TLD5190QV [INFINEON]

H-Bridge DC/DC Controller;
TLD5190QV
型号: TLD5190QV
厂家: Infineon    Infineon
描述:

H-Bridge DC/DC Controller

文件: 总59页 (文件大小:2436K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLD5190  
H-Bridge DC/DC Controller  
Infineon® LITIX™ Power  
Package  
Marking  
PG-VQFN-48-31  
TLD5190QV  
PG-TQFP-48-9  
TLD5190QU  
TLD5190QU  
Sales Name TLD5190QV  
1
Overview  
Features  
Single Inductor high power Buck-Boost controller  
Wide LED forward voltage Range (2 V up to 55 V)  
Wide VIN Range (IC 4.5 V to 40 V, Power 4.5 V to 55 V)  
Switching Frequency Range from 200 kHz to 700 kHz  
Maximum Efficiency in every condition (up to 96%)  
Constant Current (LED) and Constant Voltage Regulation  
EMC optimized device: Features an auto Spread Spectrum  
Open Load, Overvoltages, Shorted LED fault and Overtemperature Diagnostic Outputs  
LED and Input current sense with dedicated monitor Outputs  
Advanced protection features for device and load  
Enhanced Dimming features: Analog and PWM dimming  
LED current accuracy +/- 3%  
Available in a small thermally enhanced PG-VQFN-48-31 or PG-TQFP-48-9 package  
Automotive AEC Qualified  
CIN2  
VIN  
RIIN  
Alternative  
external  
VREG supply  
CIVCC  
IVCC_ext  
IVCC  
VIN  
IIN2  
CIN1  
D2  
D1  
COUT2  
COUT3  
BST1  
BST2  
RFB  
Rfilter  
Cfilter  
CBST1 CBST2  
COUT1  
M1  
M2  
M4  
IIN1  
EN/INUVLO  
HSGD1  
SWN1  
LOUT  
INOVLO  
M3  
CCOMP  
LSGD1  
SWCS  
RCOMP  
COMP  
CSOFT_START  
SOFT_START  
High  
Power  
LED Load  
RFREQ  
FREQ  
SGND  
SYNC of other DCDC  
CLKOUT  
SYNC  
PGND1  
PGND2  
LSGD2  
SWN2  
HSGD2  
VFB  
µC SYNC signal  
RSYNC  
Spread Spectrum ON/OFF  
Digital dimminig  
Spread_spectrum  
PWMI  
RPWMI  
IVCC_ext  
VREF  
SET  
CREF  
FBH  
FBL  
RSET  
Analog dimminig  
RSENSE  
RSENSE  
IINMON  
IOUTMON  
Advanced monitoring  
EF1  
EF2  
Errorflag monitoring  
VSS AGND  
Figure 1  
Application Drawing - TLD5190 as current regulator  
Datasheet  
www.infineon.com  
1
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Overview  
Description  
The TLD5190 is a synchronous MOSFET H-Bridge DC/DC controller with built in protection features. This  
concept is beneficial for driving high power LEDs with maximum system efficiency and minimum number of  
external components. The TLD5190 offers both analog and digital (PWM) dimming.The switching frequency is  
adjustable in the range of 200 kHz to 700 kHz. It can be synchronized to an external clock source. A built in  
Spread Spectrum switching frequency modulation and the forced continuous current regulation mode  
improve the overall EMC behavior. Furthermore the current mode regulation scheme provides a stable  
regulation loop maintained by small external compensation components. The adjustable soft start feature  
limits the current peak as well as voltage overshoot at start-up. The TLD5190 is suitable for use in the harsh  
automotive environment.  
