TLD5098EL [INFINEON]

DC/DC Boost, Buck-Boost, SEPIC controller; DC / DC升压,降压 - 升压, SEPIC控制器
TLD5098EL
型号: TLD5098EL
厂家: Infineon    Infineon
描述:

DC/DC Boost, Buck-Boost, SEPIC controller
DC / DC升压,降压 - 升压, SEPIC控制器

显示驱动器 驱动程序和接口 接口集成电路 光电二极管 控制器 PC
文件: 总39页 (文件大小:1497K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Infineon® Power LED Driver  
TLD5098EL  
DC/DC Boost, Buck-Boost, SEPIC  
controller  
Datasheet  
Rev. 1.0, 2010-10-13  
Automotive Power  
TLD5098EL  
Table of Contents  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1  
4.2  
4.3  
5
5.1  
5.2  
Boost Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
6
6.1  
6.2  
Oscillator and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7
7.1  
7.2  
Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
8
8.1  
8.2  
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
9
9.1  
9.2  
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10  
Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Purpose of Analog Dimming: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10.1  
10.2  
10.3  
11  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
11.1  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
12  
13  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Datasheet  
2
Rev. 1.0, 2010-10-13  
DC/DC Boost, Buck-Boost, SEPIC controller  
TLD5098EL  
TLD5098EL  
1
Overview  
Features  
Wide Input Voltage Range from 4.5 V to 45 V  
Constant Current or Constant Voltage Regulation  
Drives LEDs in Boost (B2G), Buck-Boost (B2B) and SEPIC Topology  
Very Low Shutdown Current: Iq_OFF < 10 µA  
Flexible Switching Frequency Range, 100 kHz to 500 kHz  
Synchronization with external clock source  
PWM Dimming  
Analog Dimming feature to adjust average LED current  
Internal 5 V Low Drop Out Voltage Regulator  
Open Circuit Detection  
PG-SSOP-14  
Short to GND Protection  
Output Overvoltage Protection  
Internal Soft Start  
Over Temperature Shutdown  
Wide LED current range via simple adaptation of external components  
300mV High Side Current Sense to ensure highest flexibility and LED current accuracy  
Available in a small thermally enhanced PG-SSOP-14 package  
Automotive AEC Qualified  
Green Product (RoHS) Compliant  
Description  
The TLD5098EL is a LED boost controller with built in protection features. The main function of this device is to  
regulate a constant LED current. The constant current regulation is especially beneficial for LED color accuracy  
and longer lifetime. The controller concept of the TLD5098EL allows multiple configurations such as Boost,  
Buck/Boost and SEPIC by simply adjusting the external components. The TLD5098EL offers the most flexible  
dimming options. Dimming can be achieved with analog or PWM input.The switching frequency is adjustable in  
the range of 100 kHz to 500 kHz and can be synchronized to an external clock source. The TLD5098EL features  
an enable function reducing the shut-down current consumption to Iq_OFF < 10 µA. The current mode regulation  
scheme of this device provides a stable regulation loop maintained by small external compensation components.  
The integrated soft start feature limits the current peak as well as voltage overshoot at start-up. This IC is suited  
for use in the harsh automotive environments and provides output overvoltage protection, device overtemperature  
shutdown and short circuit to GND protection.  
Applications  
Automotive Exterior and Interior Lighting  
Type  
Package  
Marking  
TLD5098EL  
PG-SSOP-14  
TLD5098  
Datasheet  
3
Rev. 1.0, 2010-10-13  
TLD5098EL  
Block Diagram  
2
Block Diagram  
14  
LDO  
1
IVCC  
SWO  
IN  
Power On  
Reset  
Internal  
Supply  
EN_INT/  
PWM_INT  
On/Off  
Logic  
13  
11  
EN / PWMI  
Power Switch  
Gate Driver  
Soft  
Start  
2
Oscillator  
FREQ/ SYNC  
Slope  
Comp.  
4
SWCS  
SGND  
Switch Current  
Error Amplifier  
PWM  
Generator  
3
Thermal  
Protection  
Leading Edge  
Blanking  
Open Load  
+ Short to GND detection  
Over Volage  
Protection  
9
OVFB  
Reference  
Current  
Generation  
10  
8
SET  
6
7
FBH  
FBL  
Feedback Voltage  
Error Amplifier  
COMP  
Dimming Switch  
Gate Driver  
5
EN_INT/  
PWM_INT  
PWMO  
12  
GND  
Figure 1  
Block Diagram  
Datasheet  
4
Rev. 1.0, 2010-10-13  
TLD5098EL  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
1
14  
13  
12  
11  
10  
9
IVCC  
SWO  
IN  
EN/PWMI  
GND  
2
3
4
5
6
7
SGND  
SWCS  
exposed  
Pad  
FREQ/SYNC  
SET  
PWMO  
FBH  
OVFB  
FBL  
8
COMP  
PINCONFIG_SSOP-14_5098.SVG  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
Symbol  
Function  
1
IVCC  
Internal LDO Output;  
Used for internal biasing and gate drive. Bypass with external capacitor close to  
the pin. Pin must not be left open.  
2
3
4
5
6
7
8
SWO  
SGND  
SWCS  
PWMO  
FBH  
Switch Output;  
Connect to gate of external switching MOSFET  
Current Sense Ground;  
Ground return for current sense switch  
Current Sense Input;  
Detects the peak current through switch  
PWM Dimming Output;  
Connect to gate of external MOSFET  
Voltage Feedback Positive;  
Non inverting Input (+)  
FBL  
Voltage Feedback Negative;  
Inverting Input (-)  
COMP  
Compensation Input;  
Connect R and C network to pin for stability  
Datasheet  
5
Rev. 1.0, 2010-10-13  
TLD5098EL  
Pin Configuration  
Pin  
Symbol  
Function  
9
OVFB  
Output Overvoltage Protection Feedback;  
Connect to resistive voltage divider to set overvoltage threshold.  
10  
11  
SET  
Analog Dimming Input;  
Load current adjustment Pin. Pin must not be left open. If analog dimming feature  
is not used connect to IVCC pin.  
FREQ / SYNC  
Frequency Select or Synchronization Input;  
Connect external resistor to GND to set frequency.  
Or apply external clock signal for synchronization within frequency capture range.  
12  
13  
14  
GND  
Ground;  
Connect to system ground.  
EN / PWMI  
IN  
Enable or PWM Input;  
Apply logic HIGH signal to enable device or PWM signal for dimming LED.  
