TDA5212 [INFINEON]

ASK/FSK 915MHz Single Conversion Receiver; ASK / FSK 915MHz的单转换接收器
TDA5212
型号: TDA5212
厂家: Infineon    Infineon
描述:

ASK/FSK 915MHz Single Conversion Receiver
ASK / FSK 915MHz的单转换接收器

电信集成电路 电信电路 光电二极管
文件: 总51页 (文件大小:1194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wireless Components  
ASK/FSK 915MHz Single Conversion Receiver  
TDA 5212 Version 1.1  
Specification May 2003  
preliminary  
Revision History  
Current Version: 1.1 as of 09.05.03  
Previous Version: 1.0  
Page  
Page  
Subjects (major changes since last revision)  
(in previous  
Version)  
(in current  
Version)  
5-12, 5-13  
5-12, 5-13  
Table 5-4, Table 5-5, Bill of Materials  
ABM®, AOP®, ARCOFI®, ARCOFI®-BA, ARCOFI®-SP, DigiTape®, EPIC®-1, EPIC®-S, ELIC®, FALC®54, FALC®56, FALC®-E1, FALC®-LH, IDEC®, IOM®,  
IOM®-1, IOM®-2, IPAT®-2, ISAC®-P, ISAC®-S, ISAC®-S TE, ISAC®-P TE, ITAC®, IWE®, MUSAC®-A, OCTAT®-P, QUAT®-S, SICAT®, SICOFI®, SICOFI®-  
2, SICOFI®-4, SICOFI®-4µC, SLICOFI® are registered trademarks of Infineon Technologies AG.  
ACE, ASM, ASP, POTSWIRE, QuadFALC, SCOUTare trademarks of Infineon Technologies AG.  
Edition 05.03  
Published by Infineon Technologies AG,  
Balanstraße 73,  
81541 München  
© Infineon Technologies AG May 2003.  
All Rights Reserved.  
Attention please!  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits im-  
plemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest  
Infineon Technologies Office.  
Infineon Technologies AG is an approved CECC manufacturer.  
Packing  
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing  
material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.  
Components used in life-support devices or systems must be expressly authorized for such purpose!  
Critical components1 of the Infineon Technologies AG, may only be used in life-support devices or systems2 with the express written approval of the  
Infineon Technologies AG.  
1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-  
support device or system, or to affect its safety or effectiveness of that device or system.  
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they  
fail, it is reasonable to assume that the health of the user may be endangered.  
TDA 5212  
preliminary  
Product Info  
Product Info  
Package  
General Description The IC is a very low power consump-  
tion single chip FSK/ASK Superhet-  
erodyne Receiver (SHR) for the re-  
ceive frequency range between 910  
and 920 MHz that is pin compatible to  
the ASK Receiver TDA5202. The IC  
offers a high level of integration and  
needs only a few external compo-  
nents. The device contains a low noise  
amplifier (LNA), a double balanced  
mixer, a fully integrated VCO, a PLL  
synthesiser, a crystal oscillator, a lim-  
iter with RSSI generator, a PLL FSK  
demodulator, a data filter, a data com-  
parator (slicer) and a peak detector.  
Additionally there is a power down fea-  
ture to save battery life.  
Features  
Low supply current (Is = 5.4 mA typ.  
in FSK mode, Is = 4.8 mA typ. in  
ASK mode)  
Receive frequency range 910 to  
920 MHz  
Limiter with RSSI generation,  
operating at 10.7 MHz  
Supply voltage range 5 V ±10%  
Power down mode with very low  
supply current (90 nA typ.)  
Selectable reference frequency  
2nd order low pass data filter with  
external capacitors  
FSK and ASK demodulation capa-  
bility  
Data slicer with self-adjusting  
threshold  
Fully integrated VCO and PLL  
Synthesiser  
FSK sensitivity better than  
-102 dBm over specified tempera-  
ture range (- 40 to +85°C)  
ASK sensitivity better than  
-109 dBm over specified tempera-  
ture range (- 40 to +85°C)  
Application  
Keyless Entry Systems  
Remote Control Systems  
Low Bitrate ISM-band Communica-  
tion Systems  
Ordering Information  
Type  
Ordering Code  
Package  
TDA 5212  
P-TSSOP-28-1  
samples available  
Wireless Components  
Product Info  
Specification, May 2003  
1
Table of Contents  
1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i
2 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2-1  
2-2  
2.1  
2.2  
2.3  
2.4  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2-2  
2-2  
2-3  
3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3-1  
3-2  
3.1  
3.2  
3.3  
3.4  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Pin Definition and Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3-3  
3-9  
Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
3.4.1 Low Noise Amplifier (LNA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
3.4.2 Mixer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
3.4.3 PLL Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
3.4.4 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
3.4.5 Limiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
3.4.6 FSK Demodulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
3.4.7 Data Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  
3.4.8 Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  
3.4.9 Peak Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12  
3.4.10 Bandgap Reference Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13  
4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4-1  
4-2  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Choice of LNA Threshold Voltage and Time Constant. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Data Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Crystal Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Crystal Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ASK/FSK Switch Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4-4  
4-5  
4-6  
4-7  
4-8  
4-8  
4.6.1 FSK Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.6.2 ASK Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10  
4.7 Principle of the Precharge Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11  
5 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.1 Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5-1  
5-2  
5-2  
5-3  
5-4  
5.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.1.2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.1.3 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2  
5.3  
5.4  
Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5-9  
Test Board Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12  
6 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i
i
2
Product Description  
Contents of this Chapter  
2.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.4 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
TDA 5212  
preliminary  
Product Description  
2.1 Overview  
The IC is a very low power consumption single chip FSK/ASK Superheterodyne  
Receiver (SHR) for receive frequencies between 910 and 920 MHz that is pin  
compatible to the ASK Receiver TDA5202. The IC offers a high level of integra-  