Table 1  
Product Summary  
Power Stage input voltage range  
Device Input supply voltage range  
VPOW  
4.5 V … 55 V  
4.5 V … 40 V  
VVIN  
Maximum output voltage (depending by the  
application conditions)  
VOUT(max)  
55 V as LED Driver Boost Mode  
50 V as LED Driver Buck Mode  
50 V as Voltage regulator  
Switching Frequency range  
fSW  
200 kHz... 700 kHz  
Typical NMOS driver on-state resistance at  
RDS(ON_PU)  
2.3  
Tj = 25°C (Gate Pull Up)  
Typical NMOS driver on-state resistance at  
RDS(ON_PD)  
1.2 Ω  
Tj = 25°C (Gate Pull Down)  
Protective Functions  
Over load protection of external MOSFETs  
Shorted load, open load, output overvoltage protection  
Input overvoltage and undervoltage protection  
Thermal shutdown of device with autorestart behavior  
Electrostatic discharge protection (ESD)  
Diagnostic Functions  
Diagnostic information via Error Flags  
Open load detection in ON-state  
Device Overtemperature shutdown  
Advanced diagnostic functions provide ILED and IIN information  
Applications  
Especially designed for driving high power LEDs in automotive applications  
Automotive Exterior Lighting: full LED headlamp assemblies (Low Beam, High Beam, Matrix Beam, Pixel  
Light)  
General purpose current/voltage controlled DC/DC LED driver  
Datasheet  
2
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Block Diagram  
2
Block Diagram  
Figure 2  
Block Diagram - TLD5190  
Datasheet  
3
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
Figure 3  
Pin Configuration - TLD5190  
Datasheet  
4
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Pin Configuration  
3.2  
Pin Definitions and Functions  
1)  
Pin  
Symbol  
I/O  
-
Function  
Power Supply  
1, 12,  
15, 45,  
48  
n.c.  
Not connected, tie to AGND on the Layout;  
44  
VIN  
-
I
Power Supply Voltage;  
Supply for internal biasing.  
47  
IVCC_EXT  
PD External LDO input;  
Input to alternatively supply internal Gate Drivers via an external LDO.  
Connect to IVCC pin to use internal LDO to supply gate drivers. Must not  
be left open.  
5, 8  
26  
40  
-
PGND1, 2  
VSS  
-
-
-
-
Power Ground;  
Ground for power potential. Connect externally close to the chip.  
Digital GPIO Ground;  
Ground for GPIO pins.  
AGND  
EP  
Analog Ground;  
Ground Reference  
Exposed Pad;  
Connect to external heatspreading Cu area (e.g. inner GND layer of  
multilayer PCB with thermal vias).  
Gate Driver Stages  
2
HSGD1  
O
O
Highside Gate Driver Output 1;  
Drives the top n-channel MOSFET with a voltage equal to VIVCC_EXT  
superimposed on the switch node voltage SWN1. Connect to gate of  
external switching MOSFET.  
11  
HSGD2  
Highside Gate Driver Output 2;  
Drives the top n-channel MOSFET with a voltage equal to VIVCC_EXT  
superimposed on the switch node voltage SWN2. Connect to gate of  
external switching MOSFET.  
6
7
LSGD1  
LSGD2  
O
O
Lowside Gate Driver Output 1;  
Drives the lowside n-channel MOSFET between GND and VIVCC_EXT  
Connect to gate of external switching MOSFET.  
.
.
Lowside Gate Driver Output 2;  
Drives the lowside n-channel MOSFET between GND and VIVCC_EXT  
Connect to gate of external switching MOSFET.  
4
SWN1  
SWN2  
IVCC  
IO  
IO  
O
Switch Node 1;  
SWN1 pin swings from a diode voltage drop below ground up to VIN.  
9
Switch Node 2;  
SWN2 pin swings from ground up to a diode voltage drop above VOUT  
.
46  
Internal LDO output;  
Used for internal biasing and gate driver supply. Bypass with external  
capacitor close to the pin. Pin must not be left open.  
Datasheet  
5
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Pin Configuration  
1)  
Pin  
Symbol  
I/O  
Function  
Inputs and Outputs  
23  
25  
28  
29  
30  
31  
41  
TEST1  
-
-
-
-
-
-
I
Test Pin;  
Used for Infineon end of line test, connect to GND in application.  
TEST2  
Test Pin;  
Used for Infineon end of line test, connect to GND in application.  
TEST3  
Test Pin;  
Used for Infineon end of line test, connect to GND in application.  
