  
N3AB  
USIC1_ USIC1_  
CH0.D CH1.DX  
.LINE6 .COL1 .COL1 OUT00 OUT2  
CH0.SE OUT32 OUT00 TRAPIN N2AV  
LO3  
N2BA  
D
X2D  
5A  
LEDTS2 LEDTS2 LEDTS1 CCU80. CCU40. USIC1_ CCU81. CCU81.  
CCU40.I CCU41.I  
USIC1_ USIC1_ USIC1_  
CH0.D CH1.DX CH1.DX  
.LINE7 .COL0 .COL0 OUT01 OUT3  
CH0.SE OUT33 OUT01  
LO4  
N3AV  
N3BA  
X2E  
3A  
4A  
Table 10  
Hardware I/O Controlled Functions  
Outputs  
HWO0  
Outputs  
HWO1  
Inputs  
Inputs  
Pull Control  
HW0_PD  
Pull Control  
HW0_PU  
Pull Control  
HW1_PD  
Pull Control  
HW1_PU  
Function  
HWI0  
HWI1  
P0.0  
P0.1  
LEDTS0.  
EXTENDED7  
LEDTS0.TSIN7  
LEDTS0.TSIN7  
Reserved for LEDTS Reserved for LEDTS Reserved for LEDTS Scheme B:  
Scheme A:  
Scheme A:  
pull-down enabled  
always  
pull-up enabled and pull-down disabled, and  
vice versa  
pull-down disabled  
always  
LEDTS0.  
EXTENDED6  
LEDTS0.TSIN6  
LEDTS0.TSIN5  
LEDTS0.TSIN4  
LEDTS0.TSIN3  
LEDTS0.TSIN2  
LEDTS0.TSIN1  
LEDTS0.TSIN0  
LEDTS1.TSIN0  
LEDTS1.TSIN1  
LEDTS1.TSIN2  
LEDTS1.TSIN3  
LEDTS1.TSIN4  
LEDTS1.TSIN5  
LEDTS1.TSIN6  
LEDTS1.TSIN7  
LEDTS0.TSIN6  
LEDTS0.TSIN5  
LEDTS0.TSIN4  
LEDTS0.TSIN3  
LEDTS0.TSIN2  
LEDTS0.TSIN1  
LEDTS0.TSIN0  
LEDTS1.TSIN0  
LEDTS1.TSIN1  
LEDTS1.TSIN2  
LEDTS1.TSIN3  
LEDTS1.TSIN4  
LEDTS1.TSIN5  
LEDTS1.TSIN6  
LEDTS1.TSIN7  
P0.2  
LEDTS0.  
EXTENDED5  
P0.3  
LEDTS0.  
EXTENDED4  
P0.4  
LEDTS0.  
EXTENDED3  
P0.5  
LEDTS0.  
EXTENDED2  
P0.6  
LEDTS0.  
EXTENDED1  
P0.7  
LEDTS0.  
EXTENDED0  
P0.8  
LEDTS1.  
EXTENDED0  
P0.9  
LEDTS1.  
EXTENDED1  
P0.10  
P0.11  
P0.12  
P0.13  
P0.14  
P0.15  
LEDTS1.  
EXTENDED2  
LEDTS1.  
EXTENDED3  
LEDTS1.  
EXTENDED4  
LEDTS1.  
EXTENDED5  
LEDTS1.  
EXTENDED6  
LEDTS1.  
EXTENDED7  
P1.0  
P1.1  
P1.2  
USIC0_CH0.DOUT0  
USIC0_CH0.DOUT1  
USIC0_CH0.DOUT2  
USIC0_CH0.HWIN0 BCCU0.OUT2  
USIC0_CH0.HWIN1 BCCU0.OUT3  
USIC0_CH0.HWIN2 BCCU0.OUT4  
BCCU0.OUT2  
BCCU0.OUT3  
BCCU0.OUT4  
Table 10  
Hardware I/O Controlled Functions  
Outputs  
HWO0  
Outputs  
Inputs  
HWI0  
Inputs  
HWI1  
Pull Control  
HW0_PD  
Pull Control  
Pull Control  
HW1_PD  
Pull Control  
HW1_PU  
Function  
HWO1  
HW0_PU  
BCCU0.OUT5  
BCCU0.OUT6  
BCCU0.OUT7  
BCCU0.OUT8  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P1.8  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P2.8  
P2.9  
P2.10  
P2.11  
P2.12  
P2.13  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P4.0  
P4.1  
P4.2  
P4.3  
USIC0_CH0.DOUT3  
USIC0_CH0.HWIN3 BCCU0.OUT5  
BCCU0.OUT6  
BCCU0.OUT7  
BCCU0.OUT8  
BCCU0.OUT1  
BCCU0.OUT6  
BCCU0.OUT0  
ACMP2.OUT  
BCCU0.OUT8  
ACMP1.OUT  
BCCU0.OUT2  
BCCU0.OUT8  
BCCU0.OUT1  
BCCU0.OUT7  
BCCU0.OUT4  
BCCU0.OUT5  
BCCU0.OUT3  
BCCU0.OUT4  
BCCU0.OUT1  
BCCU0.OUT6  
BCCU0.OUT0  
ACMP2.OUT  
BCCU0.OUT8  
ACMP1.OUT  
BCCU0.OUT2  
BCCU0.OUT8  
BCCU0.OUT1  
BCCU0.OUT7  
BCCU0.OUT4  
BCCU0.OUT5  
BCCU0.OUT3  
BCCU0.OUT4  
CCU40.OUT3  
CCU40.OUT3  
CCU40.OUT3  
CCU40.OUT3  
CCU40.OUT2  
CCU40.OUT2  
CCU40.OUT3  
CCU40.OUT3  
CCU40.OUT2  
CCU40.OUT2  
CCU41.OUT0  
CCU41.OUT2  
CCU41.OUT0  
CCU41.OUT2  
USIC1_CH0.DOUT3  
USIC1_CH0.DOUT2  
USIC1_CH0.DOUT1  
USIC1_CH0.DOUT0  
USIC1_CH0.HWIN3  
USIC1_CH0.HWIN2  
USIC1_CH0.HWIN1  
USIC1_CH0.HWIN0  
Table 10  
Hardware I/O Controlled Functions  
Outputs  
HWO0  
Outputs  
HWO1  
Inputs  
Inputs  
Pull Control  
HW0_PD  
Pull Control  
HW0_PU  
Pull Control  
HW1_PD  
Pull Control  
HW1_PU  
Function  
HWI0  
HWI1  
P4.4  
P4.5  
P4.6  
P4.7  
P4.8  
P4.9  
P4.10  
P4.11  
LEDTS2.  
EXTENDED0  
LEDTS2.TSIN0  
LEDTS2.TSIN0  
Reserved for LEDTS Reserved for LEDTS Reserved for LEDTS Scheme B:  
Scheme A:  
Scheme A:  
pull-down enabled  
always  
pull-up enabled and pull-down disabled, and  
vice versa  
pull-down disabled  
always  
LEDTS2.  
EXTENDED1  
LEDTS2.TSIN1  
LEDTS2.TSIN2  
LEDTS2.TSIN3  
LEDTS2.TSIN4  
LEDTS2.TSIN5  
LEDTS2.TSIN6  
LEDTS2.TSIN7  
LEDTS2.TSIN1  
LEDTS2.TSIN2  
LEDTS2.TSIN3  
LEDTS2.TSIN4  
LEDTS2.TSIN5  
LEDTS2.TSIN6  
LEDTS2.TSIN7  
LEDTS2.  
EXTENDED2  
LEDTS2.  
EXTENDED3  
LEDTS2.  
EXTENDED4  
LEDTS2.  
EXTENDED5  
LEDTS2.  
EXTENDED6  
LEDTS2.  
EXTENDED7  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3
Electrical Parameter  
This section provides the electrical parameter which are implementation-specific for the  
XMC1400.  
3.1  
General Parameters  
3.1.1  
Parameter Interpretation  
The parameters listed in this section represent partly the characteristics of the XMC1400  
and partly its requirements on the system. To aid interpreting the parameters easily  
when evaluating them for a design, they are indicated by the abbreviations in the  
“Symbol” column:  
CC  
Such parameters indicate Controller Characteristics, which are distinctive feature of  
the XMC1400 and must be regarded for a system design.  
SR  
Such parameters indicate System Requirements, which must be provided by the  
application system in which the XMC1400 is designed in.  
Data Sheet  
41  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.1.2  
Absolute Maximum Ratings  
Stresses above the values listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Table 11  
Absolute Maximum Rating Parameters  
Symbol Values  
Parameter  
Unit Note /  
Test Cond  
Min Typ. Max.  
.
ition  
Junction temperature  
Storage temperature  
TJ  
SR -40  
SR -40  
115  
125  
6
°C  
°C  
V
TST  
Voltage on power supply pin VDDP SR -0.3  
with respect to VSSP  
Voltage on digital pins with  
respect to VSSP  
VIN  
SR -0.5  
V
DDP + 0.5  
V
whichever  
is lower  
1)  
or max. 6  
Voltage on P2 pins with  
VINP2 SR -0.3  
VDDP + 0.3  
V
2)  
respect to VSSP  
Voltage on analog input pins VAIN  
with respect to VSSP  
-0.5  
VDDP + 0.5  
V
whichever  
is lower  
VAREF SR  
or max. 6  
10  
Input current on any pin  
during overload condition  
IIN  
SR -10  
mA  
mA  
Absolute maximum sum of all ΣIIN SR -50  
inputcurrentsduring overload  
condition  
+50  
1) Excluding port pins P2.[1,2,6,7,8,9,11].  
2) Applicable to port pins P2.[1,2,6,7,8,9,11].  
Data Sheet  
42  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.1.3  
Pin Reliability in Overload  
When receiving signals from higher voltage devices, low-voltage devices experience  
overload currents and voltages that go beyond their own IO power supplies specification.  
Table 12 defines overload conditions that will not cause any negative reliability impact if  
all the following conditions are met:  
full operation life-time is not exceeded  
Operating Conditions are met for  
– pad supply levels (VDDP  
)
– temperature  
If a pin current is outside of the Operating Conditions but within the overload  