tion and needs only a few external components. The device contains a low  
noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a PLL  
synthesiser, a crystal oscillator, a limiter with RSSI generator, a PLL FSK  
demodulator, a data filter, a data comparator (slicer) and a peak detector. Addi-  
tionally there is a power down feature to save battery life.  
2.2 Application  
Keyless Entry Systems  
Remote Control Systems  
Low Bitrate ISM-band Communication Systems  
2.3 Features  
Low supply current (Is = 5.4 mA typ.FSK mode, 4.8 mA typ. ASK mode)  
Supply voltage range 5V ±10%  
Power down mode with very low supply current (90nA typ.)  
FSK and ASK demodulation capability  
Fully integrated VCO and PLL Synthesiser  
RF input sensitivity ASK -112dBm typ. at 25°C, better than -109dBm over  
complete specified operating temperature range (-40 to +85°C)  
RF input sensitivity FSK -105dBm typ. at 25°C, better than -102dBm over  
complete specified operating temperature range (-40 to +85°C)  
Receive frequency range between 910 and 920 MHz  
Selectable reference frequency  
Limiter with RSSI generation, operating at 10.7MHz  
2nd order low pass data filter with external capacitors  
Data slicer with self-adjusting threshold  
Wireless Components  
2 - 2  
Specification, May 2003  
TDA 5212  
preliminary  
Product Description  
2.4 Package Outlines  
P_TSSOP_28.EPS  
Figure 2-1  
P-TSSOP-28-1 package outlines  
Wireless Components  
2 - 3  
Specification, May 2003  
3
Functional Description  
Contents of this Chapter  
3.1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.2 Pin Definition and Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.3 Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
3.4 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
TDA 5212  
preliminary  
Functional Description  
3.1 Pin Configuration  
CRST1  
VCC  
LNI  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
CRST2  
PDW N  
PDO  
2
3
TAG C  
AG ND  
LNO  
4
DATA  
3VO UT  
THRES  
FFB  
5
6
VCC  
M I  
7
TDA 5212  
8
O PP  
M IX  
9
SLN  
AG ND  
FSEL  
IFO  
10  
11  
12  
13  
14  
SLP  
LIM X  
LIM  
DG ND  
VDD  
CSEL  
M SEL  
Pin_Configuration_5212_V1.0.wmf  
Figure 3-1  
IC Pin Configuration  
Wireless Components  
3 - 2  
Specification, May 2003  
TDA 5212  
preliminary  
Functional Description  
3.2 Pin Definition and Function  
Table 3-1 Pin Definition and Function  
Pin No. Symbol  
Equivalent I/O-Schematic  
Function  
1
CRST1  
External Crystal Connector 1  
4.15V  
1
50uA  
2
3
VCC  
LNI  
5V Supply  
LNA Input  
57uA  
3
500uA  
4k  
1k  
Wireless Components  
3 - 3  
Specification, May 2003  
TDA 5212  
preliminary  
Functional Description  
4
TAGC  
AGC Time Constant Control  
4.3V  
3uA  
4
1k  
1.4uA  
1.7V  
5
6
AGND  
LNO  
Analogue Ground Return  
LNA Output  
5V  
1k  
6
7
8
VCC  
MI  
5V Supply  
Mixer Input  
1.7V  
2k  
2k  
9
MIX  
Complementary Mixer Input  
8
9
400uA  
10  
11  
AGND  
BUF  
Analogue Ground Return  
Mixer Buffer Ground  
Wireless Components  
3 - 4  
Specification, May 2003  
TDA 5212  
preliminary  
Functional Description  
12  
IFO  
10.7 MHz IF Mixer Output  
300uA  
2.2V  
60  
12  
4.5k  
13  
14  
DGND  
VDD  
Digital Ground Return  
5V Supply (PLL Counter Cir-  
cuitry)  
15  
MSEL  
ASK/FSK Modulation Format  
Selector  
1.2V  
3.6k  
15  
16  
CSEL  
7.xx or 14.xx MHz Quartz  
Selector  
1.2V  
80k  
16  
Wireless Components  
3 - 5  
Specification, May 2003  
TDA 5212  
preliminary  
Functional Description  
17  
18  
LIM  
Limiter Input  
2.4V  
15k  
17  
LIMX  
Complementary Limiter Input  
75uA  
330  
18  
15k  
19  
SLP  
Data Slicer Positive Input  
15uA  
100  
3k  
19  
80µA  
20  
SLN  
Data Slicer Negative Input  
5uA  
10k  
20  
Wireless Components  
3 - 6  
Specification, May 2003  
TDA 5212  
preliminary  
Functional Description  
21  
22  
23  
24  
OPP  
OpAmp Noninverting Input  
Data Filter Feedback Pin  
AGC Threshold Input  
5uA  
200  
21  
FFB  
5uA  
100k  
22  
THRES  
5uA  
10k  
23  
3VOUT  
3V Reference Output  
24  
20k  
3.1V  
Wireless Components  
3 - 7  
Specification, May 2003  
TDA 5212  
preliminary  
Functional Description  
25  
DATA  
Data Output  
500  
25  
40k  
26  
PDO  
Peak Detector Output  
200  
26  
27  
PDWN  
Power Down Input  
27  
220k  
220k  
28  
CRST2  
External Crystal Connector 2  
4.15V  
28  
50uA  
Wireless Components  
3 - 8  
Specification, May 2003  
TDA 5212  
preliminary  
Functional Description  
3.3 Functional Block Diagram  
VCC  
IF  
Filter  
MSEL  
LNO  
MI  
MIX IFO  
12  
LIM  
LIMX  
FFB  
OPP  
SLP  
SLN  
6
8
9
17  
18  
15  
21  
19  
20  
22  
LNI  
3
4
LNA  
RF  
-
+
-
FSK  
-
DATA  
FSK  
ASK  
25  
+
LIMITER  
SLICER  
PLL Demod  
OP  
+
-
+
TAGC  
PEAK  
DETECTOR  
26 PDO  
TDA 5212  
OTA  
THRES  
23  
24  
UREF  
3VOUT  
AGC  
CRYSTAL  
OSC  
BUF  
VCO  
: 128 / 64  
Reference  
DET  
VCC  
14  
13  
Bandgap  
Loop  
Filter  
Reference  
DGND  
16  
1
28  
27  
11  
2,7  
5,10  
PDWN  
VCC AGND  
BUF  
CSEL  
Crystal  
Functional_diagram_5212.wmf  
Figure 3-2  
Main Block Diagram  
Wireless Components  
3 - 9  
Specification, May 2003  
TDA 5212  
preliminary  
Functional Description  
3.4 Functional Blocks  
3.4.1 Low Noise Amplifier (LNA)  
The LNA is an on-chip cascode amplifier with a voltage gain of 15 to 20dB. The  
gain figure is determined by the external matching networks situated ahead of  
LNA and between the LNA output LNO (Pin 6) and the Mixer Inputs MI and MIX  
(Pins 8 and 9). The noise figure of the LNA is approximately 2dB, the current  
consumption is 500µA. The gain can be reduced by approximately 18dB. The  
switching point of this AGC action can be determined externally by applying a  
threshold voltage at the THRES pin (Pin 23). This voltage is compared internally  
with the received signal (RSSI) level generated by the limiter circuitry. In case  
that the RSSI level is higher than the threshold voltage the LNA gain is reduced  
and vice versa. The threshold voltage can be generated by attaching a voltage  
divider between the 3VOUT pin (Pin 24) which provides a temperature stable  
3V output generated from the internal bandgap voltage and the THRES pin as  
described in Section 4.1. The time constant of the AGC action can be deter-  
mined by connecting a capacitor to the TAGC pin (Pin 4) and should be chosen  
along with the appropriate threshold voltage according to the intended operat-  
ing case and interference scenario to be expected during operation. The opti-  
mum choice of AGC time constant and the threshold voltage is described in  
Section 4.1.  
3.4.2 Mixer  
The Double Balanced Mixer downconverts the input frequency (RF) in the  
range of 910 to 920 MHz to the intermediate frequency (IF) at 10.7MHz with a  