TEST4  
Test Pin;  
Used for Infineon end of line test, connect to GND in application.  
TEST5  
Test Pin;  
Used for Infineon end of line test, connect to GND in application.  
TEST6  
Test Pin;  
Used for Infineon end of line test, connect to GND in application.  
EN/INUVLO  
PD Enable/Input Under Voltage Lock Out;  
Used to put the device in a low current consumption mode, with  
additional capability to fix an undervoltage threshold via external  
components. Pin must not be left open.  
35  
34  
FREQ  
SYNC  
I
I
Frequency Select Input;  
Connect external resistor to GND to set frequency.  
PD Synchronization Input;  
Apply external clock signal for synchronization.  
24  
13  
PWMI  
FBH  
I
I
PD Control Input; Digital input 5 V or 3.3 V.  
Output current Feedback Positive;  
Non inverting Input (+).  
14  
3
FBL  
I
Output current Feedback Negative;  
Inverting Input (-).  
BST1  
IO  
Bootstrap capacitor;  
Used for internal biasing and to drive the Highside Switch HSGD1.  
Bypass to SWN1 with external capacitor close to the pin. Pin must not be  
left open.  
10  
BST2  
IO  
Bootstrap capacitor;  
Used for internal biasing and to drive the Highside Switch HSGD2.  
Bypass to SWN2 with external capacitor close to the pin. Pin must not be  
left open.  
17  
18  
SWCS  
SGND  
I
I
Current Sense Input;  
Inductor current measurement - Non Inverting Input (+).  
Current Sense Ground;  
Inductor current sense - Inverting Input (-).  
Route as Differential net with SWCS on the Layout.  
42  
IIN1  
IIN2  
I
I
Input Current Monitor Positive;  
Non Inverting Input (+), connect to VIN if input current monitor is not  
needed.  
43  
Input Current Monitor Negative;  
Inverting Input (-), connect to VIN if input current monitor is not needed.  
Datasheet  
6
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Pin Configuration  
1)  
Pin  
19  
Symbol  
COMP  
I/O  
O
Function  
Compensation Network Pin;  
Connect R and C network to pin for stability phase margin adjustment.  
38  
36  
SOFT_START  
INOVLO  
O
I
Softstart configuration Pin;  
Connect a capacitor CSOFT_START to GND to fix a soft start ramp default  
time.  
Input Overvoltage Protection Pin;  
Define an upper voltage threshold and switches OFF the device in case  
of overvoltages on the VIN supply. Must not be left open.  
20  
22  
VFB  
SET  
I
I
Voltage Loop Feedback Pin;  
VFB is intended to set output protection functions.  
Analog current sense adjustment Pin;  
A voltage VSET between 0.2 V and 1.5 V will adjust the ILED or VOUT in a  
linear relation.  
37  
39  
16  
21  
SPREAD_SPECTR  
UM  
I
PD Spread Spectrum Pin;  
This pin is enabling and disabling the SPREAD SPECTRUM function. This  
feature is beneficial to improve the EMC performance.  
IINMON  
IOUTMON  
VREF  
O
O
O
Input current monitor output;  
Monitor pin that produces a voltage that is 20 times the voltage VIN1-IN2  
IINMON will be equal 1 V when VIIN1-VIIN2 = 50 mV.  
.
Output current monitor output;  
Monitor pin that produces a voltage that is 200 mV + 8 times the voltage  
VFBH-FBL. IOUTMON will be equal 1.4 V when VFBH-FBL = 150 mV.  
PD Voltage Reference Output Pin;  
Supplies an accurate 2 V output voltage for standalone analog dimming  
and LED temperature compensation via external resistors. Bypass with  
an external 100nF capacitor close to the pin. Pin must not be left open.  
Logic Outputs  
27  
33  
32  
CLKOUT  
O
O
O
Clock Output Pin;  
Switching Oscillator output signal to supply additional SYNC Inputs of  
other DCDC devices (beneficial for standalone operations without µC).  