conditions, then the parameters of this pin as stated in the Operating Conditions can no  
longer be guaranteed. Operation is still possible in most cases but with relaxed  
parameters.  
Note: An overload condition on one or more pins does not require a reset.  
Note: A series resistor at the pin to limit the current to the maximum permitted overload  
current is sufficient to handle failure situations like short to battery.  
Table 12  
Overload Parameters  
Symbol  
Parameter  
Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Input current on any port pin IOV SR -5  
during overload condition  
5
mA  
mA  
Absolute sum of all input  
circuit currents during  
overload condition  
IOVS SR  
25  
Figure 11 shows the path of the input currents during overload via the ESD protection  
structures. The diodes against VDDP and ground are a simplified representation of these  
ESD protection structures.  
Data Sheet  
43  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
VDDP  
VDDP  
Pn.y  
IOVx  
GND  
ESD  
GND  
Pad  
Figure 11  
Input Overload Current via ESD structures  
Table 13 and Table 14 list input voltages that can be reached under overload conditions.  
Note that the absolute maximum input voltages as defined in the Absolute Maximum  
Ratings must not be exceeded during overload.  
Table 13  
PN-Junction Characterisitics for positive Overload  
OV = 5 mA  
Pad Type  
I
Standard, High-current,  
AN/DIG_IN  
V
V
V
IN = VDDP + 0.5 V  
AIN = VDDP + 0.5 V  
AREF = VDDP + 0.5 V  
P2.[1,2,6:9,11]  
V
INP2 = VDDP + 0.3 V  
Table 14  
PN-Junction Characterisitics for negative Overload  
OV = 5 mA  
Pad Type  
I
Standard, High-current,  
AN/DIG_IN  
V
V
V
IN = VSS - 0.5 V  
AIN = VSS - 0.5 V  
AREF = VSS - 0.5 V  
P2.[1,2,6:9,11]  
V
INP2 = VSS - 0.3 V  
Data Sheet  
44  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.1.4  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation and reliability of the XMC1400. All parameters specified in the following tables  
refer to these operating conditions, unless noted otherwise.  
Table 15  
Operating Conditions Parameters  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
SR -40  
-40  
Digital supply voltage1) VDDP SR 1.8  
Typ.  
Max.  
85  
Ambient Temperature TA  
°C  
°C  
V
Temp. Range F  
Temp. Range X  
105  
5.5  
5
Short circuit current of ISC  
SR -5  
mA  
digital outputs  
Absolute sum of short ΣISC_D SR  
circuit currents of the  
device  
25  
mA  
1) See also the Supply Monitoring thresholds, Chapter 3.3.2.  
Data Sheet  
45  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.2  
DC Parameters  
3.2.1  
Input/Output Characteristics  
Table 16 provides the characteristics of the input/output pins of the XMC1400.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Note: Unless otherwise stated, input DC and AC characteristics, including peripheral  
timings, assume that the input pads operate with the standard hysteresis.  
Table 16  
Input/Output Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
Min.  
Max.  
Output low voltage on  
port pins  
(with standard pads)  
VOLP CC  
1.0  
V
V
V
I
I
OL = 11 mA (5 V)  
OL = 7 mA (3.3 V)  
0.4  
1.0  
I
I
OL = 5 mA (5 V)  
OL = 3.5 mA (3.3 V)  
Output low voltage on  
high current pads  
VOLP1 CC  
I
I
OL = 50 mA (5 V)  
OL = 25 mA (3.3 V)  
0.32  
0.4  
V
V
V
I
I
OL = 10 mA (5 V)  
OL = 5 mA (3.3 V)  
Output high voltage on VOHP CC VDDP  
-
-
-
-
-
I
I
OH = -10 mA (5 V)  
OH = -7 mA (3.3 V)  
port pins  
(with standard pads)  
1.0  
VDDP  
0.4  
V
V
V
V
I
I
OH = -4.5 mA (5 V)  
OH = -2.5 mA (3.3 V)  
Output high voltage on VOHP1 CC VDDP  
I
I
I
OH = -6 mA (5 V)  
OH = -8 mA (3.3 V)  
OH = -4 mA (3.3 V)  
high current pads  
0.32  
VDDP  
1.0  
VDDP  
0.4  
Input low voltage on port VILPS SR  
pins  
0.19 × V  
VDDP  
CMOS Mode  
(5 V, 3.3 V & 2.2 V)  
(Standard Hysteresis)  
Input high voltage on  
port pins  
VIHPS SR 0.7 ×  
V
CMOS Mode  
(5 V, 3.3 V & 2.2 V)  
VDDP  
(Standard Hysteresis)  
Data Sheet  
46  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 16  
Input/Output Characteristics (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
Min.  
Max.  
Input low voltage on port VILPL SR  
0.08 × V  
CMOS Mode  
pins  
VDDP  
(5 V, 3.3 V & 2.2 V)  
(Large Hysteresis)  
Input high voltage on  
port pins  
VIHPL SR 0.85 ×  
V
CMOS Mode  
(5 V, 3.3 V & 2.2 V)  
VDDP  
(Large Hysteresis)  
Rise/fall time on High  
Current Pad1)  
tHCPR  
tHCPF  
,
CC  
9
ns  
ns  
ns  
50 pF @ 5 V2)  
50 pF @ 3.3 V3)  
50 pF @ 1.8 V4)  
12  
25  
Rise/fall time on  
Standard Pad1)  
tR, tF CC  
12  
15  
31  
ns  
ns  
ns  
50 pF @ 5 V5)  
50 pF @ 3.3 V6).  
50 pF @ 1.8 V7).  
Input Hysteresis on port HYS CC 0.08 ×  
V
V
V
CMOS Mode (5 V),  
Standard Hysteresis  
pin except P2.3 - P2.98)  
VDDP  
0.03 ×  
VDDP  
CMOS Mode (3.3 V),  
Standard Hysteresis  
0.02 ×  
VDDP  
CMOS Mode (2.2 V),  
Standard Hysteresis  
0.5 ×  
VDDP VDDP  
0.75 × V  
CMOS Mode(5 V),  
Large Hysteresis  
0.4 ×  
VDDP VDDP  
0.75 × V  
CMOS Mode(3.3 V),  
Large Hysteresis  
0.2 ×  
VDDP VDDP  
0.65 × V  
CMOS Mode(2.2 V),  
Large Hysteresis  
Data Sheet  
47  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 16  
Input/Output Characteristics (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
Min.  
Max.  
Input Hysteresis on port HYS_ CC 0.08 ×  
V
V
V
CMOS Mode (5 V),  
Standard Hysteresis  
pin P2.3 - P2.98)  
P2  
VDDP  
0.03 ×  
VDDP  
CMOS Mode (3.3 V),  
Standard Hysteresis  
0.02 ×  
VDDP  
CMOS Mode (2.2 V),  
Standard Hysteresis  
0.35 × 0.75 × V  
VDDP VDDP  
CMOS Mode(5 V),  
Large Hysteresis  
0.25 × 0.75 × V  
VDDP VDDP  
CMOS Mode(3.3 V),  
Large Hysteresis  
0.15 × 0.65 × V  
VDDP VDDP  
CMOS Mode(2.2 V),  
Large Hysteresis  
Pin capacitance (digital CIO  
inputs/outputs)  
CC  
CC  
10  
pF  
Pull-up current on port IPUP  
pins  
-80  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
V
V
V
V
V
V
V
V
IH,min (5 V)  
-95  
IL,max (5 V)  
IH,min (3.3 V)  
IL,max (3.3 V)  
IL,max (5 V)  
IH,min (5 V)  
-50  
-65  
Pull-down current on  
port pins  
IPDP  
CC  
40  
95  
30  
IL,max (3.3 V)  
IH,min (3.3 V)  
60  
Input leakage current  
except P0.119)  
IOZP  
CC -1  
1
0 < VIN < VDDP  
TA 105 °C  
,
,
Input leakage current for IOZP1 CC -10  
1
μA  
V
0 < VIN < VDDP  
TA 105 °C  
10)  
P0.119)  
Voltage on any pin  
VPO  
IMP  
SR  
0.3  
11  
during VDDP power off  
Maximum current per  
pin (excluding P1, VDDP  
and VSS)  
SR -10  
mA  
Maximum current per  
high currrent pins  
IMP1A SR -10  
50  
mA  
Data Sheet  
48  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 16  
Input/Output Characteristics (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