voltage gain of approximately 21dB. A low pass filter with a corner frequency of  
20MHz is built on chip in order to suppress RF signals to appear at the IF output  
( IFO pin). The IF output is internally consisting of an emitter follower that has  
a source impedance of approximately 330 to facilitate interfacing the pin  
directly to a standard 10.7MHz ceramic filter without additional matching cir-  
cuitry.  
3.4.3 PLL Synthesizer  
The Phase Locked Loop synthesiser consists of a VCO, an asynchronous  
divider chain, a phase detector with charge pump and a loop filter and is fully  
implemented on-chip. The VCO is including spiral inductors and varactor  
diodes. The oscillator signal is fed both to the synthesiser divider chain and to  
the downconverting mixer via a buffer amplifier. The BUF pin (Pin 11) has to be  
tied to ground. No additional components are necessary. The loop filter is also  
realised fully on-chip. High-side injection of the local oscillator has to be used  
for the receive frequency band of 910 to 920 MHz, yielding local oscillator fre-  
quencies in the region of 920 to 930 MHz. See also Section 4.4.  
Wireless Components  
3 - 10  
Specification, May 2003  
TDA 5212  
preliminary  
Functional Description  
3.4.4 Crystal Oscillator  
The on-chip crystal oscillator circuitry allows for utilisation of quartzes both in  
the 7 and 14MHz range as the overall division ratio of the PLL can be switched  
between 64 and 128 via the CSEL (Pin 16 ) pin according to the following table.  
Table 3-2 CSEL Pin Operating States  
CSEL  
Crystal Frequency  
7.xx MHz  
Open  
Shorted to ground  
14.xx MHz  
The calculation of the value of the necessary quartz load capacitance is shown  
in Section 4.3, the quartz frequency calculation is expained in Section 4.4.  
3.4.5 Limiter  
The Limiter is an AC coupled multistage amplifier with a cumulative gain of  
approximately 80dB that has a bandpass-characteristic centred around  
10.7MHz. It has an input impedance of 330 ꢀꢁto allow for easy interfacing to a  
10.7MHz ceramic IF filter. The limiter circuit acts as a Receive Signal Strength  
Indicator (RSSI) generator which produces a DC voltage that is directly propor-  
tional to the input signal level as can be seen in Figure 4-2. This signal is used  
to demodulate the ASK receive signal in the subsequent baseband circuitry and  
to turn down the LNA gain by approximately 18dB in case the input signal  
strength is too strong as described in Section 3.4.1 and Section 4.1.  
3.4.6 FSK Demodulator  
To demodulate frequency shift keyed (FSK) signals a PLL circuit is used that is  
contained fully on chip. The Limiter output differential signal is fed to the linear  
phase detector as is the output of the 10.7 MHz center frequency VCO. The  
demodulator gain is typically 180µV/kHz. The passive loop filter output that is  
comprised fully on chip is fed to both the VCO and the modulation format  
switch.This signal is representing the demodulated signal. This switch is actu-  
ally a switchable amplifier with an AC gain of 11 that is controlled by the MSEL  
pin (Pin 15) as shown in the following table. This gain was chosen to facilitate  
detection in the subsequent circuits.  
Table 3-3 MSEL Pin Operating States  
MSEL  
Modulation Format  
Open  
ASK  
FSK  
Shorted to ground  
Wireless Components  
3 - 11  
Specification, May 2003  
TDA 5212  
preliminary  
Functional Description  
The DC gain is 1 in order not to saturate the subsequent Data Filter wih the DC  
offset produced by the demodulator in case of large frequency offsets of the IF  
signal. The resulting frequency characteristic and details on the principle of  
operation of the switch are described in Section 4.6. The demodulator circuit is  
switched off in case of reception of ASK signals.  
3.4.7 Data Filter  
The data filter comprises an OP-Amp with a bandwidth of 100kHz used as a  
voltage follower and two 100kꢀꢁ on-chip resistors. Along with two external  
capacitors a 2nd order Sallen-Key low pass filter is formed. The selection of the  
capacitor values is described in Section 4.2.  
3.4.8 Data Slicer  
The data slicer is a fast comparator with a bandwidth of 100 kHz. This allows  
for a maximum receive data rate of approximately 120kBaud. The maximum  
achievable data rate also depends on the IF Filter bandwidth and the local oscil-  
lator tolerance values. Both inputs are accessible. The output delivers a digital  
data signal (CMOS-like levels) for the detector. The self-adjusting threshold on  
pin 20 its generated by RC-term or peak detector depending on the baseband  
coding scheme. The data slicer threshold generation alternatives are described  
in more detail in Section 4.5.  
3.4.9 Peak Detector  
The peak detector generates a DC voltage which is proportional to the peak  
value of the receive data signal. An external RC network is necessary. The input  
is connected to the output of the RSSI-output of the Limiter, the output is con-  
nected to the PDO pin (Pin 26 ). This output can be used as an indicator for the  
received signal strength to use in wake-up circuits and as a reference for the  
data slicer in ASK mode. The output current is typically 850µA, the leakage cur-  
rent is typically 700nA. Note that the RSSI level is also output in case of FSK  
mode.  
Wireless Components  
3 - 12  
Specification, May 2003  
TDA 5212  
preliminary  
Functional Description  
3.4.10 Bandgap Reference Circuitry  
A Bandgap Reference Circuit provides a temperature stable reference voltage  
for the device. A power down mode is available to switch off all subcircuits which  
is controlled by the PWDN pin (Pin 27) as shown in the following table. The sup-  
ply current drawn in this case is typically 90nA.  
Table 3-4 PDWN Pin Operating States  
PDWN  
Operating State  
Powerdown Mode  
Receiver On  
Open or tied to ground  
Tied to Vs  
Wireless Components  
3 - 13  
Specification, May 2003  
4
Applications  
Contents of this Chapter  
4.1 Choice of LNA Threshold Voltage and Time Constant. . . . . . . . . . . . 4-2  
4.2 Data Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
4.3 Crystal Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
4.4 Crystal Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
4.5 Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
4.6 ASK/FSK Switch Functional Description . . . . . . . . . . . . . . . . . . . . . . 4-8  
4.7 Principle of the Precharge Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11  
TDA 5212  
preliminary  
Applications  
4.1 Choice of LNA Threshold Voltage and Time Constant  
In the following figure the internal circuitry of the LNA automatic gain control is  
shown.  
R1  
R2  
U
threshold  
23  
Pins:  
24  