EF1  
EF2  
Error Flag 1;  
An open drain output which is pulled to LOW when an output Short to  
GND or Overtemperature occurs.  
Error Flag 2;  
An open drain output which is pulled to LOW when an OPEN load,  
Overvoltages or Overtemperature occurs.  
1) O: Output, I: Input,  
PD: pull-down circuit integrated,  
PU: pull-up circuit integrated  
Datasheet  
7
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings1)  
TJ = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Supply Voltages  
VIN  
Supply Input  
VVIN  
-0.3  
-0.3  
60  
6
V
V
P_4.1.1  
P_4.1.3  
IVCC  
VIVCC  
Internal Linear Voltage Regulator  
Output voltage  
IVCC_EXT  
VIVCC_EXT -0.3  
6
V
V
P_4.1.4  
P_4.1.5  
External Linear Voltage Regulator Input  
voltage  
VREF  
VREF  
-0.3  
3.6  
Voltage reference output  
Gate Driver Stages  
LSGD1,2 - PGND1,2  
Lowside Gatedriver voltage  
VLSGD1,2- -0.3  
5.5  
5.5  
60  
6
V
V
V
V
V
V
V
V
P_4.1.54  
P_4.1.55  
P_4.1.6  
P_4.1.7  
P_4.1.8  
P_4.1.9  
P_4.1.10  
P_4.1.11  
PGND1,2  
HSGD1,2 - SWN1,2  
Highside Gatedriver voltage  
VHSGD1,2- -0.3  
SWN1,2  
SWN1, SWN2  
switching node voltage  
VSWN1, 2  
-1  
(BST1-SWN1), (BST2-SWN2)  
Boostrap voltage  
VBST1,2-  
-0.3  
-0.3  
-0.3  
-0.3  
-0.5  
SWN1,2  
BST1, BST2  
Boostrap voltage related to GND  
VBST1, 2  
65  
0.3  
0.3  
0.5  
SWCS  
VSWCS  
VSGND  
Switch Current Sense Input voltage  
SGND  
Switch Current Sense GND voltage  
SWCS-SGND  
VSWCS-  
Switch Current Sense differential  
voltage  
SGND  
PGND1,2  
Power GND voltage  
VPGND1,2  
-0.3  
0.3  
60  
V
V
P_4.1.28  
P_4.1.12  
High voltage Pins  
IIN1, IIN2  
VIIN1, 2  
-0.3  
Input Current monitor voltage  
Datasheet  
8
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings1) (cont’d)  
TJ = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
P_4.1.13  
Min.  
-0.5  
Typ. Max.  
IIN1-IIN2  
VIIN1-IIN2  
0.5  
V
Input Current monitor differential  
voltage  
FBH, FBL  
Feedback Error Amplifier voltage  
VFBH, FBL -0.3  
VFBH-FBL -0.5  
60  
V
V
P_4.1.14  
P_4.1.15  
FBH-FBL  
0.5  
Feedback Error Amplifier differential  
voltage  
EN/INUVLO  
VEN/INUVLO -0.3  
60  
V
P_4.1.16  
Device enable/input undervoltage  
lockout  
Digital (I/O) Pins  
PWMI  
Digital Input voltage  
VPWMI  
-0.3  
-0.3  
-0.3  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
P_4.1.17  
P_4.1.22  
P_4.1.23  
P_4.1.24  
SYNC  
VSYNC  
Synchronization Input voltage  
CLKOUT  
Clock Output voltage  
VCLKOUT  
SPREAD_SPECTRUM  
VSPREAD_SP -0.3  
Spread Spectrum Input voltage  
ECTRUM  
Analog Pins  
VFB  
VVFB  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
5.5  
5.5  
5.5  
5.5  
3.6  
3.6  
3.6  
3.6  
5.5  
V
V
V
V
V
V
V
V
V
P_4.1.25  
P_4.1.26  
P_4.1.27  
P_4.1.29  
P_4.1.30  
P_4.1.31  
P_4.1.32  
P_4.1.33  
P_4.1.34  
Loop Input voltage  
INOVLO  
Input overvoltage lockout  
VINOVLO  
VEF1,2  
VSET  
EF1, 2  
Error Flags output voltage  
SET  
Analog dimming Input voltage  
COMP  
VCOMP  
Compensation Input voltage  
SOFT_START  
Softstart Voltage  
VSOFT_STAR -0.3  
T
FREQ  
VFREQ  
-0.3  
-0.3  
Voltage at frequency selection pin  
IINMON  
Voltage at input monitor pin  
VIINMON  
IOUTMON  
VIOUTMON -0.3  
Voltage at output monitor pin  
Temperatures  
Datasheet  
9
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings1) (cont’d)  
TJ = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
-40  
Typ. Max.  