Supply Input;  
Supply for internal biasing.  
EP  
Exposed Pad;  
Connect to external heatspreading GND Cu area (e.g. inner GND layer of  
multilayer PCB with thermal vias).  
Datasheet  
6
Rev. 1.0, 2010-10-13  
TLD5098EL  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Absolute Maximum Ratings1)  
Tj = -40 C to +150 C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values Unit Conditions  
Min.  
Max.  
Voltages  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
IN  
VIN  
-0.3  
-40  
45  
45  
61  
61  
V
V
V
V
Supply Input  
EN / PWMI  
Enable or PWM Input  
VEN  
FBH-FBL  
Feedback Error Amplifier Differential  
VFBH-VFBL -40  
The maximum delta  
must not exceed 61V  
FBH  
VFBH  
-40  
-40  
The difference between  
V
exceed 61V, refer to  
Parameter 4.1.3  
FBH and VFBL must not  
Feedback Error Amplifier Positive Input  
4.1.5  
4.1.6  
FBL  
VFBL  
61  
1
V
The difference between  
V
exceed 61V, refer to  
Parameter 4.1.3  
FBH and VFBL must not  
Feedback Error Amplifier Negative Input  
FBH and FBL current  
IFBL,FBH  
VOVP  
VSWCS  
VSWO  
VSGND  
VCOMP  
mA t < 100ms,  
V
FBH - VFBL = 0.3V  
4.1.7  
4.1.8  
4.1.9  
4.1.10  
OVFB  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
5.5  
6.2  
5.5  
6.2  
5.5  
6.2  
0.3  
V
V
V
V
V
V
V
Over Voltage Feedback Input  
t < 10s  
SWCS  
Switch Current Sense Input  
t < 10s  
4.1.11 SWO  
Switch Gate Drive Output  
4.1.12  
t < 10s  
4.1.13 SGND  
Current Sense Switch GND  
4.1.14 COMP  
-0.3  
-0.3  
5.5  
6.2  
5.5  
6.2  
5.5  
6.2  
45  
V
V
V
V
V
V
V
V
V
Compensation Input  
4.1.15  
t < 10s  
4.1.16 FREQ / SYNC; Frequency and  
Synchronization Input  
4.1.17  
VFREQ / SYNC -0.3  
-0.3  
t < 10s  
4.1.18 PWMO  
PWM Dimming Output  
4.1.19  
VPWMO  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
t < 10s  
4.1.20 SET  
VSET  
4.1.21 IVCC  
Internal Linear Voltage Regulator Output  
4.1.22  
VIVCC  
5.5  
6.2  
t < 10s  
Temperatures  
4.1.23 Junction Temperature  
Tj  
-40  
150  
°C  
Datasheet  
7
Rev. 1.0, 2010-10-13  
TLD5098EL  
General Product Characteristics  
Absolute Maximum Ratings1)  
Tj = -40 C to +150 C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Tstg  
Limit Values Unit Conditions  
Min.  
Max.  
4.1.24 Storage Temperature  
ESD Susceptibility  
-55  
150  
°C  
4.1.25 ESD Resistivity of all Pins  
VESD,HBM  
-2  
-4  
2
4
kV  
kV  
HBM2)  
HBM2)  
4.1.26 ESD Resistivity of IN, EN/PWMI, FBH, VESD,HBM  
FBL and SET pin to GND  
1) Not subject to production test, specified by design.  
2) ESD susceptibility, Human Body Model “HBM” according to EIA/JESD 22-A114B  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
4.2  
Functional Range  
Pos. Parameter  
Symbol  
Limit Values  
Max.  
Unit  
Conditions  
VIVCC > VIVCC,RTH,d;  
Min.  
4.2.1 Extended Supply Voltage Range  
VIN  
4.5  
451)  
V
Parameter deviations  
possible  
4.2.2 Nominal Supply Voltage Range  
4.2.3 Feedback Voltage Input  
VIN  
8
3
34  
60  
V
V
VFBH;  
VFBL  
4.2.4 Junction Temperature  
Tj  
-40  
150  
°C  
1) Not subject to production test, specified by design.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Datasheet  
8
Rev. 1.0, 2010-10-13  
TLD5098EL  
General Product Characteristics  
4.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go  
to www.jedec.org.  
Pos. Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
10  
Max.  
4.3.1 Junction to Case1) 2)  
4.3.2 Junction to Ambient1) 3)  
RthJC  
RthJA  
RthJA  
RthJA  
K/W  
K/W  
K/W  
K/W  
47  
2s2p  
4.3.3  
4.3.4  
54  
1s0p + 600 mm2  
1s0p + 300 mm2  
64  
1) Not subject to production test, specified by design.  
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to  
ambient temperature). Ta=25°C; The IC is dissipating 1W.  
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink  
area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board  
has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu). A thermal via (diameter = 0.3 mm and  
25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and  
second outer layer (bottom) of the JEDEC PCB. Ta=25°C; The IC is dissipating 1W.  
Datasheet  
9
Rev. 1.0, 2010-10-13  
TLD5098EL  
Boost Regulator  
5
Boost Regulator  
5.1  
Description  
The TLD5098EL regulator is suitable for boost, buck-boost and SEPIC configurations. The constant output current  
is especially useful for light emitting diode (LED) applications. The regulator function is implemented by a pulse  
width modulated (PWM) current mode controller.  
The PWM current mode controller uses the peak current through the external power switch and error in the output  
current to determine the appropriate pulse width duty cycle (on time) for constant output current. The current mode  
controller provides a PWM signal to an internal gate driver which then outputs to an external n-channel  
enhancement mode metal oxide field effect transistor (MOSFET) power switch.  
The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which is a  
characteristic of current mode controllers operating at high duty cycles (>50% duty).  
An additional built-in feature is an integrated soft start that limits the current through the inductor and external  
power switch during initialization. The soft start function gradually increases the inductor and switch current over  
tSS (Parameter 5.2.9) to minimize potential overvoltage at the output.  
OV FB  
H when  
OVFB >1.25V  
OVFB 9  
VRef  
=
1.25V  
High when  
UV IVCC  
IVCC < 4.0V  
COMP 8  
FBH 6  
VRef  
4.0V  
=
NOR  
Current  
Comp  
Gate Driver  
Supply  
x1  
EA  
1 IVCC  
2 SWO  
Output Stage  
OFF when  
Low  
gmEA  
High when  
lEA- ISLOPE - ICS > 0  
>
1
INV  
R
S
IEA  
OFF  
when H  
Q
Q
FBL 7  
1
&
&
0 if SET < 1.6V  
0
Gate  
Driver  
10  
Low when  
R
SET  
1
VRef  
V
T
j > 175 °C  
Q
&
&
Soft start  
(SET 0.1V )  
VRef  
0.3V  
=
5
Current  
Sense  
PWM-FF  
Oscillator  
Slope Comp  
I
4
3
SWCS  
SGND  
NAND 2  
S
t
Q
FREQ/  