Min.  
Max.  
Maximum current into  
IMVDD1 SR  
520  
mA  
V
DDP (VQFN64,  
LQFP64)  
Maximum current into  
IMVDD2 SR  
IMVDD3 SR  
390  
260  
390  
260  
260  
mA  
mA  
mA  
mA  
mA  
V
DDP (VQFN48)  
Maximum current into  
DDP (VQFN40)  
Maximum current out of IMVSS1 SR  
SS (VQFN64, LQFP64)  
Maximum current out of IMVSS2 SR  
SS (VQFN48)  
Maximum current out of IMVSS3 SR  
SS (VQFN40)  
V
V
V
V
1) Rise/Fall time parameters are taken with 10% - 90% of supply.  
2) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.150 ns/pF at 5 V supply voltage.  
3) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage.  
4) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.  
5) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.225 ns/pF at 5 V supply voltage.  
6) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage.  
7) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage.  
8) Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot  
be guaranteed that it suppresses switching due to external system noise.  
9) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.  
10) However, for applications with strict low power-down current requirements, it is mandatory that no active  
voltage source is supplied at any GPIO pin when VDDP is powered off.  
Data Sheet  
49  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.2.2  
Analog to Digital Converters (ADC)  
Table 17 shows the Analog to Digital Converter (ADC) characteristics.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 17  
ADC Characteristics (Operating Conditions apply)1)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
Supply voltage range VDD_int  
(internal reference) SR  
2.0  
3.0  
V
SHSCFG.AREF = 11B;  
CALCTR.CALGNSTC =  
0CH for fSH = 32 MHz,  
12H for fSH = 48 MHz  
3.0  
5.5  
5.5  
V
V
SHSCFG.AREF = 10B  
SHSCFG.AREF = 00B  
Supply voltage range VDD_ext 3.0  
(external reference) SR  
Analog input voltage  
range  
V
AIN SR VSSP  
VDDP  
+ 0.05  
V
V
V
V
- 0.05  
Auxiliary analog  
VREFGND VSSP  
SR  
1.0  
0.2  
G0CH0  
G1CH0  
reference ground2)  
- 0.05  
VSSP  
- 0.05  
Internal reference  
voltage (full scale  
value)  
VREFINT  
CC  
5
Switched  
capacitance of an  
analog input  
CAINS  
CC  
1.2  
1.2  
4.5  
4.5  
2
pF GNCTRxz.GAINy = 00B  
(unity gain)  
2
pF GNCTRxz.GAINy = 01B  
(gain g1)  
6
pF GNCTRxz.GAINy = 10B  
(gain g2)  
6
pF GNCTRxz.GAINy = 11B  
(gain g3)  
Total capacitance of CAINT  
an analog input CC  
Total capacitance of CAREFT  
10  
10  
pF  
pF  
the reference input  
CC  
Data Sheet  
50  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 17  
ADC Characteristics (Operating Conditions apply)1) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
Gain settings  
GIN CC  
1
GNCTRxz.GAINy = 00B  
(unity gain)  
3
6
GNCTRxz.GAINy = 01B  
(gain g1)  
GNCTRxz.GAINy = 10B  
(gain g2)  
12  
GNCTRxz.GAINy = 11B  
(gain g3)  
Sample Time  
tsample  
CC  
5
1 /  
fADC f  
V
DD = 5.0 V,  
ADCI = 48 MHz  
DD = 5.0 V,  
ADCI = 32 MHz  
DD = 3.3 V,  
ADCI = 32 MHz  
DD = 2.0 V,  
ADCI = 32 MHz  
3
1 /  
fADC  
V
f
3
1 /  
fADC  
V
f
30  
1 /  
fADC  
V
f
3)  
Conversion time  
in fast compare  
mode  
t
CF CC  
9
1 /  
fADC  
3)  
Conversion time  
in 12-bit mode  
t
f
C12 CC  
C12 CC  
20  
1 /  
fADC  
Maximum sample  
fADC  
42.5  
/
/
1 sample  
pending  
rate in 12-bit mode4)  
fADC  
62.5  
2 samples  
pending  
3)  
Conversion time  
in 10-bit mode  
t
f
C10 CC  
C10 CC  
18  
1 /  
fADC  
Maximum sample  
fADC  
40.5  
/
/
1 sample  
pending  
rate in 10-bit mode4)  
fADC  
58.5  
2 samples  
pending  
3)  
Conversion time  
in 8-bit mode  
t
C8 CC  
16  
1 /  
fADC  
Data Sheet  
51  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 17  
ADC Characteristics (Operating Conditions apply)1) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
Maximum sample  
rate in 8-bit mode4)  
f
C8 CC  
fADC  
38.5  
/
1 sample  
pending  
fADC  
54.5  
/
2 samples  
pending  
RMS noise5)  
ENRMS  
1.5  
LSB DC input,  
CC  
12  
SHSCFG.AREF = 00B,  
GNCTRxz.GAINy = 00B  
(unity gain),  
VDD = 5.0 V,  
VAIN = 2.5 V,  
25°C  
DNL error  
INL error  
EADNL  
CC  
±2.0 –  
±4.0 –  
±0.5 –  
±3.6 –  
LSB  
12  
EAINL  
CC  
LSB  
12  
Gain error with  
external reference  
EAGAIN  
CC  
%
SHSCFG.AREF = 00B  
(calibrated)  
Gain error with  
EAGAIN  
CC  
%
SHSCFG.AREF = 1XB  
(calibrated),  
-40°C - 110°C  
internal reference6)  
±2.0 –  
±8.0 –  
%
SHSCFG.AREF = 1XB  
(calibrated),  
0°C - 85°C  
Offset error  
EAOFF  
CC  
mV Calibrated,  
DD = 5.0 V  
V
1) The parameters are defined for ADC clock frequencies fSH = 32 MHz for the full supply range, and fSH = 48  
MHz at VDD_int , VDD_ext = 5 V. Usage of any other frequencies may affect the ADC performance.  
2) The alternate reference ground connection is separate for each converter. This mode, therefore, provides the  
lowest noise impact.  
3) No pending samples assumed, excluding sampling time and calibration.  
4) Includes synchronization and calibration (average of gain and offset calibration).  
5) This parameter can also be defined as an SNR value: SNR[dB] = 20 × log(AMAXeff / NRMS).  
With AMAXeff = 2N / 2, SNR[dB] = 20 × log ( 2048 / NRMS) [N = 12].  
NRMS = 1.5 LSB12, therefore, equals SNR = 20 × log (2048 / 1.5) = 62.7 dB.  
6) Includes error from the reference voltage.  
Data Sheet  
52  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
CH7  
VAIN  
.
.
SAR  
Converter  
:
CH0  
VREF  
VREFGND  
VREFINT  
VAREF  
VSS  
VDD  
Internal  
Reference  
VDDint  
VDDext  
/
CHNR  
REFSEL  
AREF  
MC_VADC_AREFPATHS  
Figure 12  
ADC Voltage Supply  
Data Sheet  
53  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.2.3  
Out of Range Comparator (ORC) Characteristics  
The Out-of-Range Comparator (ORC) triggers on analog input voltages (VAIN) above  
VDDP on selected input pins (ORCx.AIN) and generates a service request trigger  
(ORCx.OUT).  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 18  
Out of Range Comparator (ORC) Characteristics (Operating  
Conditions apply; VDDP = 3.0 V - 5.5 V; CL = 0.25pF)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min. Typ. Max.  
DC Switching Level VODC CC  
180 mV VAIN VDDP + VODC  
Hysteresis  
VOHYS CC 15  
tOPDD CC 103  
88  
54  
mV  
Always detected  
Overvoltage Pulse  
ns VAIN VDDP + 150 mV  
ns VAIN VDDP + 350 mV  
ns VAIN VDDP + 150 mV  
ns VAIN VDDP + 350 mV  
Never detected  
tOPDN CC  
21  
11  
Overvoltage Pulse  
Detection Delay  
Release Delay  
Enable Delay  
tODD CC 39  
132 ns VAIN VDDP + 150 mV  
121 ns VAIN VDDP + 350 mV  
240 ns VAIN VDDP; VDDP = 5 V  
340 ns VAIN VDDP; VDDP = 3.3 V  
31  
tORD CC 44  