RSSI (0.8 - 2.8V)  
20k  
OTA  
VCC  
+3.1V  
I
LNA  
load  
Gain control  
vol tag e  
RSSI > Uthreshold: Iload=4.2µA  
RSSI < Uthreshold: Iload= -1.5µA  
4
Uc :< 2.6V : Gain high  
Uc :> 2.6V : Gain low  
UC  
C
U
= V - 0.7V  
CC  
Ucc mmianx= 1.67V  
LNA_autom.wmf  
Figure 4-1  
LNA Automatic Gain Control Circuitry  
The LNA automatic gain control circuitry consists of an operational transimpe-  
dance amplifier that is used to compare the received signal strength signal  
(RSSI) generated by the Limiter with an externally provided threshold voltage  
Uthres. As shown in the following figure the threshold voltage can have any  
value between approximately 0.8 and 2.8V to provide a switching point within  
the receive signal dynamic range.  
This voltage Uthres is applied to the THRES pin (Pin 23) The threshold voltage  
can be generated by attaching a voltage divider between the 3VOUT pin (i.e.  
Pin 24) which provides a temperature stable 3V output generated from the inter-  
nal bandgap voltage and the THRES pin. If the RSSI level generated by the  
Limiter is higher than Uthres, the OTA generates a positive current Iload. This  
yields a voltage rise on the TAGC pin (Pin 4). Otherwise, the OTA generates a  
negative current. These currents do not have the same values in order to  
achieve a fast-attack and slow-release action of the AGC and are used to  
charge an external capacitor which finally generates the LNA gain control volt-  
age.  
Wireless Components  
4 - 2  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
3
2.5  
2
RSSI Level  
1.5  
1
0.5  
0
-120  
-110  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
Input Level at LNA Input [dBm]  
RSSI-AGC.wmf  
Figure 4-2  
RSSI Level and Permissive AGC Threshold Levels  
The switching point should be chosen according to the intended operating sce-  
nario. The determination of the optimum point is described in the accompanying  
Application Note, a threshold voltage level of 1.8V is apparently a viable choice.  
It should be noted that the output of the 3VOUT pin is capable of driving up to  
50µA, but that the THRES pin input current is only in the region of 40nA. As the  
current drawn out of the 3VOUT pin is directly related to the receiver power con-  
sumption, the power divider resistors should have high impedance values. The  
sum of R1 and R2 has to be 600kin order to yield 3V at the 3VOUT pin. R1  
can thus be chosen as 240k, R2 as 360kto yield an overall 3VOUT output  
current of 5µA1 and a threshold voltage of 1.8V  
Note: If the LNA gain shall be kept in either high or low gain mode this has to  
be accomplished by tying the THRES pin to a fixed voltage. In order to achieve  
high gain mode operation, a voltage higher than 2.8V shall be applied to the  
THRES pin, such as a short to the 3VOLT pin. In order to achieve low gain  
mode operation a voltage lower than 0.7V shall be applied to the THRES, such  
as a short to ground.  
As stated above the capacitor connected to the TAGC pin is generating the gain  
control voltage of the LNA due to the charging and discharging currents of the  
OTA and thus is also responsible for the AGC time constant. As the charging  
and discharging currents are not equal two different time constants will result.  
The time constant corresponding to the charging process of the capacitor shall  
be chosen according to the data rate. According to measurements performed  
at Infineon the capacitor value should be greater than 47nF.  
1. note the 20kresistor in series with the 3.1V internal voltage source  
Wireless Components  
4 - 3  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
4.2 Data Filter Design  
Utilising the on-board voltage follower and the two 100kon-chip resistors a  
2nd order Sallen-Key low pass data filter can be constructed by adding 2 exter-  
nal capacitors between pins 19 (SLP) and 22 (FFB) and to pin 21 (OPP) as  
depicted in the following figure and described in the following formulas1.  
C1  
22  
C2  
21  
Pins:  
19  
R
R
100k  
100k  
Filter_Design.wmf  
Figure 4-3  
(1)  
Data Filter Design  
(2)  
b
2Q b  
C1 = ----------------------  
R2f3dB  
C2 = ---------------------------  
4QRf3dB  
with  
b
Q = ------  
a
(3)  
the quality factor of the poles  
where  
in case of a Bessel filter  
and thus  
a = 1.3617, b = 0.618  
Q = 0.577  
and in case of a Butterworth filter  
and thus  
a = 1.141, b = 1  
Q = 0.71  
Example: Butterworth filter with f3dB = 5kHz and R = 100k:  
C1 = 450pF, C2 = 225pF  
1. taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999  
Wireless Components  
4 - 4  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
4.3 Crystal Load Capacitance Calculation  
The value of the capacitor necessary to achieve that the crystal oscillator is  
operating at the intended frequency is determined by the reactive part of the  
negative resistance of the oscillator circuit as shown in Section 5.1.3 and by the  
crystal specifications given by the crystal manufacturer.  
CS  
Pin 28  
Input  
Crystal  
impedance  
Z1-28  
TDA5212  
Pin 1  
Quartz_load_5212.wmf  
Figure 4-4  
Determination of Series Capacitance Value for the Crystal Oscillator  
Crystal specified with load capacitance  
1
CS  
1
Cl  
2f X L  
with Cl the load capacitance (refer to the crystal specification).  
Examples:  
7.2 MHz:  
CL = 12 pF  
CL = 12 pF  
XL=500 ꢀ  
CS = 9.5 pF  
CS = 5.6 pF  
14.5 MHz:  
XL=1050 ꢀ  
These values may be obtained in high accuracy by putting two capacitors in  
series to the quartz, such as 18pF and 20pF in the 7.2MHz case and 18pF and  
8.2pF in the 14.5MHz case.  
Wireless Components  
4 - 5  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
4.4 Crystal Frequency Calculation  
The local oscillator (UHF PLL) signal has to be high-side injected into the down-  
converting mixer. Thus the crystal frequency is calculated by using the following  
formula:  
ƒQU = (ƒRF + 10.7) / r  
with  
ƒRF ....  
ƒLO ....  
ƒQU ....  
receive frequency  
local oscillator (PLL) frequency (ƒRF + 10.7)  
crystal oscillator frequency  
r
....  
ratio of local oscillator (PLL) frequency and crystal  
frequency as shown in the subsequent table.  
Table 4-1 PLL Division Ratio Dependence on States of CSEL  
CSEL  
open  
GND  
Ratio r = (fLO/fQU)  
128  
64  
This yields the following example:  
CSEL tied to GND:  
fQU  
915MHz 10.7MHz / 64 14.4641 MHz  
Wireless Components  
4 - 6  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
4.5 Data Slicer Threshold Generation  
The threshold of the data slicer can be generated in two ways, depending on  
the signal coding scheme used. In case of a signal coding scheme without DC  
content such as Manchester coding the threshold can be generated using an  
external R-C integrator as shown in the following . The cut-off frequency of the  