11  
ICS  
&
Error-FF  
Clock  
SYNC  
Figure 3  
Boost Regulator Block Diagram  
Datasheet  
10  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Boost Regulator  
5.2  
Electrical Characteristics  
1)  
Table 1  
EC Boost Regulator  
VIN = 8V to 34V; Tj = -40 C to +150 C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
Regulator:  
5.2.1  
Feedback Reference Voltage  
VREF  
0.29  
0.30  
0.31  
V
refer to Figure 25  
VREF= VFBH -VFBL  
VSET= 5V  
ILED= 350 mA  
5.2.2  
5.2.3  
Feedback Reference Voltage  
VREF  
0.057 0.06  
0.063  
V
refer to Figure 25  
VREF= VFBH -VFBL  
VSET= 0.4V  
ILED= 70mA  
Feedback Reference Voltage  
Offset  
VREF_offset  
5
mV  
refer to Figure 17  
and Figure 25  
V
REF= VFBH -VFBL  
VSET= 0.1V  
VOUT>VIN  
5.2.4  
Voltage Line Regulation  
Voltage Load Regulation  
VREF  
VREF) /  
ΔVIN  
/
/
0.15  
%/V  
refer to Figure 25  
VIN = 8V to 19V;  
V
SET = 5V;  
LED = 350mA  
refer to Figure 25  
SET = 5V;  
LED = 100 to 500mA  
I
5.2.5  
5.2.6  
VREF  
VREF) /  
ΔIBO  
5
%/V  
mV  
V
I
Switch Peak Over Current  
Threshold  
VSWCS  
130  
150  
170  
V
V
FBH = VFBL = 5V  
COMP = 3.5V  
5.2.7  
5.2.8  
5.2.9  
Maximum Duty Cycle  
Maximum Duty Cycle  
Soft Start Ramp  
DMAX,fixed 91  
DMAX,sync 88  
93  
95  
%
%
µs  
Fixed frequency mode  
Synchronization mode  
tSS  
350  
1000  
1500  
V
FB rising from 5% to  
95% of VFB, typ.  
5.2.10 IFBH  
Feedback High Input Current  
5.2.11 IFBL  
Feedback Low Input Current  
IFBH  
IFBL  
ISWCS  
38  
15  
10  
46  
21  
50  
54  
µA  
µA  
µA  
V
V
V
FBH - VFBL = 0.3V  
FBH - VFBL = 0.3V  
SWCS = 150mV  
27  
5.2.12 Switch Current Sense Input  
Current  
100  
5.2.13 Input Undervoltage Shutdown  
5.2.14 Input Voltage Startup  
VIN,off  
VIN,on  
3.5  
4.5  
V
V
VIN decreasing  
VIN increasing  
4.85  
1) Not subject to production test, specified by design  
Datasheet  
11  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Boost Regulator  
Table 1  
EC Boost Regulator  
VIN = 8V to 34V; Tj = -40 C to +150 C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
Gate Driver for external Switch  
5.2.15 Gate Driver Peak Sourcing  
Current  
ISWO,SRC  
ISWO,SNK  
tR,SWO  
380  
550  
30  
20  
mA  
mA  
ns  
ns  
V
1)VSWO = 1V to 4V  
5.2.16 Gate Driver Peak Sinking  
Current  
1)VSWO = 4V to 1V  
5.2.17 Gate Driver Output Rise Time  
5.2.18 Gate Driver Output Fall Time  
5.2.19 Gate Driver Output Voltage  
60  
40  
5.5  
1)CL,SWO = 3.3nF;  
V
SWO = 1V to 4V  
1)CL,SWO = 3.3nF;  
SWO = 4V to 1V  
tF,SWO  
V
VSWO  
4.5  
1)CL,SWO = 3.3nF;  
1) Not subject to production test, specified by design  
Datasheet  
12  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Oscillator and Synchronization  
6
Oscillator and Synchronization  
6.1  
Description  
The internal oscillator is used to determine the switching frequency of the boost regulator. The switching frequency  
can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching frequency with an  
external resistor the following formula can be applied.  
1
s
R FREQ  
=
(
3.5 × 10 3  
[
Ω
])  
Ω
[ ]  
141 × 10 12 [Ω ]  
)
× f FREQ [ ]  
1
s
(
)
(
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized  
frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the  
internal oscillator synchronizes to this external clock frequency and the boost regulator switches at the  
synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.  
Oscillator  
FREQ / SYNC  
PWM  
Logic  
Gate  
Driver  
11  
Multiplexer  
2
SWO  
Clock Frequency  
Detector  
RFREQ  
VCLK  
Figure 4  
Oscillator and Synchronization Block Diagram and Simplified Application Circuit  
TSYNC = 1 / fSYNC  
tSYNC,TR  
tSYNC,TR  
VSYNC  
tSYNC,PWH  
4.5 V  
0.5 V  
VSYNC,H  
VSYNC,L  
t
Figure 5  
Synchronization Timing Diagram  
Datasheet  
13  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Oscillator and Synchronization  
6.2  
Electrical Characteristics  
Table 2  
EC Oscillator and Synchronization  
VIN = 8V to 34V; Tj = -40 C to +150 C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Oscillator:  
6.2.1  
6.2.2  
Oscillator Frequency  
fFREQ  
fFREQ  
250  
100  
300  
350  
500  
kHz  
kHz  
R
V
FREQ = 20kΩ  
Oscillator Frequency  
Adjustment Range  
6.2.3  
FREQ / SYNC Supply  
Current  
IFREQ  
-700  
1.32  
µA  
V
FREQ = 0V  
6.2.4  
Frequency Voltage  
VFREQ  
1.16  
1.24  
fFREQ = 100kHz  
Synchronization  
6.2.5  
6.2.6  
6.2.7  
6.2.8  
Synchronization Frequency fSYNC  
Capture Range  
250  
3.0  
500  
kHz  
V
1) 2)  
Synchronization Signal  
High Logic Level Valid  
VSYNC,H  
VSYNC,L  
1) 2)  
1) 2)  
Synchronization Signal  
Low Logic Level Valid  
0.8  
V
Synchronization Signal  
Logic High Pulse Width  
tSYNC,PWH 200  
ns  
1) Synchronization of external PWM ON signal to falling edge  
2) Not subject to production test, specified by design  
Datasheet  
14  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Oscillator and Synchronization  
Typical Performance Characteristics of Oscillator  
Switching Frequency fSW versus  
Frequency Select Resistor to GND RFREQ/SYNC  
600  
500  
400  
Tj = 25 °C  
300  
200  
100  
0
0
10 20 30 40 50 60 70 80  
FREQ/SYNC [kohm]  
R
Datasheet  
15  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Enable and Dimming Function  
7
Enable and Dimming Function  
7.1  
Description  
The enable function powers ON or OFF the device. A valid logic LOW signal on enable pin EN/PWMI powers OFF  
the device and current consumption is less than Iq_OFF (Parameter 7.2.14). A valid logic HIGH enable signal on  
enable pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor which  
ensures that the IC is shut down and the power switch is OFF in case the enable pin EN is left open.  
In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM) input  
signal that is fed through to an internal gate driver. The internal gate driver outputs the same PWM signal on the  
PWMO pin to an external N-channel enhancement mode MOSFET for PWM dimming an LED load. PWM dimming  