57  
tOED CC  
300 ns  
ORCCTRL.ENORCx = 1  
VDDP  
ORCx.AIN  
VSS  
ORCx.OUT  
tODD  
tORD  
Figure 13  
ORCx.OUT Trigger Generation  
Data Sheet  
54  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
VAIN(V)  
T > tOPDD  
tOPDN < T < tOPDD  
T < tOPDN  
VDDP + 350 mV  
VDDP + 150 mV  
tOPDN < T < tOPDD  
T > tOPDD  
T < tOPDN  
T > tOPDD  
VDDP + 60 mV  
VDDP  
Never  
detected  
Overvoltage  
Pulse  
Never  
detected  
Overvoltage  
Pulse  
Overvoltage  
may be  
detected  
Never  
detected  
Overvoltage  
Pulse  
Overvoltage  
may be  
detected  
Always detected  
Overvoltage Pulse  
Always detected  
Overvoltage Pulse  
Overvoltage  
may be  
detected  
(long enough,  
level uncertain  
(Too low)  
(Too short)  
(Too short)  
)
VSSA  
t
Figure 14  
ORC Detection Ranges  
Data Sheet  
55  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.2.4  
Analog Comparator Characteristics  
Table 19 below shows the Analog Comparator characteristics.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 19  
Analog Comparator Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Notes/  
Test Conditions  
Min. Typ. Max.  
Input Voltage  
Input Offset  
VCMP  
SR -0.05  
VDDP  
0.05  
+
V
VCMPOFF CC  
tPDELAY CC  
+/-3  
25  
mV High power mode  
Δ VCMP < 200 mV  
Propagation  
Delay1)  
ns  
ns  
ns  
ns  
High power mode,  
Δ VCMP = 100 mV  
80  
High power mode,  
Δ VCMP = 25 mV  
250  
700  
100  
Low power mode,  
Δ VCMP = 100 mV  
Low power mode,  
Δ VCMP = 25 mV  
Current  
Consumption  
IACMP  
CC  
μA First active ACMP in  
high power mode,  
ΔVCMP > 30 mV  
66  
μA Each additional ACMP  
in high power mode,  
ΔVCMP > 30 mV  
10  
6
μA First active ACMP in  
low power mode  
μA Each additional ACMP  
in low power mode  
Input Hysteresis VHYS  
CC  
+/-15  
5
mV  
ns  
Filter Delay1)  
tFDELAY CC  
1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.  
Data Sheet  
56  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.2.5  
Temperature Sensor Characteristics  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 20  
Temperature Sensor Characteristics  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit Note /  
Test Condition  
Measurement time  
tM CC  
10  
115  
6
ms  
°C  
°C  
°C  
°C  
Temperature sensor range  
Sensor Accuracy1)  
T
SR SR -40  
TTSAL  
CC  
-6  
-10  
TJ > 20°C  
10  
0°C TJ 20°C  
TJ < 0°C  
-/+8  
Start-up time  
t
TSST SR −  
15  
μs  
1) The temperature sensor accuracy is independent of the supply voltage.  
Data Sheet  
57  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.2.6  
Oscillator Pins  
Note: It is strongly recommended to measure the oscillation allowance (negative  
resistance) in the final target system (layout) to determine the optimal parameters  
for the oscillator operation. Please refer to the limits specified by the crystal or  
ceramic resonator supplier.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
The oscillator pins can be operated with an external crystal/resonator (see Figure 15) or  
in direct input mode (see Figure 16).  
XTAL1  
fOSC  
GND  
XTAL2  
Damping resistor  
may be needed for  
some crystals  
V
VPPX_min  
VPPX  
VPPX_min VPPX VPPX_max  
tOSCS  
t
Figure 15  
Oscillator in Crystal Mode  
Data Sheet  
58  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
External Clock  
Source  
Direct Input Mode  
XTAL1  
XTAL2  
not connected  
V
VIHBX_max  
VIHBX_min  
VILBX_max  
VSS  
VILBX_min  
t
Figure 16  
Oscillator in Direct Input Mode  
Data Sheet  
59  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 21  
OSC_XTAL Parameters  
Parameter  
Symbol  
Min.  
Values  
Unit Note /  
Test Condition  
Typ.  
Max.  
48  
Input frequency  
f
OSC SR  
4
4
MHz Direct Input Mode  
20  
MHz External Crystal  
Mode  
Oscillator start-up  
time1)2)  
tOSCS  
CC  
10  
ms  
Input voltage at XTAL1 VIX SR -0.3  
1.5  
V
External Crystal  
Mode  
-0.3  
5.5  
1.7  
V
V
Direct Input Mode  
Input amplitude (peak-  
to-peak) at XTAL12)3)  
V
PPX SR 0.6  
External Crystal  
Mode  
1) tOSCS is defined from the moment the oscillator is enabled wih SCU_ANAOSCHPCTRL.MODE until the  
oscillations reach an amplitude at XTAL1 of 0.9 * VPPX  
.
2) The external oscillator circuitry must be optimized by the customer and checked for negative resistance and  
amplitude as recommended and specified by crystal suppliers.  
3) If the shaper unit is enabled and not bypassed.  
Data Sheet  
60  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 22  
RTC_XTAL Parameters  
Symbol  
Parameter  
Values  
Typ.  
Unit Note /  
Test Condition  
Min.  
fOSC SR −  
Max.  
Input frequency  
32.768 −  
kHz  
s
Oscillator start-up  
time1)2)  
tOSCS  
5
CC  
Input voltage at  
RTC_XTAL1  
VIX SR -0.3  
VPPX SR 0.2  
1.5  
1.2  
V
V
Input amplitude (peak-  
to-peak) at  
RTC_XTAL12)3)  
1) tOSCS is defined from the moment the oscillator is enabled by the user with SCU_ANAOSCLPCTRL.MODE  
until the oscillations reach an amplitude at RTC_XTAL1 of 0.9 * VPPX  
.
2) The external oscillator circuitry must be optimized by the customer and checked for negative resistance and  
amplitude as recommended and specified by crystal suppliers.  
3) If the shaper unit is enabled and not bypassed.  
Data Sheet  
61  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.2.7  
Power Supply Current  
The total power supply current defined below consists of a leakage and a switching  
component.  
Application relevant values are typically lower than those given in the following tables,  
and depend on the customer's system operating conditions (e.g. thermal connection or  
used application configurations).  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 23  
Power Supply parameter table; VDDP = 5V  
Symbol Values  
Min. Typ.1)  
Parameter  
Unit Note /  
Test Condition  
Max.  
Active mode current  
Peripherals enabled  
fMCLK / fPCLK in MHz2)  
I
DDPAE CC −  
14.1  
9.8  
7.8  
6.4  
4.4  
6.2  
4.6  
3.6  
3.1  
1.8  
9.6  
20  
mA 48 / 96  
mA 24 / 48  
mA 16 / 32  
mA 8 / 16  
mA 1 / 1  
Active mode current  
Peripherals disabled  
fMCLK / fPCLK in MHz3)  
IDDPAD  
CC  
mA 48 / 96  
mA 24 / 48  
mA 16 / 32  
mA 8 / 16  
mA 1 / 1  
Active mode current  
Code execution from  
RAM  
IDDPAR  
CC  
mA 48 / 96  
Flash is powered down  
fMCLK / fPCLK in MHz  
Sleep mode current  
I
DDPSE CC −  
11.0  
7.6  
6.4  
5.3  
4.2  
mA 48 / 96  
mA 24 / 48  
mA 16 / 32  
mA 8 / 16  
mA 1 / 1  
Peripherals clock enabled  
fMCLK / fPCLK in MHz4)  
Data Sheet  
62  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 23  
Power Supply parameter table; VDDP = 5V  
Parameter  
Symbol  
Values  
Min. Typ.1)  
Unit Note /  