R-C integrator has to be lower than the lowest frequency appearing in the data  
signal. In order to keep distortion low, the minimum value for R is 20k.  
R
C
data out  
25  
Pins:  
19  
20  
Uthreshold  
data  
filter  
data slicer  
Data_slice1.wmf  
Figure 4-5  
Data Slicer Threshold Generation with External R-C Integrator  
Another possibility for threshold generation is to use the peak detector in con-  
nection with two resistors and one capacitor as shown in the following figure.  
The component values are depending on the coding scheme and the protocol  
used.  
R
C
R
data out  
25  
Pins:  
20  
19  
26  
Uthreshold  
peak detector  
data slicer  
data  
filter  
Data_slice2.wmf  
Figure 4-6  
Data Slicer Threshold Generation Utilising the Peak Detector  
Wireless Components  
4 - 7  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
4.6 ASK/FSK Switch Functional Description  
The TDA5211 is containing an ASK/FSK switch which can be controlled via Pin  
15 (MSEL). This switch is actually consisting of 2 operational amplifiers that are  
having a gain of 1 in case of the ASK amplifier and a gain of 11 in case of the  
FSK amplifier in order to achieve an appropriate demodulation gain character-  
istic. In order to compensate for the DC-offset generated especially in case of  
the FSK PLL demodulator there is a feedback connection between the thresh-  
old voltage of the bit slicer comparator (Pin 20) to the negative input of the FSK  
switch amplifier. This is shown in the figure below:  
MSEL  
15  
RSSI (ASK signal)  
ASK/FSK Switch  
Data Filter  
R2=100k  
DATA Out  
25  
R1=100k  
-
FSK PLL Demodulator  
ASK  
FSK  
+
+
-
v = 1  
Comp  
+
-
0.18 mV/kHz  
R3=300k  
typ. 2 V  
1.5 V......2.5 V  
R4=30k  
FFB  
OPP SLP  
SLN  
22  
21  
19  
20  
ASK mode : v=1  
FSK mode : v=11  
R
C1  
C2  
C
ask_fsk_datapath.WMF  
Figure 4-7  
ASK/FSK mode datapath  
4.6.1 FSK Mode  
The FSK datapath has a bandpass characterisitc due to the feedback shown  
above (highpass) and the data filter (lowpass). The lower cutoff frequency f2 is  
determined by the external RC-combination. The upper cutoff frequency f3 is  
determined by the data filter bandwidth.  
The demodulation gain of the FSK PLL demodulator is 180µV/kHz. This gain is  
increased by the gain v of the FSK switch, which is 11. Therefore the resulting  
dynamic gain of this circuit is 2mV/kHz within the bandpass. The gain for the DC  
Wireless Components  
4 - 8  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
content of FSK signal remains at 180µV/kHz. The cutoff frequencies of the  
bandpass have to be chosen such that the spectrum of the data signal is influ-  
enced in an acceptable amount.  
In case that the user data is containing long sequences of logical zeros the  
effect of the drift-off of the bit slicer threshold voltage can be lowered if the offset  
voltage inherent at the negative input of the slicer comparator (Pin20) is used.  
The comparator has no hysteresis built in.  
This offset voltage is generated by the bias current of the negative input of the  
comparator (i.e. 20nA) running over the external resistor R. This voltage raises  
the voltage appearing at pin 20 (e.g. 1mV with R = 100k). In order to obtain  
benefit of this asymmetrical offset for the demodulation of long zeros the lower  
of the two FSK frequencies should be chosen in the transmitter as the zero-  
symbol frequency.  
In the following figure the shape of the above mentioned bandpass is shown.  
gain (pin19)  
v
v-3dB  
20dB/dec  
-40dB/dec  
3dB  
0dB  
f
DC  
f1  
f2  
f3  
0.18mV/kHz  
2mV/kHz  
frequenzgang.WMF  
Figure 4-8  
Frequency characterstic in case of FSK mode  
The cutoff frequencies are calculated with the following formulas:  
1
f1  
R330kꢁ  
2  
C  
R 330kꢁ  
Wireless Components  
4 - 9  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
f2 vf1 11f1  
f3 f3dB  
f3 is the 3dB cutoff frequency of the data filter - see Section 4.2.  
Example:  
R = 100kꢀ  
C = 47nF  
This leads to f1 = 44Hz  
and  
f2 = 485Hz  
4.6.2 ASK Mode  
In case the receiver is operated in ASK mode the datapath frequency charac-  
tersitic is dominated by the data filter alone, thus it is lowpass shaped.The cutoff  
frequency is determined by the external capacitors C12 and C14 and the inter-  
nal 100k resistors as described in Section 4.2  
0dB  
-3dB  
-40dB/dec  
f
f3dB  
freq_ask.WMF  
Figure 4-9  
Frequency charcteristic in case of ASK mode  
Wireless Components  
4 - 10  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
4.7 Principle of the Precharge Circuit  
In case the data slicer threshold shall be generated with an external RC network  
as described in Section 4.5 it is necessary to use large values for the capacitor  
C attached to the SLN pin (pin 20) in order to achieve long time constants. This  
results also from the fact that the choice of the value for R connected between  
the SLP and SLN pins (pins 19 and 20) is limited by the 330kresistor appear-  
ing in parallel to R as can be seen in Figure 4-6. Apart from this a resistor value  
of 100kleads to a voltage offset of 1mv at the comparator input as described  
in Section 4.6.1. The resulting startup time constant can be calculated with:  
1
= (R // 330k) · C  
1
In case R is chosen to be 100kand C is chosen as 47nF this leads to  
= (100k// 330k) · 47nF = 77k· 47nF = 3.6ms  
1
When the device is turned on this time constant dominates the time necessary  
for the device to be able to demodulate data properly. In the powerdown mode  
the capacitor is only discharged by leakage currents.  
In order to reduce the turn-on time in the presence of large values of C a pre-  
charge circuit was included in the TDA5210 as shown in the following figure.  
C2  
R1+R2=600k  
R1  
R2  
C
R
U
thres hold  
20  
19  
24  
23  
Iload  
Uc  
ASK/FSK Switch  
Uc>Us Uc<Us  
DataFilter  
-
U2  
+
0 / 240uA  
OTA  
Us  
U2<2.4V : I=240uA  
U2>2.4V: I=0  
-
20k  
+2.4V  
+3.1V  
precharge.WMF  
Figure 4-10 Principle of the precharge circuit  
Wireless Components  
4 - 11  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
This circuit charges the capacitor C with an inrush current Iload of 240µA for a  
duration of T2 until the voltage Uc appearing on the capacitor is equal to the volt-  
age Us at the input of the data filter. This voltage is limited to 2.5V. As soon as  
these voltages are equal or the duration T2 is exceeded the precharge circuit is  
disabled.  
is the time constant of the charging process of C which can be calculated as  
2
ꢂ Wꢁ20k· C2  
2
as the sum of R1 and R2 is sufficiently large and thus can be neglected. T2 can  
then be calculated according to the following formula:  
.
/
1
/
T2  ln  
W 1.6  
2
2
2.4V  
3V  
 