an LED is a commonly practiced dimming method and can prevent color shift in an LED light source. Moreover  
the PWM output function may also be used to drive other types of loads besides LED.  
The enable and PWM input function share the same pin. Therefore a valid logic LOW signal at the EN/PWMI pin  
needs to differentiate between an enable power OFF or an PWM dimming LOW signal. The device differentiates  
between enable OFF and PWM dimming signal by requiring the enable OFF at the EN/PWMI pin to stay LOW for  
the Enable Turn OFF Delay Time (tEN,OFF,DEL Parameter 7.2.6).  
IN  
14  
Enable  
Enable  
PWMI  
IVCC  
1
2
5
LDO  
EN / PWMI  
SWO  
Enable / PWMI  
Logic  
Gate  
Driver  
13  
Microcontroller  
PWMO  
Gate  
Driver  
Figure 6  
Block Diagram and Simplified Application Circuit Enable and LED Dimming  
Datasheet  
16  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Enable and Dimming Function  
tEN,START  
TPWMI  
tPWMI,H  
tEN,OFF,DEL  
VEN/PWMI  
VEN/PWMI,ON  
VEN/PWMI,OFF  
t
VIVCC  
VIVCC,ON  
VIVCC,RTH  
t
t
t
VPWMO  
1
TFREQ  
=
fFREQ  
VSWO  
Power OFF Delay Time  
Power ON  
Power OFF  
Iq_OFF  
Normal  
SWO ON  
PWMO ON  
Normal  
SWO ON  
PWMO ON  
Normal  
SWO ON  
PWMO ON  
Dim  
Dim  
PWMO OFF  
SWO OFF  
PWMO OFF  
SWO OFF  
Figure 7  
Timing Diagram Enable and LED Dimming  
7.2  
Electrical Characteristics  
Table 3  
EC Enable and Dimming  
VIN = 8V to 34V; Tj = -40 C to +150 C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
VEN/PWMI,ON 3.0  
VEN/PWMI,OFF  
Typ.  
Max.  
Enable/PWM Input:  
7.2.1  
7.2.2  
7.2.3  
Enable/PWMI  
Turn On Threshold  
V
Enable/PWMI  
Turn Off Threshold  
0.8  
V
1)  
Enable/PWMI Hysteresis VEN/PWMI,HYS 50  
200  
400  
mV  
Datasheet  
17  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Enable and Dimming Function  
Table 3  
EC Enable and Dimming  
VIN = 8V to 34V; Tj = -40 C to +150 C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
7.2.4  
7.2.5  
7.2.6  
Enable/PWMI  
High Input Current  
IEN/PWMI,H  
IEN/PWMI,L  
tEN,OFF,DEL  
30  
µA  
µA  
ms  
V
V
EN/PWMI = 16.0V  
EN/PWMI = 0.5V  
Enable/PWMI  
Low Input Current  
8
0.1  
10  
1
Enable Turn Off  
Delay Time  
12  
7.2.7  
7.2.8  
PWMI Min Duty Time  
Enable Startup Time  
tPWMI,H  
4
µs  
µs  
1)  
tEN,START  
100  
Gate Driver for Dimming Switch:  
7.2.9  
PWMO Gate Driver Peak IPWMO,SRC  
Sourcing Current  
230  
370  
50  
mA  
mA  
ns  
ns  
V
1) VPWMO = 1V to 4V  
1) VPWMO = 4V to 1V  
1) CL,PWMO = 3.3nF;  
7.2.10 PWMO Gate Driver Peak IPWMO,SNK  
Sinking Current  
7.2.11 PWMO Gate Driver  
Output Rise Time  
tR,PWMO  
tF,PWMO  
VPWMO  
100  
60  
5.5  
V
PWMO = 1V to 4V  
1) CL,PWMO = 3.3nF;  
PWMO = 4V to 1V  
1) CL,PWMO = 3.3nF;  
7.2.12 PWMO Gate Driver  
Output Fall Time  
30  
V
7.2.13 PWMO Gate Driver  
Output Voltage  
4.5  
Current Consumption  
7.2.14 Current Consumption,  
Shutdown Mode  
Iq_OFF  
Iq_ON  
10  
7
µA  
VEN/PWMI = 0.8 V;  
Tj 105C; VIN = 16V  
7.2.15 Current Consumption,  
Active Mode2)  
mA  
VEN/PWMI 4.75V;  
I
V
BO = 0mA;  
SWO = 0% Duty Cycle  
1) Not subject to production test, specified by design  
2) Dependency on switching frequency and gate charge of boost and dimming switch.  
Datasheet  
18  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Linear Regulator  
8
Linear Regulator  
8.1  
Description  
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5V and current up  
to ILIM,min (Parameter 8.2.2). An external output capacitor with ESR lower than RIVCC,ESR (Parameter 8.2.5) is  
required on pin IVCC for stability and buffering transient load currents. During normal operation the external boost  
and dimming MOSFET switches will draw transient currents from the linear regulator and its output capacitor.  
Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the  
external MOSFET switches.  
Integrated undervoltage protection for the external switching MOSFET:  
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and resets  
the device in case the output voltage falls below the IVCC Undervoltage Reset switch OFF Threshold (VIVCC,RTH,d  
Parameter 8.2.7). The Undervoltage Reset threshold for the IVCC pin helps to protect the external switches from  
excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic  
level N-channel MOSFET.  
IN  
IVCC  
14  
1
Linear Regulator  
13  
EN / PWMI  
Gate  
Drivers  
Figure 8  
Voltage Regulator Block Diagram and Simplified Application Circuit  
Datasheet  
19  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Linear Regulator  
8.2  
Electrical Characteristics  
Table 4  
EC Line Regulator  
VIN = 8V to 34V; Tj = -40 C to +150 C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
8.2.1  
8.2.2  
8.2.3  
Output Voltage  
VIVCC  
ILIM  
4.85  
5
5.15  
V
6V VIN 45V  
0.1mA IIVCC 50mA  
Output Current Limitation  
Drop out Voltage  
51  
90  
mA  
V
VIN = 13.5V  
V
IVCC = 4.5V  
VIN = 4.5V  
IVCC = 25mA  
VDR  
0.5  
I
1) 2)  
8.2.4  
8.2.5  
8.2.6  
IVCC Buffer Capacitor  
CIVCC  
0.47  
1
100  
0.5  
µF  
Ω
1)  
IVCC Buffer Capacitor ESR  
RIVCC,ESR  
Undervoltage Reset Headroom VIVCC,HDRM 100  
mV  
V
V
IVCC decreasing  
IVCC - VIVCC,RTH,d  
3) VIVCC decreasing.  
8.2.7  
8.2.8  
IVCC Undervoltage Reset  
switch OFF Threshold  
VIVCC,RTH,d 3.6  
VIVCC,RTH,i  
4.0  
4.5  
V
V
IVCC Undervoltage Reset  
switch ON Threshold  
VIVCC increasing  
1) Not subject to production test, specified by design  
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.  
3) Selection of external switching MOSFET is crucial and the VIVCC,RTH,d min. as worst case VGS must be considered.  
Datasheet  
20  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Protection and Diagnostic Functions  
9
Protection and Diagnostic Functions  
9.1  
Description  
The TLD5098EL has integrated circuits to diagnose and protect against output overvoltage, open load, open  