Junction Temperature  
Storage Temperature  
Tj  
150  
150  
°C  
°C  
P_4.1.35  
P_4.1.36  
Tstg  
-55  
ESD Susceptibility  
ESD Resistivity of all Pins  
ESD Resistivity to GND  
ESD Resistivity of corner Pins to GND  
VESD,HBM -2  
VESD,CDM -500  
VESD,CDM_c -750  
orner  
2
kV HBM2)  
P_4.1.37  
P_4.1.38  
P_4.1.39  
500  
750  
V
V
CDM3)  
CDM3)  
1) Not subject to production test, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1  
Note:  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Integrated protection functions are designed to prevent IC destruction under fault conditions  
described in the datasheet. Fault conditions are considered as “outside” normal operating range.  
Protection functions are not designed for continuous repetitive operation.  
4.2  
Functional Range  
Table 3  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
4.5  
Typ. Max.  
1)  
Device Extended Supply Voltage  
Range  
VVIN  
VVIN  
40  
V
P_4.2.1  
P_4.2.2  
Device Nominal Supply Voltage  
Range  
8
36  
V
1)  
Power Stage Voltage Range  
Junction Temperature  
VPOW  
Tj  
4.5  
-40  
55  
V
P_4.2.5  
P_4.2.4  
150  
°C  
1) Not subject to production test, specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
4.3  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Datasheet  
10  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
General Product Characteristics  
Table 4  
Parameter  
Symbol  
Values  
Typ.  
0.9  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1) 2)  
Junction to Case  
RthJC  
RthJA  
K/W  
K/W 3) 2s2p  
P_4.3.1  
P_4.3.2  
Junction to Ambient  
25  
1) Not subject to production test, specified by design.  
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed  
to ambient temperature). Ta = 25°C; The IC is dissipating 1 W.  
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area  
at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board has  
2 outer copper layers (2 x 70 µm Cu) and 2 inner copper layers (2 x 35 µm Cu). A thermal via (diameter = 0.3 mm and  
25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner  
layer and second outer layer (bottom) of the JEDEC PCB. Ta = 25°C; The IC is dissipating 1 W.  
Datasheet  
11  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Power Supply  
5
Power Supply  
The TLD5190 is supplied by the following pins:  
VIN (main supply voltage)  
IVCC_EXT (supply for internal gate driver stages)  
The VIN supply provides internal supply voltages for the analog and digital blocks.  
IVCC_EXT is the supply for the low side driver stages. This supply is used also to charge, through external  
Schottky diodes, the bootstrap capacitors which provide supply voltages to the high side driver stages. If no  
external voltage is available this pin must be shorted to IVCC, which is the output of an internal 5 V LDO.  
The supply pins VIN and IVCC_EXT have undervoltage detections.  
Undervoltage on IVCC_EXT or IVCC voltages forces a deactivation of the driver stages, thus stopping the  
switching activity.  
Moreover the double function pin EN/INUVLO can be used as an input undervoltage protection by placing a  
resistor divider from VIN to GND (refer to Chapter 10.3).  
If EN/INUVLO undervoltage is detected, it will turn-off the IVCC voltage regulator and stop switching.  
Figure 4 shows a basic concept drawing of the supply domains and interactions among pins VIN and  
IVCC/IVCC_EXT.  