/
/
0
1  
The voltage transient during the charging of C2 is shown in the following figure:  
U2  
3V  
2.4V  
T2  
2
e-fkt1.WMF  
Figure 4-11 Voltage appearing on C2 during precharging process  
The voltage appearing on the capacitor C connected to pin 20 is shown in the  
following figure. It can be seen that due to the fact that it is charged by a con-  
stant current source it exhibits is a linear increase in voltage which is limited to  
Wireless Components  
4 - 12  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
USmax = 2.5V which is also the approximate operating point of the data filter  
input. The time constant appearing in this case can be denoted as T3, which  
can be calculated with  
U
Smax C  
2,5V  
240A  
T3 = ----------------------- = ---------------- C  
240A  
Uc  
Us  
T3  
e-Fkt2.WMF  
Figure 4-12 Voltage transient on capacitor C attached to pin 20  
As an example the choice of C2 = 20nF and C = 47nF yields  
= 0.4ms  
2
T2 = 0.64ms  
T3 = 0.49ms  
This means that in this case the inrush current could flow for a duration of  
0.64ms but stops already after 0.49ms when the USmax limit has been reached.  
T3 should always be chosen to be shorter than T2.  
It has to be noted finally that during the turn-on duration T2 the overall device  
power consumption is increased by the 240µA needed to charge C.  
Wireless Components  
4 - 13  
Specification, May 2003  
TDA 5212  
preliminary  
Applications  
The precharge circuit may be disabled if C2 is not equipped. This yields a T2  
close to zero. Note that the sum of R4 and R5 has to be 600kin order to pro-  
duce 3V at the THRES pin as this voltage is internally used also as the refer-  
ence for the FSK demodulator.  
Wireless Components  
4 - 14  
Specification, May 2003  
5
Reference  
Contents of this Chapter  
5.1 Electrical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
5.2 Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9  
5.3 Test Board Layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10  
5.4 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12  
TDA 5212  
preliminary  
Reference  
5.1 Electrical Data  
5.1.1 Absolute Maximum Ratings  
WARNING  
The maximum ratings may not be exceeded under any circumstances, not even  
momentarily and individually, as permanent damage to the IC will result.  
Table 5-1 Absolute Maximum Ratings, Ambient temperature T  
=-40°C ... + 85°C  
Limit Values  
AMB  
#
Parameter  
Symbol  
Unit  
Remarks  
min  
-0.3  
max  
5.5  
1
2
3
4
5
Supply Voltage  
Vs  
Tj  
V
°C  
Junction Temperature  
Storage Temperature  
Thermal Resistance  
ESD integrity, all pins  
-40  
-40  
+150  
+125  
114  
+1  
Ts  
°C  
RthJA  
VESD  
K/W  
kV  
-1  
HBM  
according to  
MIL STD  
883D,  
method  
3015.7  
Wireless Components  
5 - 2  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
5.1.2 Operating Range  
Within the operating range the IC operates as explained in the circuit descrip-  
tion. The AC/DC characteristic limits are not guaranteed.  
Supply voltage: VCC = 4.5V .. 5.5V  
Table 5-2 Operating Range, Ambient temperature T  
= -40°C ... + 85°C  
AMB  
#
1
2
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
L
Item  
min  
max  
Supply Current  
I
6
mA  
mA  
f
f
= 915MHz, FSK Mode  
= 915MHz, ASK Mode  
SF  
RF  
RF  
I
5.4  
SA  
Receiver Input Level  
ASK  
FSK, frequ. dev. ± 50kHz  
@ source impedance 50,  
RFin  
-109  
-102  
-13  
-13  
dBm BER 2E-3, average power  
dBm level, Manchester encoded  
datarate 4kBit, 280kHz IF  
Bandwidth  
3
4
6
LNI Input Frequency  
MI/X Input Frequency  
fRF  
fMI  
910  
910  
920  
920  
920  
930  
MHz  
MHz  
MHz  
UHF Local Oscillator Fre-  
quency Range  
fLO  
7
8
9
3dB IF Frequency Range  
Powerdown Mode On  
Powerdown Mode Off  
fIF -3dB  
PWDNON  
PWDNOFF  
VTHRES  
5
0
23  
MHz  
V
0.8  
2
V
V
S
S
10 Gain Control Voltage,  
LNA high gain state  
2.8  
V
V
11 Gain Control Voltage,  
LNA low gain state  
VTHRES  
0
0.7V  
V
This value is guaranteed by design.  
Wireless Components  
5 - 3  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
5.1.3 AC/DC Characteristics  
AC/DC characteristics involve the spread of values guaranteed within the spec-  
ified voltage and ambient temperature range. Typical characteristics are the  
median of the production. The device performance parameters marked with  
were measured on an Infineon evaluation board as desdribed in Section 5.2  
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
L
Item  
min  
typ  
max  
Supply  
Supply Current  
1
Supply current,  
standby mode  
IS PDWN  
90  
120  
5.7  
nA  
Pin 27 (PDWN)  
open or tied to 0 V  
2
Supply current, device  
operating in FSK mode  
I
5.4  
mA  
Pin 11 (FSEL)  
open, Pin 15  
(MSEL) tied to  
GND  
SF  
3
Supply current, device  
operating in ASK mode  
I
4.8  
5.1  
mA  
Pin 11 (FSEL)  
open, Pin 15  
(MSEL) open  
SA  
LNA  
Signal Input LNI (PIN 3), V  
> 2.8V, high gain mode  
THRES  
1
Average Power Level  
at BER = 2E-3  
RFin  
-112  
dBm Manchester  
encoded datarate  
(Sensitivity) ASK  
4kBit, 280kHz IF  
Bandwidth  
2
Average Power Level  
at BER = 2E-3  
RFin  
-105  
dBm Manchester enc.  
datarate 4kBit,  
(Sensitivity) FSK  
280kHz IF Bandw.,  
± 50kHz pk. dev.  
3
4
5
Input impedance,  
S
0.717 / -78.4 deg  
t.b.d.  
11 LNA  
f
= 915 MHz  
RF  
Input level @ 1dB C.P.  
fRF=915 MHz  
P1dB  
dBm  
LNA  
Input 3rd order intercept  
LNA  
IIP3  
LO  
t.b.d.  
dBm fin = 914 & 916MHz  