feedback and overtemperature faults. Additionally the FBH and FBL potential is monitored and in case the LED  
load short circuits to GND (see description Figure 15) the regulator stops the operation and protects the system.  
In case any of the six fault conditions occur the PWMO and IVCC signal will change to an active logic LOW signal  
to communicate that a fault has occurred (detailed overview in Figure 9 and Figure 10 below). Figure 11  
illustrates the various open load and open feedback conditions. In case of an overtemperature condition the  
integrated thermal shutdown function turns off the gate drivers and internal linear voltage regulator. The typical  
junction shutdown temperature is 175°C (Tj,SD Parameter 9.2.2). After cooling down the IC will automatically  
restart. Thermal shutdown is an integrated protection function designed to prevent IC destruction and is not  
intended for continuous use in normal operation (Figure 13). To calculate the proper overvoltage protection  
resistor values an example is given in Figure 14.  
Input  
Output  
Protection and  
Diagnostic Circuit  
Output  
Overvoltage  
Open Load  
Short to GND  
Open Feedback  
Overtemperature  
SWO and PWMO  
Gate Driver Off  
OR  
Linear Regualtor  
Off  
OR  
Input  
Undervoltage  
Figure 9  
Protection and Diagnostic Function Block Diagram  
Datasheet  
21  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Protection and Diagnostic Functions  
Input  
Condition  
Overvoltage @  
Output  
Output  
PWMO  
H or Sw*  
Level*  
False  
True  
SWO  
Sw*  
L
IVCC  
Active  
Active  
L
False  
True  
Sw*  
L
H or Sw*  
Active  
Active  
Open Load  
L
False  
True  
Sw*  
L
H or Sw*  
Active  
Active  
Short to GND @ LED  
chain  
L
False  
True  
False  
True  
False  
True  
Sw*  
L
Sw*  
L
Sw*  
L
H or Sw*  
Active  
Active  
Active  
Shutdown  
Active  
Open Feedback  
Overtemperature  
L
H or Sw*  
L
H or Sw*  
L
Undervoltage @  
Input  
Shutdown  
*Note:  
Sw = Switching  
False = Condition does not exist  
True = Condition does exist  
Figure 10 Diagnosis Truth Table  
VBO  
Output Open Circuit Conditions  
Open Circuit 3  
Open Circuit 1  
Open Circuit  
Fault Condition  
Condition  
Fault Threshold Voltage  
VREF  
1
2
3
4
Open FBH  
Open FBL  
-20 to -100 mV  
0.5 to 1.0 V  
ROVH  
RFB  
Overvoltage  
Compartor  
OVFB  
Open Circuit 2  
D1  
9
Open VBO  
Open PWMO  
-20 to -100 mV  
ROVL  
Detected by overvoltage  
VOVFB,TH  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
VREF  
Feedback Voltage  
Error Amplifier  
FBH  
6
+
VREF  
-
FBL  
Max Threshold = 1.0 V  
7
Min Threshold = 0.5 V  
Typical VREF = 0.3 V  
Open Circuit 4  
TDIM  
Max Threshold = -20 mV  
Min Threshold = -100 mV  
PWMO  
5
Figure 11 Open Load and Open Feedback Conditions  
Datasheet  
22  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Protection and Diagnostic Functions  
Startup  
Normal  
Thermal  
Overvoltage  
2
Open Load /  
Feedback  
Shutdown  
Shutdown  
1
3
VIVCC  
VIVCC,RTH,i  
VIVCC,RTH,d  
t
t
t
t
Tj,SD,HYST  
Tj  
Tj,SD  
1
VOVFB,HYS  
2
VBO  
V
OVFB ≥ VOVFB,TH  
VIN  
3
VFBH-VFBL  
VREF,2  
tSS  
tSS  
0.3 V Typ  
VREF,1  
VPWMO  
t
Figure 12 Open load, Overvoltage and Overtemperature Timing Diagram  
Datasheet  
23  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Protection and Diagnostic Functions  
VEN/PWMI  
H
L
t
Tj  
T
jSD  
ΔΤ  
TjSO  
t
Ta  
VSWO  
t
ILED  
Ipeak  
t
VPWMO  
t
VIVCC  
5V  
t
Device  
OFF  
Overtemp  
Fault  
Overtemp  
Fault  
Overtemp Overtemp  
ON  
Fault Fault  
Normal Operation  
ON  
ON  
Figure 13 Device overtemperature protection behavior  
Datasheet  
24  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Protection and Diagnostic Functions  
VOVFB  
example: VOUT,max=40V  
VOVP,max  
1.25mA  
Overvoltage Protection  
ACTIVE  
40V  
ROVH  
33.2kΩ  
TLD5098  
1.25mA  
9
VOVFB,TH  
1.25V  
OVFB  
ROVL  
1k  
1.25V  
Overvoltage Protection is  
disabled  
GND  
12  
t
Figure 14 Overvoltage Protection description  
Short to GND protection for Highside Return Applications (B2B) from Figure 23  
The FBH and FBL pins features a Short to GND detection threshold (VFBL,FBH_S2G). If the potential on those pins is  
below this threshold the Device stops his operation. This means that the PWMO signal changes to inactive state  
(LOW potential) and the corresponding p-channel (TDIM2) is switched OFF accordingly and protects the LED chain.  
For the B2B application some external components are needed to ensure a LOW potential during a short circuit  
event. D1 and D2 are low power diodes (BAS16-03W) and the resistor Rlim (10kOhm) is needed to limit the current  
through this path. The diode D3 should be a high power diode and is needed to protect the RFB and the FBH and  
FBL pins in case of an short circuit to GND event. This short circuit detection and protection concept considers  
potential faults for LED chains (LED Modules) which are separated from the ECU via two wires (at the beginning  
and at the end of the LED chain). If the short circuit condition disappears, the device will re-start with an soft start.  
CBO  
VFBL,FBH  
D2  
D1 Rlim  
60V  
wire  
harness  
wire  
harness  
LED Module  
RFB  
Vbb  
TDIM2  
CIN  
Dn  
D1  
D3  
Normal Operation  
Short to GND  
TDIM1  
Short to GND  
LBO  
DBO ILED  
ISW  
VOUT  
TSW  
PWMO  
4.5V  
SWO  
Device working with parameter  
deviations  
SWCS  
VFBL,FBH_S2G  
FBH  
FBL  
Short Circuit detected on  
FBH/FBL  
SGND  
IN  
t
Figure 15 Short Circuit to GND Protection  
Datasheet  
25  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Protection and Diagnostic Functions  
9.2  
Electrical Characteristics  
Table 5  
EC Protection and Diagnosis  
VIN = 8V to 34V; Tj = -40 C to +150 C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
Short Circuit Protection  
9.2.1  
FBH and FBL Short-Circuit fault VFBL,FBH_S2G 1.5  
sensing common mode range  
2
V
refer to Figure 15  
FBH=VFBL  
V
decreasing  
Temperature Protection:  
9.2.2  
9.2.3  