Test Condition  
Max.  
Sleep mode current  
Peripherals clock  
disabled  
IDDPSD  
CC  
2.8  
mA 48 / 96  
mA 24 / 48  
mA 16 / 32  
mA 8 / 16  
mA 1 / 1  
mA 48 / 96  
mA 24 / 48  
mA 16 / 32  
mA 8 / 16  
mA 1 / 1  
mA  
2.2  
2.0  
1.9  
1.7  
2.2  
1.7  
1.4  
1.2  
1.1  
0.27  
Flash active  
fMCLK / fPCLK in MHz5)  
Sleep mode current  
Peripherals clock  
disabled  
IDDPSR  
CC  
Flash powered down  
fMCLK / fPCLK in MHz6)  
Deep Sleep mode  
current7)  
IDDPDS  
CC  
Wake-up time from Sleep  
to Active mode8)  
t
t
SSA CC  
DSA CC  
6
cycl  
es  
Wake-up time from Deep  
Sleep to Active mode9)  
290  
μsec  
1) The typical values are measured at TA = + 25 °C and VDDP = 5 V.  
2) CPU and all peripherals clock enabled, Flash is in active mode.  
3) CPU enabled, all peripherals clock disabled, Flash is in active mode.  
4) CPU in sleep, all peripherals clock enabled and Flash is in active mode.  
5) CPU in sleep, Flash is in active mode.  
6) CPU in sleep, Flash is powered down and code executed from RAM after wake-up.  
7) CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.  
8) CPU in sleep, Flash is in active mode during sleep mode.  
9) CPU in sleep, Flash is in powered down mode during deep sleep mode.  
Data Sheet  
63  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Figure 17 shows typical graphs for active mode supply current for VDDP = 5 V, VDDP  
=
3.3 V, VDDP = 1.8 V across different clock frequencies.  
16.0  
14.0  
12.0  
10.0  
IDDPAE 5V / 3.3V  
IDDPAE 1.8V  
8.0  
6.0  
4.0  
2.0  
0.0  
I (mA)  
IDDPAD 5V / 3.3V /1.8V  
1/1  
8/16 16/32 24/48 48/96  
MCLK / PCLK (MHz)  
Condition:  
1. TA = +25° C  
Figure 17  
Active mode, a) peripherals clocks enabled, b) peripherals clocks  
disabled: Supply current IDDPA over supply voltage VDDP for different  
clock frequencies  
Data Sheet  
64  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Figure 18 shows typical graphs for sleep mode current for VDDP = 5 V, VDDP = 3.3 V,  
VDDP = 1.8 V across different clock frequencies.  
2.5  
2.0  
1.5  
I (mA)  
1.0  
IDDPSR 5V / 3.3V / 1.8V  
0.5  
0.0  
1/1  
8/16  
16/32 24/48 32/64  
MCLK / PCLK (MHz)  
Condition:  
1. TA = +25° C  
Figure 18  
Sleep mode, peripherals clocks disabled, Flash powered down:  
Supply current IDDPSD over supply voltage VDDP for different clock  
frequencies  
Data Sheet  
65  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 24 provides the active current consumption of some modules operating at 5 V  
power supply at 25° C. The typical values shown are used as a reference guide on the  
current consumption when these modules are enabled.  
Table 24  
Typical Active Current parameter table  
Active Current  
Consumption  
Symbol  
Limit  
Values  
Unit  
Test Condition  
Typ.  
Baseload current ICPUDDC  
4.14  
mA  
Modules including Core, SCU,  
PORT, memories, ANATOP1)  
VADC and SHS  
USICx  
IADCDDC  
3.73  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Set CGATCLR0.VADC to 12)  
Set CGATCLR0.USIC0 to 13)  
Set CGATCLR0.CCU40 to 14)  
Set CGATCLR0.CCU80 to 15)  
Set CGATCLR0.POSIF0 to 16)  
Set CGATCLR0.LEDTSx to 17)  
Set CGATCLR0.BCCU0 to 18)  
Set CGATCLR0.MATH to 19)  
Set CGATCLR0.WDT to 110)  
Set CGATCLR0.RTC to 111)  
Set CGATCLR0.MCAN0 to 112)  
IUSIC0DDC 1.35  
ICCU40DDC 0.99  
ICCU80DDC 1.00  
CCU4x  
CCU8x  
POSIFx  
LEDTSx  
BCCU0  
MATH  
IPIF0DDC  
ILTSxDDC  
1.05  
1.14  
IBCCU0DDC 0.29  
IMATHDDC 0.50  
WDT  
IWDTDDC  
IRTCDDC  
0.03  
0.01  
RTC  
MultiCAN  
IMCANDDC 1.38  
1) Baseload current is measured with device running in user mode, MCLK=PCLK=48 MHz, with an endless loop  
in the flash memory. The clock to the modules stated in CGATSTAT0 are gated.  
2) Active current is measured with: module enabled, MCLK=48 MHz, running in auto-scan conversion mode  
3) Active current is measured with: module enabled, each of the 2 USIC channels sending alternate messages  
at 57.6 kbaud every 200 ms  
4) Active current is measured with: module enabled, MCLK=PCLK=48 MHz, 1 CCU4 slice for PWM switching at  
20kHz with duty cycle varying at 10%-90%, 1 CCU4 slice in capture mode for reading period and duty cycle  
5) Active current is measured with: module enabled, MCLK=PCLK=48 MHz, 3 CCU8 slices with PWM frequency  
at 20kHz and a period match interrupt used to toggle duty cycle between 10% and 90%  
6) Active current is measured with: module enabled, MCLK=48 MHz, PCLK=96 MHz, hall sensor mode  
7) Active current is measured with: module enabled, MCLK=48 MHz, 1 LED column, 6 LED/TS lines, Pad  
Scheme A with large pad hysteresis config, time slice duration = 1.048 ms  
8) Active current is measured with: module enabled, MCLK=48 MHz, PCLK=96MHz, FCLK=0.8 MHz, Normal  
mode (BCCU clock = FCLK/4), 4 BCCU Channels with packers enabled and 1 Dimming Engine, change color  
or dim every 1s  
9) Active current is measured with: module enabled, MCLK=48 MHz, PCLK=96 MHz, tangent calculation in while  
loop; CORDIC circular rotation, no keep, autostart; 32-by-32 bit signed DIV, autostart, DVS right shift by 11  
Data Sheet  
66  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
10) Active current is measured with: module enabled, MCLK=48 MHz, time-out mode; WLB = 0, WUB =  
0x00008000; WDT serviced every 1 s  
11) Active current is measured with: module enabled, MCLK=48 MHz, Periodic interrupt enabled  
12) Active current is measured with: module enabled, MCLK=48 MHz, running at 20 MHz baudrate generator, 1  
node activated, 1 transmit and 1 receive object active.  
Data Sheet  
67  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.2.8  
Flash Memory Parameters  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 25  
Flash Memory Parameters  
Symbol  
Parameter  
Values  
Unit  
Note /  
Test Condition  
Min. Typ. Max.  
Erase time per  
page / sector  
t
t
t
ERASE CC  
PSER CC  
WU CC  
6.8 7.1 7.6  
ms  
Program time per  
block  
102 152 204  
μs  
Wake-Up time  
32.2  
50  
μs  
Read time per word  
Data Retention Time  
ta CC  
RET CC  
ns  
t
10  
years Max. 100 erase /  
program cycles  
Flash Wait States 1)  
N
WSFLASH CC 0  
0
1
2
2
0
1
2
3
fMCLK = 8 MHz  
fMCLK = 16 MHz  
fMCLK = 32 MHz  
fMCLK = 48 MHz  
0
1
2
Erase Cycles  
NECYC CC  
5*104 cycles Sum of page and  
sector erase cycles  
Total Erase Cycles  
NTECYC CC  
2*106 cycles  
1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical  
values are calculated from the execution of the Dhrystone benchmark program.  
Data Sheet  
68  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
sector N_LOG_SEC-1  
page 15  
page 14  
page 13  
sector 1  
sector 0  
page 1  
page 0  
1 page = 16 data blocks = 256 Bytes  