point f = 915 MHz  
RF  
6
LO signal feedthrough at  
antenna port  
t.b.d.  
dBm  
LNI  
Signal Output LNO (PIN 6), V  
> 2.8V, high gain mode  
THRES  
1
2
Gain f = 915 MHz  
RF  
S
1.401 / 98.4 deg  
0.869 / -25.7 deg  
21 LNA  
22 LNA  
Output impedance,  
S
f
= 915 MHz  
RF  
Wireless Components  
5 - 4  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)  
#
Parameter  
Symbol  
Limit Values  
typ  
Unit Test Conditions  
L
Item  
min  
max  
3
4
Voltage Gain Antenna to  
G
t.b.d.  
dB  
dB  
AntMI  
MI f = 915 MHz  
RF  
Noise Figure  
NF  
t.b.d.  
LNA  
Signal Input LNI, V  
= GND, low gain mode  
THRES  
1
Input impedance,  
= 915 MHz  
S
0.753 / -86.26 deg  
11 LNA  
f
RF  
2
Input level @ 1dB C. P.  
= 915 MHz  
P1dB  
t.b.d.  
dBm  
LNA  
f
RF  
Signal Input LNI, V  
= GND, low gain mode  
THRES  
Input 3rd order intercept  
LNA  
3
IIP3  
t.b.d.  
dBm fin = 914 & 916MHz  
point f = 915 MHz  
RF  
Signal Output LNO, V  
= GND, low gain mode  
THRES  
1
2
Gain f = 915 MHz  
S
0.174 / 107.4 deg  
RF  
21 LNA  
22 LNA  
Output impedance,  
S
0.868 / -28.1 deg  
f
= 915 MHz  
RF  
3
Voltage Gain Antenna to  
MI f = 915 MHz  
G
t.b.d.  
dB  
AntMI  
RF  
Signal 3VOUT (PIN 24)  
1
2
Output voltage  
Current out  
V
I
2.9  
3
3.1  
V
I3Vout = 5µA  
3VOUT  
50  
µA  
3VOUT  
Signal THRES (PIN 23)  
1
2
3
4
Input Voltage range  
LNA low gain mode  
LNA high gain mode  
Current in  
V
0
0
V -1V  
S
V
V
see Section 4.1  
THRES  
THRES  
THRES  
V
V
2.8  
3
5
V
S
V
or shorted to Pin 24  
ITHRES_in  
nA  
Signal TAGC (PIN 4)  
1
Current out,  
LNA low gain state  
ITAGC_out  
3.8  
1
4.2  
1.5  
4.8  
2
µA  
µA  
RSSI > V  
RSSI < V  
THRES  
2
Current in,  
I
TAGC_in  
THRES  
LNA high gain state  
MIXER  
Signal Input MI/MIX (PINS 8/9)  
1
Input impedance,  
= 915 MHz  
S
0.912 / -30.13 deg  
-25  
11 MIX  
f
RF  
Input 3rd order intercept  
point  
MIX  
2
IIP3  
dBm  
Wireless Components  
5 - 5  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
L
Item  
min  
typ  
max  
Signal Output IFO (PIN 12)  
1
2
Output impedance  
Z
330  
IFO  
Conversion Voltage Gain  
G
t.b.d.  
dB  
MIX  
f
=869 MHz  
RF  
3
4
Noise Figure, SSB  
(~DSB NF+3dB)  
NF  
t.b.d.  
t.b.d.  
dB  
dB  
MIX  
RF to IF isolation  
A
RF-IF  
LIMITER  
Signal Input LIM/X (PINS 17/18)  
1
2
3
4
Input Impedance  
RSSI dynamic range  
RSSI linearity  
Z
264  
60  
330  
396  
80  
dB  
LIM  
DR  
RSSI  
LIN  
dB  
±1  
RSSI  
Operating frequency (3dB  
points)  
f
5
10.7  
23  
MHz  
LIM  
DATA FILTER  
1
Useable bandwidth  
BW  
100  
kHz  
BB  
FILT  
SLICER  
Signal Output DATA (PIN 25)  
1
Useable bandwith  
BW  
100  
20  
kHz  
pF  
BB  
SLIC  
2
Capacitive loading of out-  
put  
C
max  
SLIC  
3
4
5
6
LOW output voltage  
HIGH output voltage  
Output current  
V
0
0.1  
V
V
SLIC_L  
VS-1.1V  
600  
VS-1V  
750  
33  
VS-0.9V  
900  
V
SLIC_H  
I
µA  
µA  
SLIC_out  
Leakage current  
I
30  
36  
SLIC_in  
PEAK DETECTOR  
Signal Output PDO (PIN 26)  
1
2
3
4
LOW output voltage  
HIGH output voltage  
Load current  
V
V
0
0.1  
3.1  
V
V
SLIC_L  
2.9  
700  
580  
3
SLIC_H  
I
850  
700  
1000  
820  
µA  
nA  
load  
Leakage current  
I
leakage  
Wireless Components  
5 - 6  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
L
Item  
min  
typ  
max  
CRYSTAL OSCILLATOR  
Signals CRSTL1, CRISTL 2, (PINS 1/28)  
1
Operating frequency  
f
6
15  
MHz fundamental mode,  
series resonance  
CRSTL  
- 860 +  
j500  
2
Input Impedance  
@ ~7.2MHz  
Z
1-28  
- 550 +  
j1050  
3
4
5
Input Impedance  
@ ~14.5MHz  
Z
1-28  
Serial Capacity  
@ ~7.2MHz  
C
=C1  
=C1  
9.5  
5.6  
pF  
pF  
S7  
Serial Capacity  
@ ~14.5MHz  
C
S14  
ASK/FSK Signal Switch  
Signal MSEL (PIN 15)  
1
2
FSK Mode  
ASK Mode  
V
1.4  
0
4
V
V
or open  
MSEL  
V
0.2  
MSEL  
FSK DEMODULATOR  
1
Demodulation Gain  
G
180  
200  
220  
µV/  
FMDEM  
kHz  
2
Useable IF Bandwidth  
BW  
10.2  
10.7  
11.2  
MHz  
IFPLL  
POWER DOWN MODE  
Signal PDWN (PIN 27)  
1
2
3
4
Powerdown Mode On  
Powerdown Mode Off  
Input bias current PDWN  
PWDNON  
0
0.8  
V
V
PWDN  
Off  
2.8  
V
S
I
t.b.d.  
µA  
ms  
PDWN  
note: startup - time is  
also dependent on data  
filter and data slicer time  
constants  
Start-up Time until valid IF  
signal is detected  
T
1
4
SU  
PLL DIVIDER  
Signal CSEL (PIN 16)  
1
f
range 7.xxMHz  
V
1.4  
V
or open  
CRSTL  
CSEL  
Wireless Components  
5 - 7  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
L
Item  
min  
0
typ  
max  
0.2  
2
3
f
range 14.xxMHz  
V
I
V
CRSTL  
CSEL  
Input bias current CSEL  
Measured only in lab.  
5
µA  
CSEL tied to GND  
CSEL  
Wireless Components  
5 - 8  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
5.2 Test Circuit  
The device performance parameters marked with in Section 5.1.3 were mea-  
sured on an Infineon evaluation board.  
Test_circuit.wmf  
Figure 5-1  
Schematic of the Evaluation Board  
Wireless Components  
5 - 9  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
5.3 Test Board Layouts  
Figure 5-2  
Top Side of the Evaluation Board  
Figure 5-3  
Bottom Side of the Evaluation Board  
Wireless Components  
5 - 10  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
Figure 5-4  
Component Placement on the Evaluation Board  
Wireless Components  
5 - 11  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
5.4 Bill of Materials  
The following components are necessary for evaluation of the TDA5212 at  
915 MHz without use of a Microchip HCS515 decoder.  