Over Temperature Shutdown  
Tj,SD  
160  
175  
15  
190  
°C  
°C  
1) refer to Figure 13  
1)  
Over Temperature Shutdown  
Hystereses  
Tj,SD,HYST  
Overvoltage Protection:  
9.2.4  
9.2.5  
9.2.6  
9.2.7  
Output Over Voltage Feedback VOVFB,TH  
Threshold Increasing  
1.21  
50  
2
1.25  
1.29  
150  
10  
V
refer to Figure 14  
Output Over Voltage Feedback VOVFB,HYS  
Hysteresis  
mV  
µs  
µA  
1) Output Voltage  
decreasing  
Over Voltage Reaction Time  
tOVPRR  
IOVFB  
Output Voltage  
decreasing  
Over Voltage Feedback Input  
Current  
-1  
0.1  
1
VOVFB = 1.25V  
Open Load and Open Feedback Diagnostics  
9.2.8  
Open Load/Feedback  
Threshold  
VREF,1,3  
-100  
0.5  
-20  
1
mV  
V
refer to Figure 11  
REF = VFBH - VFBL  
Open Circuit 1 or 3  
REF = VFBH - VFBL  
Open Circuit 2  
V
9.2.9  
Open Feedback Threshold  
VREF,2  
V
1) Specified by design; not subject to production test.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Datasheet  
26  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Analog Dimming  
10  
Analog Dimming  
This pin is influencing the Feedback Voltage Error Amplifier by generating an internal current accordingly to an  
external reference voltage (VSET). If the analog dimming feature is not needed this pin must be connected to IVCC  
or external > 1.6V supply. Different application scenarios are described in Figure 18. This pin can also go outside  
of the ECU for instance if a thermistor is connected on a separated LED Module and the Analog Dimming Input is  
used to thermally protect the LEDs. For reverse battery protection of this pin an external series resistor should be  
placed to limit the current.  
10.1  
Purpose of Analog Dimming:  
1) It is difficult for LED manufacturers to deliver LEDs which have the same Brightness, Colorpoint and Forward  
Voltage Class. Due to this relatively wide spread of the crucial LED parameters automotive customers order LEDs  
from one or maximum two different colorpoint classes. The LED manufacturer must preselect the LEDs to deliver  
the requested colorpoint class. Those preselected LEDs are matched in terms of the colorpoint but a variation of  
the brightness remains. To correct the brightness deviation an analog dimming feature is needed. The mean LED  
current can be adjusted by applying an external voltage VSET at the SET pin.  
2) If the DC/DC application is separated from the LED loads the ECU manufacturers aim is to develop one  
hardware which should be able to handle different load current conditions (e.g. 80mA to 400mA) to cover different  
applications. To achieve this average LED current adjustment the analog dimming is a crucial feature.  
10.2  
Description  
Application Example:  
Desired LED current = 400mA. For the calculation of the correct Feedback Resistor RFB the following equation can  
be used: This formula is valid if the analog dimming feature is disabled and VSET > 1.6V.  
VREF  
ILED  
VREF  
RFB  
0.3V  
-->  
-->  
RFB  
=
ILED  
=
RFB =  
= 750mΩ  
400mA  
A decrease of the average LED current can be achieved by controlling the voltage at the SET pin (VSET) between  
0V and 1.6V. The mathematical relation is given in the formula below:  
V
0 ,1 V  
5 * R  
SET  
I
=
LED  
FB  
If VSET is 100mV the LED current is only determined by the internal offset voltages of the comparators. For this  
example ILED = 0A if VSET < 100mV. Refer to the concept drawing in Figure 17.  
Datasheet  
27  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Analog Dimming  
VREF  
[V]  
typ. 300mV  
1.6V  
100mV  
VSET  
[V]  
Analog Dimming  
Disabled  
Analog Dimming Feature Enabled  
VSET 0.1V  
5* RFB  
VREF  
ILED  
=
ILED  
=
RFB  
Figure 16 Voltage VSET versus LED current  
VREF  
VOUT  
RFB  
FBL  
IFBL  
R2  
FBH  
ILED  
6
7
V
int  
IFBH  
R1  
VBandgap = 1.6V  
VREF_offset  
SET  
10  
+
+
-
VSET  
-
+
Feedback Voltage  
Error Amplifier  
ISET  
ISET  
n*ISET  
R3  
100mV  
COMP  
GND  
8
12  
CCOMP  
RCOMP  
Figure 17 Concept Drawing Analog Dimming  
Datasheet  
28  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Analog Dimming  
Multi-purpose usage of the Analog dimming feature  
1) A µC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET pin  
of the TLD5098EL. The integrated voltage Regulator (VIVCC) can be used to supply the µC or external components  
if the current consumption does not exceed 25mA.  
2) The analog dimming feature is directly connected to the input voltage of the system. In this configuration the  
LED current is reduced if the input voltage VIN is decreasing. The DC/DC boost converter is changing (increasing)  
the switching duty cycle if VIN drops to a lower potential. This is causing an increase of the input current  
consumption. If applications require a decrease of the LED current in respect to VIN variations this setup can be  
choosen.  
3) The usage of an external resistor divider connected between IVCC (integrated 5V regulator output and gate  
buffer pin) SET and GND can be choosen for systems without µC on board. The concept allows to control the LED  
current via placing cheap low power resistors. Furthermore a temperature sensitive resistor (Thermistor) to protect  
the LED loads from thermal destruction can be connected additionally.  
4) If the analog dimming feature is not needed the SET pin must be connected directly to >1.6V potential (e.g.  
IVCC potential)  
5) Instead of an DAC the µC can provide a PWM signal and an external R-C filter is producing a constant voltage  
for the analog dimming. The voltage level is depending on the PWM frequency (fPWM) and duty cycle (DC) which  
can be controlled by the µc software after reading the coding resistor placed at the LED module.  
Datasheet  
29  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Analog Dimming  
.
+5V  
Vbb  
1
2
CIVCC  
1
14  
IVCC  
IN  
RSET2  
10  
D/A-Output  
µC  
SET  
10  
SET  
VSET  
VSET RSET1  
Cfilter  
GND  
12  
GND  