data block 0  
word 0  
data block 1  
data block 2  
data block 14  
data block 15  
1 block= 4 words = 16 Bytes  
word 1 word 2 word 3  
1) The number of sectors, N_LOG_SEC, depends on the Flash memory size of the product derivative.  
Figure 19  
Logical Structure of the Flash  
Data Sheet  
69  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.3  
AC Parameters  
3.3.1  
Testing Waveforms  
VDDP  
90%  
90%  
10%  
10%  
VSS  
tR  
tF  
Figure 20  
Rise/Fall Time Parameters  
VDDP  
VDDP / 2  
VDDP / 2  
Test Points  
VSS  
Figure 21  
Testing Waveform, Output Delay  
VLOAD + 0.1V  
VOH - 0.1V  
Timing  
Reference  
Points  
VLOAD - 0.1V  
VOL + 0.1V  
Figure 22  
Testing Waveform, Output High Impedance  
Data Sheet  
70  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.3.2  
Power-Up and Supply Threshold Characteristics  
Table 26 provides the characteristics of the supply threshold in XMC1400.  
The guard band between the lowest valid operating voltage and the brownout reset  
threshold provides a margin for noise immunity and hysteresis. The electrical  
parameters may be violated while VDDP is outside its operating range.  
The brownout detection triggers a reset within the defined range. The prewarning  
detection can be used to trigger an early warning and issue corrective and/or fail-safe  
actions in case of a critical supply voltage drop.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 26  
Power-Up and Supply Threshold Parameters (Operating Conditions  
apply)  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note /  
Test Condition  
Min.  
RAMPUP SR VDDP  
V
V
DDP ramp-up time  
DDP slew rate  
t
/
107  
0.1  
10  
μs  
SVDDPrise  
S
VDDPOP SR  
0
V/μs Slope during  
normal operation  
SVDDP10 SR  
0
0
V/μs Slope during fast  
transient within +/-  
10% of VDDP  
S
VDDPrise SR  
10  
V/μs Slope during  
power-on or  
restart after  
brownout event  
SVDDPfall1) SR 0  
0.25 V/μs Slope during  
supply falling out  
of the +/-10%  
limits2)  
V
DDP prewarning  
V
DDPPW CC 2.1  
2.85  
4.2  
2.25 2.4  
V
V
V
ANAVDEL.VDEL_  
SELECT = 00B  
voltage  
3
3.15  
4.6  
ANAVDEL.VDEL_  
SELECT = 01B  
4.4  
ANAVDEL.VDEL_  
SELECT = 10B  
Data Sheet  
71  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 26  
Power-Up and Supply Threshold Parameters (Operating Conditions  
apply) (cont’d)  
Parameter  
Symbol  
Values  
Typ. Max.  
1.62 1.75  
Unit Note /  
Test Condition  
Min.  
DDPBO CC 1.55  
V
DDP brownout reset  
V
V
V
calibrated, before  
user code starts  
running  
voltage  
V
DDP voltage to  
DDPPA CC  
1.0  
V
ensure defined pad  
states  
Start-up time from  
power-on reset  
t
t
SSW SR  
260  
8.25  
μs  
ms  
Time to the first  
user code  
instruction3)  
BMI program time  
BMI SR  
Time taken from a  
user-triggered  
system reset after  
BMI installation is  
is requested  
1) A capacitor of at least 100 nF has to be added between VDDP and VSSP to fulfill the requirement as stated for  
this parameter.  
2) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to  
the chip. A larger capacitor value has to be chosen if the power source sink a current.  
3) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 48 MHz  
and the clocks to peripheral as specified in register CGATSTAT0 are gated.  
5.0V  
VDDPPW  
}
VDDP  
VDDPBO  
Figure 23  
Supply Threshold Parameters  
Data Sheet  
72  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.3.3  
On-Chip Oscillator Characteristics  
Table 27 provides the characteristics of the 96 MHz digital controlled oscillator DCO1.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 27  
96 MHz DCO1 Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Min. Typ Max.  
.
Nominal frequency fNOM CC  
96  
MHz under nominal  
conditions1) after trimming  
Accuracy with  
adjustmentbasedon  
XTAL as reference  
ΔfLTX CC -0.3  
ΔfLT CC -1.7  
-3.9  
0.3  
%
%
%
with respect to fNOM(typ),  
over temperature  
(-40 °C to 105 °C)  
Accuracy  
3.4  
4.0  
with respect to fNOM(typ),  
over temperature  
(0 °C to 85 °C)  
with respect to fNOM(typ),  
over temperature  
(-40 °C to 105 °C)  
1) The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25 °C.  
Table 28 provides the characteristics of the 32 kHz digital controlled oscillator DCO2.  
Table 28  
32 kHz DCO2 Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Min. Typ. Max.  
Nominal frequency  
Accuracy  
fNOM CC –  
32.75 –  
kHz under nominal  
conditions1) after trimming  
ΔfLT CC -1.7  
3.4  
%
%
with respect to fNOM(typ),  
over temperature  
(0 °C to 85 °C)  
-3.9  
4.0  
with respect to fNOM(typ),  
over temperature  
(-40 °C to 105 °C)1)  
1) The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25 °C.  
Data Sheet  
73  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.3.4  
Serial Wire Debug Port (SW-DP) Timing  
The following parameters are applicable for communication through the SW-DP  
interface.  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
Table 29  
SWD Interface Timing Parameters(Operating Conditions apply)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
50  
Typ. Max.  
SWDCLK high time  
SWDCLK low time  
t1 SR  
t2 SR  
t3 SR  
500000 ns  
500000 ns  
50  
SWDIO input setup  
10  
ns  
to SWDCLK rising edge  
SWDIO input hold  
t4 SR  
10  
ns  
after SWDCLK rising edge  
SWDIO output valid time t5 CC  
after SWDCLK rising edge  
4
68  
62  
ns  
ns  
ns  
CL = 50 pF  
CL = 30 pF  
SWDIO output hold time t6 CC  
from SWDCLK rising edge  
t1  
t2  
SWDCLK  
t6  
SWDIO  
(Output)  
t5  
t3  
t4  
SWDIO  
(Input )  
Figure 24  
SWD Timing  
Data Sheet  
74  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.3.5  
SPD Timing Requirements  
The optimum SPD decision time between 0B and 1B is 0.75 µs. With this value the  
system has maximum robustness against frequency deviations of the sampling clock on  
tool and on device side. However it is not always possible to exactly match this value  
with the given constraints for the sample clock. For instance for a oversampling rate of  
4, the sample clock will be 8 MHz and in this case the closest possible effective decision  
time is 5.5 clock cycles (0.69 µs).  
Table 30  
Optimum Number of Sample Clocks for SPD  
Sample Effective Remark  
Sample Sampling Sample  
Freq.  
Factor  
Clocks 0B Clocks 1B Decision  
Time1)  
8 MHz  
4
1 to 5  
6 to 12  
0.69 µs  
The other closest option  
(0.81 µs) for the effective  
decision time is less robust.  
1) Nominal sample frequency period multiplied with 0.5 + (max. number of 0B sample clocks)  
For a balanced distribution of the timing robustness of SPD between tool and device, the  