Table 5-4 Bill of Materials  
Ref  
Value  
100kꢀ  
100kꢀ  
820kꢀ  
240kꢀ  
360kꢀ  
10kꢀ  
3.3nH  
3.9nH  
1pF  
Specification  
0805, ± 5%  
R1  
R2  
0805, ± 5%  
R3  
0805, ± 5%  
R4  
0805, ± 5%  
R5  
0805, ± 5%  
R6  
0805, ± 5%  
L1  
Toko, PTL2012-F15N0G  
0805,COG, ± 2%  
0805, COG, ± 0.1pF  
0805, COG, ± 0.1pF  
0805, COG, ± 0.1pF  
0805, COG, ± 5%  
1206, X7R, ± 10%  
Toko, PTL2012-F15N0G  
0805, COG, ± 5%  
0805, COG, ± 5%  
0805, COG, ± 5%  
0805, X7R, ± 10%  
0805, X7R, ± 10%  
0805, COG, ± 5%  
0805, X7R, ± 10%  
0805, COG, ± 5%  
0805, X7R, ± 10%  
0805, COG, ± 1%  
0805, COG, ± 0.25pF  
Jauch Q 14.129690-S1  
Murata  
L2  
C1  
C2  
3.3pF  
4.7pF  
100pF  
47nF  
C3  
C4  
C5  
C6  
3.3pF  
100pF  
22pF  
C7  
C8  
C9  
100pF  
10nF  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
10nF  
220pF  
47nF  
470pF  
47nF  
8.2pF  
18pF  
Q1  
Q2  
14.129690MHz  
SFE10.7MA5-A  
142-0701-801  
STL_2POL  
X2, X3  
X1, X4, S1, S5  
S4  
Johnson  
2-pole pin connector  
3-pole pin connector, or not equipped  
Infineon  
STL_3POL  
IC1  
TDA 5212  
Wireless Components  
5 - 12  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
The following components are necessary in addition to the above mentioned  
ones for evaluation of the TDA5212 in conjunction with a Microchip HCS515  
decoder.  
Table 5-5 Bill of Materials Addendum  
Ref  
Value  
22kꢀ  
Specification  
0805, ± 5%  
0805, ± 5%  
0805, ± 5%  
0805, ± 5%  
0805, ± 5%  
1206, X7R, ± 10%  
1206, X7R, ± 10%  
Microchip  
R21  
R22  
R23  
R24  
R25  
C21  
C22  
IC2  
T1  
10kꢀ  
22kꢀ  
820kꢀ  
560kꢀ  
100nF  
100nF  
HCS512  
BC 847B  
LS T670-JL  
Infineon  
D1  
Infineon  
Wireless Components  
5 - 13  
Specification, May 2003  
TDA 5212  
preliminary  
Reference  
Wireless Components  
5 - 14  
Specification, May 2003  
TDA 5212  
preliminary  
List of Figures  
6
List of Figures  
Figure 2-1 P-TSSOP-28-1 package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 3-1 IC Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 3-2 Main Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 4-1 LNA Automatic Gain Control Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 4-2 RSSI Level and Permissive AGC Threshold Levels . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 4-3 Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 4-4 Determination of Series Capacitance Value for the Crystal Oscillator . . . . . . . . . . . . .  
Figure 4-5 Data Slicer Threshold Generation with External R-C Integrator . . . . . . . . . . . . . . . . . .  
Figure 4-6 Data Slicer Threshold Generation Utilising the Peak Detector . . . . . . . . . . . . . . . . . . .  
Figure 4-7 ASK/FSK mode datapath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 4-8 Frequency characterstic in case of FSK mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2-3  
3-2  
3-9  
4-2  
4-3  
4-4  
4-5  
4-7  
4-7  
4-8  
4-9  
Figure 4-9 Frequency charcteristic in case of ASK mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10  
Figure 4-10 Principle of the precharge circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11  
Figure 4-11 Voltage appearing on C2 during precharging process . . . . . . . . . . . . . . . . . . . . . . . . . 4-12  
Figure 4-12 Voltage transient on capacitor C attached to pin 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13  
Figure 5-1 Schematic of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5-9  
Figure 5-2 Top Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10  
Figure 5-3 Bottom Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10  
Figure 5-4 Component Placement on the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
Wireless Components  
List of Figures - i  
Specification, May 2003  
TDA 5212  
preliminary  
List of Tables  
7
List of Tables  
Table 3-1 Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3-3  
Table 3-2 CSEL Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
Table 3-3 MSEL Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
Table 3-4 PDWN Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13  
Table 5-1 Absolute Maximum Ratings, Ambient temperature TAMB=-40°C ... + 85°C . . . . . . . . .  
Table 5-2 Operating Range, Ambient temperature TAMB= -40°C ... + 85°C . . . . . . . . . . . . . . . . .  
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V . . . . . . . . . . . . . . . . . . . . .  
5-2  
5-3  
5-4  
Table 5-4 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12  
Table 5-5 Bill of Materials Addendum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13  
Wireless Components  
List of Tables - i  
Specification, May 2003  

相关型号:

TDA5212_06

ASK/FSK 915MHz Single Conversion Receiver
INFINEON

TDA5220

ASK/FSK Single Conversion Receiver
INFINEON

TDA5220XUMA1

Telecom Circuit, 1-Func, PDSO28, PLASTIC, TSSOP-28
INFINEON

TDA5220_15

Material Content Data Sheet
INFINEON

TDA5221

ASK/FSK Single Conversion Receiver
INFINEON

TDA5221XUMA1

Telecom Circuit, 1-Func, PDSO28, PLASTIC, TSSOP-28
INFINEON

TDA5225

Telecom Circuit, 1-Func, CMOS, PDSO28, GREEN, PLASTIC, TSSOP-28
INFINEON

TDA5230

Universal Low Power ASK/FSK Single Conversion Multi-Channel Image-Reject Receiver
INFINEON

TDA5231

Universal Low Power ASK/FSK Single Conversion Multi-Channel Image-Reject Receiver
INFINEON

TDA5231XT

暂无描述
INFINEON

TDA5235

Enhanced Sensitivity Double-Configuration Receiver with Digital Baseband Processing
INFINEON

TDA5240

Brushless DC motor drive circuit
NXP