12  
3
4
VIVCC = +5V  
Rfilter  
VIVCC = +5V  
1
1
IVCC  
SET  
IVCC  
SET  
RSET2  
CIVCC  
C
IVCC  
10  
10  
RSET1  
GND  
12  
GND  
12  
VSET  
VSET ~ VIVCC  
Cfilter  
Cfilter  
5
+5V  
CIVCC  
1
IVCC  
SET  
PWM  
10  
PWM output  
Rfilter  
µC  
(e.g. XC866)  
Cfilter  
VSET  
GND  
12  
Figure 18 Analog Dimming in various applications  
Datasheet  
30  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Analog Dimming  
10.3  
Electrical Characteristics  
Table 6  
EC Analog Dimming  
VIN = 8V to 34V; Tj = -40 C to +150 C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
Analog Dimming Range  
10.3.1 SET programming range  
VSET  
0
1.6  
V
1) refer to Figure 16  
1) Specified by design; not subject to production test.  
Datasheet  
31  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Application Information  
11  
Application Information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
IBO  
DRV  
L1  
V
IN  
LBO  
DBO  
VBO  
CBO  
VBATT  
CIN  
ISW  
C1  
C2  
RFB  
VREF  
TSW  
2
4
SWO  
14  
1
IN  
Provisional  
Parts  
SWCS  
D1  
IVCC  
CIVCC  
RCS  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
V
CC or VIVCC  
ROVH  
3
9
SGND  
OVFB  
PWM  
10  
PWM - Output  
IC2  
SET  
R
filter  
ROVL  
Cfilter  
IC1  
TLD5098  
Microcontroller  
(e.g. XC866)  
13  
11  
8
EN / PWMI  
FREQ/ SYNC  
COMP  
Output  
Output  
6
7
FBH  
FBL  
Input  
ILED  
CCOMP  
TDIM  
5
PWMO  
RFREQ  
RCOMP  
GND  
12  
Figure 19 LED Low Side Return Application Circuit (Boost to GND, B2G)  
Reference  
Designator  
Part  
Number  
Value  
Manufacturer  
Type  
Quantity  
D1 - 10  
DBO  
White  
Schottky, 3 A, 100 VR  
100 uF, 50V  
10 nF  
Osram  
Vishay  
LW W5SM  
SS3H10  
LED  
Diode  
10  
1
2
1
1
1
1
1
1
1
1
1
1
1
1
2
2
CIN, CBO  
Panasonic  
EPCOS  
EEEFK1H101GP  
X7R  
Capacitor  
Capacitor  
Capacitor  
IC  
CCOMP  
CIVCC  
IC1  
MLCC CCNPZC105KBW X7R  
TLD5098  
1uF , 6.3V  
EPCOS  
--  
Infineon  
IC2  
--  
Infineon  
XC866  
IC  
LBO  
100 uH  
Coilcraft  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Infineon  
MSS1278T-104ML  
ERJ3EKF1002V  
ERJ14BQFR82U  
ERJ3EKF2002V  
ERJ3EKF3322V  
ERJ3EKF1001V  
ERJB1CFR05U  
IPG20N06S4L-26  
IPD35N10S3L-26  
BSP318S  
Inductor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
Transistor  
Transistor  
RCOMP  
RFB  
10 k, 1%  
820 m, 1%  
20 k, 1%  
RFREQ  
ROVH  
ROVL  
RCS  
33.2 k, 1%  
1 k, 1%  
50 m, 1%  
Dual N-ch enh. (60V, 20A)  
alternativ: 100V N-ch, 35A  
alternativ: 60V N-ch, 2.6A  
TDIM,TSW  
Infineon  
Infineon  
Figure 20 Bill of Materials for LED Low Side Return Application Circuit  
Datasheet 32  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Application Information  
Lfilter  
L1  
DBO  
CSEPIC  
DRV  
V
IN  
VBATT  
CIN  
ISW  
C1  
C2  
RFB  
L2  
VREF  
CBO  
TSW  
2
4
SWO  
14  
IN  
ILED  
Provisional  
Parts  
SWCS  
RCS  
D1  
VCC or VIVCC  
ROVH  
3
9
SGND  
OVFB  
PWM  
10  
PWM - Output  
IC2  
Microcontroller  
(e.g. XC866)  
SET  
Rfilter  
Number of LEDs could  
be variable!  
This means the  
following configurations  
are possible:  
1) VOUT < VIN (Buck)  
2) VOUT > VIN (Boost)  
ROVL  
Cfilter  
IC1  
TLD5098  
13  
11  
8
Output  
Output  
EN / PWMI  
FREQ/ SYNC  
COMP  
6
7
FBH  
FBL  
Input  
BAS1603W  
DPOL  
CCOMP  
Dn  
RPOL  
1
IVCC  
10k  
CIVCC  
Startup Circuit  
RFREQ  
RCOMP  
TDIM  
5
PWMO  
GND  
12  
Figure 21 SEPIC Application Circuit  
Reference  
Value  
Part  
Number  
Manufacturer  
Type  
LED  
Quantity  
Designator  
D1 - n  
DBO  
White  
Schottky, 3 A, 100 VR  
3.3 uF, 20V  
100 uF, 50V  
10 nF  
Osram  
Vishay  
LW W5SM  
SS3H10  
variable  
Diode  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
IC  
1
1
2
1
1
1
1
2
1
2
1
1
1
1
1
1
1
2
2
CSEPIC  
CIN, CBO  
CCOMP  
CIVCC  
IC1  
EPCOS  
X7R, Low ESR  
EEEFK1H101GP  
X7R  
Panasonic  
EPCOS  
MLCC CCNPZC105KBW X7R  
TLD5098  
1uF , 6.3V  
--  
EPCOS  
Infineon  
IC2  
--  
Infineon  
XC866  
IC  
L1 , L2  
47 uH  
Coilcraft  
Coilcraft  
Panasonic  
Infineon  
MSS1278T-473ML  
MSD1278-223MLD  
ERJ3EKF1002V  
BAS1603W  
Inductor  
Inductor  
Resistor  
Diode  
alternativ: 22uH coupled  
inductor  
RCOMP, RPOL  
DPOL  
10 k, 1%  
80V Diode  
RFB  
820 m, 1%  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Infineon  
ERJ14BQFR82U  
ERJ3EKF2002V  
ERJ3EKF3322V  
ERJ3EKF1001V  
ERJB1CFR05U  
IPG20N06S4L-26  
IPD35N10S3L-26  
BSP318S  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
Transistor  
Transistor  
RFREQ  
ROVH  
20 k, 1%  
33.2 k, 1%  
ROVL  
1 k, 1%  
RCS  
50 m, 1%  
Dual N-ch enh. (60V, 20A)  
alternativ: 100V N-ch, 35A  
alternativ: 60V N-ch, 2.6A  
TDIM,TSW  
Infineon  
Infineon  
Figure 22 Bill of Materials for SEPIC Application Circuit  
Datasheet 33  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Application Information  
CBO  
DSC1: Rlim:10k  
Low Power Diode range  
DSC2:  
Low Power Diode  
VIN  
RFB  
TDIM2  
DRV  
L1  
VBATT  
CIN  
DZ  
D3  
Dn  
D1  
RDIM2  
C1  
C2  
Power  
Schottky  
Diode  
VOUT is always higher than VIN  
Therefore: Number of LEDs could be variable!  
RDIM1  
Short to GND  
Short to GND  
Provisional  
Parts  
ILED  
LBO  
DBO  
TDIM1  
ISW  
VOUT  
TSW  
5
PWMO  
2
SWO  
4
SWCS  
6
FBH  
RCS  
7
VCC or VIVCC  
FBL  
IN  
3
9
SGND  
OVFB  
ROVH  
14  
10  
PWM  
PWM-Output  
IC2  
SET  
Rfilter  
Cfilter  
ROVL  
IC1  
TLD5098  
Microcontroller  
(e.g. XC866)  
Input  
13  
11  
Output  
Output  
EN / PWMI  
FREQ / SYNC  
8
1
COMP  
IVCC  
CCOMP  
CIVCC  
GND  
12  
RFREQ  
RCOMP  
Figure 23 LED High Side Return Application Circuit (Boost to Vbb, B2B)  
Reference  
Designator  
Part  
Number  
Value  
Manufacturer  
Type  
Quantity  
D1 - n  
DBO , D3  
DSC1 , DSC2  
DZ  
White  
Osram  
Vishay  
Infineon  
--  
LW W5AP  
SS3H10  
Diode  
Diode  
Diode  
Diode  
variable  
Schottky, 3 A, 100 VR  
Low Power Diode  
Zener Diode  
2
BAS16-03W  
--  
2
1
CBO  
CIN  
100 uF, 80V  
100 uF, 50V  
Panasonic  
Panasonic  