timing requirements for the tool are:  
Frequency deviation of the sample clock is +/- 5%  
Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal  
sample frequency)  
Data Sheet  
75  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.3.6  
Peripheral Timings  
Note: These parameters are not subject to production test, but verified by design and/or  
characterization.  
3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing  
The following parameters are applicable for a USIC channel operated in SSC mode.  
Note: Operating Conditions apply.  
Table 31  
USIC SSC Master Mode Timing  
Symbol Values  
Typ. Max.  
Parameter  
Unit Note /  
Test Condition  
Min.  
CLK CC 4/MCLK  
SCLKOUT master clock  
period  
t
ns  
ns  
Slave select output SELO t1 CC  
active to first SCLKOUT  
transmit edge  
tCLK/2 - 28  
Slave select output SELO t2 CC  
inactive after last  
0
ns  
SCLKOUT receive edge  
Data output DOUT[3:0]  
valid time  
t3 CC -28  
t4 SR 75  
28  
ns  
ns  
Receive data input  
DX0/DX[5:3] setup time to  
SCLKOUT receive edge  
Data input DX0/DX[5:3]  
hold time from SCLKOUT  
receive edge  
t5 SR  
0
ns  
Table 32  
USIC SSC Slave Mode Timing  
Parameter  
Symbol  
Min.  
Values  
Unit Note /  
Test Conditio  
n
Typ. Max.  
DX1 slave clock period  
tCLK SR 4/MCLK  
t10 SR 16  
ns  
ns  
Select input DX2 setup to  
first clock input DX1 transmit  
edge1)  
Data Sheet  
76  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 32  
USIC SSC Slave Mode Timing  
Parameter  
Symbol  
Min.  
Values  
Typ. Max.  
Unit Note /  
Test Conditio  
n
Select input DX2 hold after t11  
last clock input DX1 receive  
edge1)  
17  
21  
15  
-
ns  
ns  
ns  
ns  
SR  
Receive data input  
t12  
DX0/DX[5:3] setup time to  
SR  
SR  
CC  
shift clock receive edge1)  
Data input DX0/DX[5:3] hold t13  
time from clock input DX1  
receive edge1)  
Data output DOUT[3:0] valid t14  
time  
71  
1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and  
receive data input (bits DXnCR.DSEN = 0).  
Data Sheet  
77  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Master Mode Timing  
t1  
t2  
Select Output  
SELOx  
Inactive  
Inactive  
Active  
Clock Output  
SCLKOUT  
Receive  
Edge  
Last Receive  
Edge  
First Transmit  
Edge  
Transmit  
Edge  
t3  
t3  
Data Output  
DOUT[3:0]  
t4  
t4  
t5  
t5  
Data Input  
DX0/DX[5:3]  
Data  
valid  
Data  
valid  
Slave Mode Timing  
t10  
t11  
Select Input  
DX2  
Inactive  
Active  
Inactive  
Clock Input  
DX1  
Receive  
Edge  
Last Receive  
Edge  
First Transmit  
Edge  
Transmit  
Edge  
t12  
t12  
t13  
t13  
Data Input  
DX0/DX[5:3]  
Data  
valid  
Data  
valid  
t14  
t14  
Data Output  
DOUT[3:0]  
Transmit Edge: with this clock edge, transmit data is shifted to transmit data output.  
Receive Edge: with this clock edge, receive data at receive data input is latched.  
Drawn for BRGH.SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signa.l  
USIC_SSC_TMGX.VSD  
Figure 25  
USIC - SSC Master/Slave Mode Timing  
Note: This timing diagram shows a standard configuration, for which the slave select  
signal is low-active, and the serial clock signal is not shifted and not inverted.  
Data Sheet  
78  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
3.3.6.2 Inter-IC (IIC) Interface Timing  
The following parameters are applicable for a USIC channel operated in IIC mode.  
Note: Operating Conditions apply.  
Table 33  
USIC IIC Standard Mode Timing1)  
Symbol Values  
Parameter  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
Fall time of both SDA and t1  
-
-
300  
ns  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
SCL  
CC/SR  
Rise time of both SDA and t2  
-
-
-
-
-
-
-
-
-
-
1000  
SCL  
CC/SR  
Data hold time  
t3  
0
-
-
-
-
-
-
-
-
CC/SR  
Data set-up time  
t4  
250  
4.7  
4.0  
4.0  
4.7  
4.0  
4.7  
CC/SR  
LOW period of SCL clock t5  
CC/SR  
HIGH period of SCL clock t6  
CC/SR  
t7  
CC/SR  
Hold time for (repeated)  
START condition  
Set-up time for repeated t8  
START condition  
CC/SR  
Set-up time for STOP  
condition  
t9  
CC/SR  
Bus free time between a t10  
STOP and START  
CC/SR  
condition  
Capacitive load for each  
bus line  
Cb SR  
-
-
400  
pF  
1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines  
need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device,  
approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.  
Data Sheet  
79  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
Table 34  
USIC IIC Fast Mode Timing1)  
Parameter  
Symbol  
Min.  
Values  
Typ.  
-
Unit Note /  
Test Condition  
Max.  
Fall time of both SDA and t1  
20 +  
300  
ns  
SCL CC/SR 0.1*Cb  
2)  
Rise time of both SDA and t2  
20 +  
-
-
-
-
-
-
-
-
-
300  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
SCL  
CC/SR 0.1*Cb  
Data hold time  
t3  
0
-
-
-
-
-
-
-
-
CC/SR  
Data set-up time  
t4  
100  
1.3  
0.6  
0.6  
0.6  
0.6  
1.3  
CC/SR  
LOW period of SCL clock t5  
CC/SR  
HIGH period of SCL clock t6  
CC/SR  
t7  
CC/SR  
Hold time for (repeated)  
START condition  
Set-up time for repeated t8  
START condition  
CC/SR  
Set-up time for STOP  
condition  
t9  
CC/SR  
Bus free time between a t10  
STOP and START  
CC/SR  
condition  
Capacitive load for each  
bus line  
Cb SR  
-
-
400  
pF  
1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines  
need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device,  
approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.  
2) Cb refers to the total capacitance of one bus line in pF.  
Data Sheet  
80  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
t1  
t2  
t4  
70%  
30%  
SDA  
SCL  
t1  
t3  
t2  
t6  
9th  
clock  
t7  
t5  
t10  
S
SDA  
SCL  
t8  
t7  
t9  
9th  
clock  
Sr  
P
S
Figure 26  
USIC IIC Timing  
3.3.6.3 Inter-IC Sound (IIS) Interface Timing  
The following parameters are applicable for a USIC channel operated in IIS mode.  
Note: Operating Conditions apply.  
Table 35  
USIC IIS Master Transmitter Timing  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
Clock period  
Clock HIGH  
t1 CC  
t2 CC  
4/fMCLK  
-
-
-
-
ns  
ns  
0.35 x  
t1min  
Clock Low  
t3 CC  
0.35 x  
t1min  
-
-
-
ns  
ns  
Hold time  
t4 CC  
t5 CC  
0
-
-
-
Clock rise time  
0.15 x ns  
t1min  
Data Sheet  
81  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Electrical Parameter  
t1  
t2  
t5  
t4  
t3  
SCK  
WA/  
DOUT  
Figure 27  
USIC IIS Master Transmitter Timing  
USIC IIS Slave Receiver Timing  
Table 36  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Min.  
Typ.  
Max.  
Clock period  
Clock HIGH  
t6 SR  
t7 SR  
4/fMCLK  
-
-
-
-
ns  
ns  
0.35 x  
t6min  
Clock Low  
Set-up time  
Hold time  
t8 SR  
t9 SR  
0.35 x  
t6min  
-
-
-
-
-
-
ns  
ns  
ns  
0.3 x  
t6min  
t
10 SR  
15  
t6  
t7  
t8  
t9  
SCK  
t10  
WA/  
DIN  
Figure 28  
USIC IIS Slave Receiver Timing  
Data Sheet  
82  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Package and Reliability  
4
Package and Reliability  
The XMC1400 is a member of the XMC1000 Family of microcontrollers. It is also  
compatible to a certain extent with members of similar families or subfamilies.  
Each package is optimized for the device it houses. Therefore, there may be slight  
differences between packages of the same pin-count but for different device types. In  
particular, the size of the exposed die pad may vary.  
If different device types are considered or planned for an application, it must be ensured  
that the board layout fits all packages under consideration.  
4.1  
Package Parameters  
Table 37 provides the thermal characteristics of the packages used in XMC1400.  
Table 37  
Thermal Characteristics of the Packages  
Parameter  
Symbol  
Limit Values  
Min. Max.  
Unit  
Package Types  
Exposed Die Pad  
Dimensions  
Ex × Ey  
CC  
-
-
-
3.7 × 3.7 mm  
4.2 × 4.2 mm  
4.6 × 4.6 mm  
PG-VQFN-40-17  
PG-VQFN-48-73  
PG-VQFN-64-6  
Thermal resistance  
Junction-Ambient  
RΘJA CC -  
86.0  
45.3  
44.9  
66.7  
44.7  
K/W  
K/W  
K/W  
K/W  
K/W  
PG-TSSOP-38-91)  
PG-VQFN-40-171)  
PG-VQFN-48-731)  
PG-LQFP-64-261)  
PG-VQFN-64-61)  
-
-
-
-
1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.  
Note: For electrical reasons, it is required to connect the exposed pad to the board  
ground VSSP, independent of EMC and thermal requirements.  
4.1.1  
Thermal Considerations  
When operating the XMC1400 in a system, the total heat generated in the chip must be  
dissipated to the ambient environment to prevent overheating and the resulting thermal  
damage.  
The maximum heat that can be dissipated depends on the package and its integration  
into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The  
power dissipation must be limited so that the average junction temperature does not  
exceed 115 °C.  
Data Sheet  
83  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Package and Reliability  
The difference between junction temperature and ambient temperature is determined by  
ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA  
The internal power consumption is defined as  
P
INT = VDDP × IDDP (switching current and leakage current).  
The static external power consumption caused by the output drivers is defined as  
IOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL)  
P
The dynamic external power consumption caused by the output drivers (PIODYN) depends  
on the capacitive load connected to the respective pins and their switching frequencies.  
If the total power dissipation for a given system configuration exceeds the defined limit,  
countermeasures must be taken to ensure proper system operation:  
Reduce VDDP, if possible in the system  
Reduce the system frequency  
Reduce the number of output pins  
Reduce the load on active output drivers  
Data Sheet  
84  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Package and Reliability  
4.2  
Package Outlines  
Figure 29  
PG-TSSOP-38-9  
Data Sheet  
85  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Package and Reliability  
9 x 0.4 = 3.6  
5
A
0.4  
0.9 MAX.  
0.1 A C 2x  
M
0.05  
A B C  
B
21  
30  
31  
40  
20  
11  
40x  
0.08 C  
COPLANARITY  
0.1 C  
10  
1
Index Marking  
0.1 B C 2x  
40x  
±0.05  
0.2  
M
M
0.07  
0.05  
A B C  
C
Index Marking  
Figure 30  
B
C
(0.2)  
±0.1  
3.6  
M
0.05  
A B C  
0.05 MAX.  
STANDOFF  
PG-VQFN-40-13, -14, -17-PO V05  
PG-VQFN-40-17  
11 x 0.5 = 5.5  
0.5  
7
0.9 MAX.  
(0.203)  
A
2x  
0.1 A  
48x  
0.05 C  
COPLANARITY  
25  
36  
37  
24  
0.1 C  
±0.1  
4.1  
M
0.1 A B C  
48  
13  
Index Marking  
1
12  
2x  
0.1 B  
+0.05  
-0.07  
48x  
0.1  
0.25  
±0.05  
0.4  
M
C
A B C  
Index Marking  
0.05 MAX.  
M
0.05  
C
STAND OFF  
PG-VQFN-48-35, -73-PO V04  
Figure 31  
PG-VQFN-48-73  
Data Sheet  
86  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Package and Reliability  
15 x 0.5 = 7.5  
H
0.15  
0.5  
±0.15  
0.6  
0.08 C 64x  
COPLANARITY  
64x  
2)  
±0.05  
0.22  
M
0.08  
C A-B D  
C
SEATING PLANE  
12  
10  
0.2 C A-B D 64x  
0.2 H A-B D 4x  
1)  
D
A
B
64  
1
Index Marking  
1) Does not include plastic or metal protrusion of 0.25 max. per side  
2) Does not include dambar protrusion of 0.08 max. per side  
PG-LQFP-64-10, -21, -26-PO V03  
Figure 32  
PG-LQFP-64-26  
Data Sheet  
87  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
XMC1400 AA-Step  
XMC1000 Family  
Quality Declaration  
15 x 0.4 = 6  
0.4  
8
0.9 MAX.  
(0.2)  
A
0.1 A C 2x  
B
33  
48  
0.1 C  
64x  
0.08 C  
COPLANARITY  
32  
49  
64  
±0.1  
4.5  
M
0.1 A B C  
17  
16  
1
Index Marking  
64x  
0.1 B C 2x  
±0.05  
±0.05  
0.2  
0.4  
C
M
0.07  
0.05  
A B C  
C
0.05 MAX.  
STAND OFF  
Index Marking  
M
PG-VQFN-64-6-PO V04  
Figure 33  
PG-VQFN-64-6  
All dimensions in mm.  
5
Quality Declaration  
Table 38 shows the characteristics of the quality parameters in the XMC1400.  
Table 38  
Quality Parameters  
Symbol Limit Values  
Parameter  
Unit Notes  
Min.  
Max.  
ESD susceptibility  
according to Human Body SR  
Model (HBM)  
VHBM  
-
2000  
V
V
Conforming to  
EIA/JESD22-  
A114-B  
ESD susceptibility  
VCDM  
-
500  
Conforming to  
according to Charged  
Device Model (CDM) pins  
SR  
JESD22-C101-C  
Moisture sensitivity level  
MSL  
CC  
-
-
3
-
JEDEC  
J-STD-020D  
Soldering temperature  
TSDR  
SR  
260  
°C  
Profile according  
to JEDEC  
J-STD-020D  
Data Sheet  
88  
V1.3, 2016-10  
Subject to Agreement on the Use of Product Information  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SP001308172

RISC Microcontroller,
INFINEON

SP001337840

RISC Microcontroller,
INFINEON

SP001344584

RISC Microcontroller,
INFINEON

SP001344588

RISC Microcontroller,
INFINEON

SP001344590

RISC Microcontroller,
INFINEON

SP001368958

Hall Effect Sensor, SSOM-2
INFINEON

SP001379684

Insulated Gate Bipolar Transistor,
INFINEON

SP001385014

Power Field-Effect Transistor,
INFINEON

SP001387576

Hall Effect Sensor, Rectangular, Through Hole Mount, SSOP-2
INFINEON

SP001410042

Giant Magneto Resistance (GMR)-based principle
INFINEON

SP001410046

Giant Magneto Resistance (GMR)-based principle
INFINEON

SP001422940

RF Power Field-Effect Transistor, 1-Element, Ultra High Frequency Band, Silicon, N-Channel, Metal-oxide Semiconductor FET, GREEN, CERAMIC, H-36248-2, 2 PIN
INFINEON