EEVFK1K101Q  
Capacitor  
Capacitor  
1
1
EEEFK1H101GP  
CCOMP  
10 nF  
1 uF, 6.3V  
--  
EPCOS  
EPCOS  
X7R  
MLCC CCNPZC105KBW X7R  
TLD5098  
Capacitor  
Capacitor  
IC  
1
1
1
1
1
4
1
1
1
1
1
1
1
1
CIVCC  
IC1  
Infineon  
IC2  
--  
Infineon  
XC866  
IC  
LBO  
RCOMP, RDIM1, RDIM2,  
RFB  
100 uH  
10 k, 1%  
Coilcraft  
MSS1278T-104ML_  
Inductor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
Transistor  
Transistor  
R
lim  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Infineon  
ERJ3EKF1002V  
ERJ14BQFR82U  
ERJ3EKF2002V  
ERJP06F5102V  
ERJ3EKF1001V  
ERJB1CFR05U  
BSO615CG  
820 m, 1%  
20 k, 1%  
RFREQ  
ROVH  
33.2 k, 1%  
ROVL  
1 k, 1%  
RCS  
50 m, 1%  
TDIM1,TDIM2  
60V Dual N-ch (3.1A) and P-ch. enh. (2A)  
alternativ: 100V N-ch (0.37A),  
alternativ: 60V P-ch (1.9A)  
Infineon  
BSP123  
Infineon  
BSP171P  
N-ch, OptiMOS-T2 100V, 35A  
alternativ: 60V N-ch, 30A  
TSW  
Infineon  
Infineon  
Infineon  
IPD35N10S3L-26  
IPD30N06S4L-23  
BSP318S  
Transistor  
Transistor  
Transistor  
1
1
1
alternativ: 60V N-ch, 2.6A  
Figure 24 Bill of Materials for LED High Side Return Application Circuit  
Datasheet 34  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Application Information  
IBO  
ILoad  
DRV  
L1  
VIN  
LBO  
DBO  
VBO  
VBATT  
CBO  
CIN  
ISW  
constant  
VOUT  
C1  
C2  
RL  
2
4
TSW  
SWO  
14  
1
IN  
Provisional  
Parts  
SWCS  
IVCC  
RCS  
CIVCC  
VCC or VIVCC  
ROVH  
3
9
SGND  
OVFB  
PWM  
IC2  
10  
SET  
Microcontroller  
(e.g. XC866)  
Rfilter  
ROVL  
Cfilter  
IC1  
5
Input  
PWMO TLD5098  
EN / PWMI  
FREQ / SYNC  
COMP  
RFB1  
13  
11  
8
Output  
Output  
6
7
FBH  
FBL  
RFB2  
VREF  
CCOMP  
RFB3  
RFREQ  
RCOMP  
GND  
12  
Figure 25 Boost Voltage Application Circuit  
Reference  
Designator  
Part  
Number  
Value  
Manufacturer  
Type  
Quantity  
1
DBO  
Schottky, 3 A, 100 VR  
Vishay  
SS3H10  
Diode  
CBO  
CIN  
100 uF, 80V  
100 uF, 50V  
Panasonic  
Panasonic  
EEVFK1K101Q  
Capacitor  
Capacitor  
1
1
EEEFK1H101GP  
CCOMP  
CIVCC  
IC1  
10 nF  
100 uF, 6.3V  
--  
TBD  
TBD  
Capacitor  
Capacitor  
IC  
1
1
1
1
1
1
1
1
2
1
1
1
1
Panasonic  
Infineon  
EEFHD0J101R  
TLD5098  
IC2  
--  
Infineon  
XC886  
IC  
LBO  
100 uH  
Coilcraft  
MSS1278T-104ML_  
TBD  
Inductor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
RCOMP  
RFB1,RFB3  
RFB2  
10 k  
TBD  
51 k, 1%  
1 k, 1%  
20 k, 1%  
51 k, 1%  
1 k, 1%  
50 m, 1%  
N-ch, 75 V, 65 mΩ  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Infineon  
ERJ3EKF5102V  
ERJ3EKF1001V  
ERJ3EKF2002V  
ERJP06F5102V  
ERJ3EKF1001V  
ERJB1CFR05U  
IPD22N08S2L-50  
RFREQ  
ROVH  
ROVL  
RCS  
TSW  
Figure 26 Bill of Materials for Boost Voltage Application Circuit  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.  
Datasheet 35 Rev. 1.0, 2010-10-13  
TLD5098EL  
Application Information  
11.1  
Further Application Information  
In fixed frequency mode where an external resistor configures the switching frequency the minimum boost inductor  
is given by the formula in Figure 27.  
L
V
R
f
MIN = Minimum Inductance Required During Fixed Frequency Operation  
BO = Boost Output Voltage  
CS = Current Sense Resistor  
FREQ = Switching Frequency  
V
[V] × R [Ω]  
CS  
BO  
--------------------------------------------------------------------  
L
MIN  
3  
106×10 [V] × f  
[Hz]  
FREQ  
Figure 27 Minimum Inductance Required During Fixed Frequency Operation (B2G configuration)  
In synchronization mode where an external clock source configures the switching frequency the minimum boost  
inductor is given by the formula in Figure 28.  
L
V
R
SYNC = Minimum Inductance Required During Synchronization Operation  
BO = Boost Output Voltage  
CS = Current Sense Resistor  
V
[V] × R [Ω]  
CS  
BO  
-----------------------------------------------------------  
3  
L
SYNC  
106×10 [V] × 250kHz  
Figure 28 Minimum Inductance Required During Synchronization Operation (B2G configuration)  
Please contact us for information regarding the FMEA pin.  
Existing App. Note (Title)  
For further information you may contact http://www.infineon.com/  
Datasheet  
36  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Package Outlines  
12  
Package Outlines  
0.35 x 45˚  
1)  
0.1 C D  
0.1  
3.9  
+0.06  
0.19  
0.08  
C
C
0.64  
0.25  
0.65  
2)  
0.05  
0.2  
0.25  
6
M
M
0.2  
D 8x  
0.15  
C A-B D 14x  
D
Bottom View  
0.2  
3
A
1
7
14  
8
1
7
14  
8
Exposed  
Diepad  
B
0.1 C A-B 2x  
1)  
0.1  
4.9  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Does not include dambar protrusion  
PG-SSOP-14-1,-2,-3-PO V02  
PG-SSOP-14  
Figure 29 PG-SSOP-14  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further package information, please visit our website:  
Dimensions in mm  
http://www.infineon.com/packages.  
Datasheet  
37  
Rev. 1.0, 2010-10-13  
TLD5098EL  
Revision History  
13  
Revision History  
Revision  
Date  
Changes  
Initial Datasheet  
1.0  
2010-10-13  
Datasheet  
38  
Rev. 1.0, 2010-10-13  
Edition 2010-10-13  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2010 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLD5098EP

LED Driver,
INFINEON

TLD5099EP

Display Driver,
INFINEON

TLD5190

H-Bridge DC/DC Controller
INFINEON

TLD5190QU

H-Bridge DC/DC Controller
INFINEON

TLD5190QV

H-Bridge DC/DC Controller
INFINEON

TLD5190_18

H-Bridge DC/DC Controller
INFINEON

TLD5191ES

TLD5191ES 是一款具有内置保护功能的同步 MOSFET H 桥 DC-DC 控制器。 该设计有利于以最高的系统效率和最少的外部组件驱动高功率 LED。 TLD5191ES 具有模拟和数字 (PWM) 调光及嵌入式 PWM 发生器。 开关频率可在 200 kHz 至 700 kHz 范围内调节。 内置扩频开关频率调制和强制连续电流调节模式改善了整体 EMC 行为。 此外,电流模式调节方案提供了一个由小型外部补偿元件维持的稳定调节环路。 可调软启动功能可限制启动时的电流峰值和电压过冲。 TLD5191ES 适用于汽车环境以及工业和消费类应用(例如无线充电)。
INFINEON

TLD5541-1

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1QU

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1QV

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1_18

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD55411QUXUMA1

LED Driver,
INFINEON