VIN  
VREG (5V)  
R1  
IVCC  
Internal pre-regulated  
EN/INUVLO  
voltage Supply  
Undervoltage  
detection  
R2  
IVCC_EXT  
VREG  
digital  
VREG  
analog  
LS - Drivers  
HS - Drivers  
PGND  
BSTx  
Bandgap  
Reference  
LOGIC  
SWNx  
Figure 4  
Power Supply Concept Drawing  
Datasheet  
12  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Power Supply  
Usage of EN/INUVLO pin in different applications  
The pin EN/INUVLO is a double function pin and can be used to put the device into a low current consumption  
mode. An undervoltage threshold should be fixed by placing an external resistor divider (A) in order to avoid  
low voltage operating conditions. This pin can be driven by a µC-port as shown in (B) .  
A
B
Vin  
Vin  
VIN  
VIN  
R1  
R2  
R1  
R2  
EN/INUVLO  
GND  
EN/INUVLO  
GND  
µC Port  
Figure 5  
Usage of EN/INUVLO pin in different applications  
Datasheet  
13  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Power Supply  
5.1  
Different Power States  
TLD5190 has the following power states:  
SLEEP state  
IDLE state  
ACTIVE state  
The transition between the power states is determined according to these variables after a filter time of max.  
3 clock cycles:  
VIN level  
EN/INUVLO level  
IVCC level  
IVCC_EXT level  
The state diagram including the possible transitions is shown in Figure 6.  
The Power-up condition is entered when the supply voltage VVIN exceeds its minimum supply voltage  
threshold VVIN(ON)  
.
SLEEP  
When the TLD5190 is in the SLEEP state, all outputs are OFF, independently from the supply voltages VIN, IVCC  
and IVCC_EXT. The current consumption is low. Refer to parameter: IVIN(SLEEP)  
.
The transition from SLEEP to ACTIVE state requires a specified time: tACTIVE  
.
IDLE  
In IDLE state the internal voltage regulator is working. Diagnosis functions are not available. The output  
drivers are switched OFF, independently from the supply voltages VIN, IVCC and IVCC_EXT.  
ACTIVE  
In active state the device will start switching activity to provide power at the output only when PWMI = HIGH.  
To start the Highside gate drivers HSGD1,2 the voltage level VBST1,2 - VSWN1,2 needs to be above the threshold  
VBST1,2 - VSWN1,2_UVth. In ACTIVE state the device current consumption via VIN is dependent on the external  
MOSFET used and the switching frequency fSW  
.
Power-up  
SLEEP  
EN/INUVLO = HIGH  
EN/INUVLO = LOW  
EN/INUVLO = LOW  
EN/INUVLO = LOW  
ACTIVE  
IDLE  
VIN = LOW  
or IVCC = LOW  
or IVCC_EXT = LOW  
VIN = HIGH  
& IVCC = HIGH  
& IVCC_EXT = HIGH  
Figure 6  
Simplified State Diagram  
Datasheet  
14  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Power Supply  
5.2  
Electrical Characteristics  
Table 5  
EC Power Supply  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Power Supply VIN  
Input Voltage Startup  
VVIN(ON)  
4.7  
4.5  
6
V
V
VIN increasing;  
EN/INUVLO = HIGH;  
IVCC = IVCC_EXT =  
10 mA;  
P_5.3.1  
V
Input Undervoltage switch OFF VVIN(OFF)  
VIN decreasing;  
VEN/INUVLO = HIGH;  
IVCC = IVCC_EXT =  
10 mA;  
P_5.3.14  
P_5.3.2  
P_5.3.3  
Device operating current  
IVIN(ACTIVE)  
4.4  
mA 1)ACTIVE mode;  
CLKOUT freq.  
300 KHz;  
VPWMI = 0 V;  
VIN Sleep mode supply current IVIN(SLEEP)  
1.5  
µA  
VEN/INUVLO = 0 V;  
VIN = 13.5 V;  
VIVCC = VIVCC_EXT= 0 V;  
EN/INUVLO Pin characteristics  
Input Undervoltage falling  
Threshold  
VEN/INUVLOth 1.6  
1.75 1.9  
90  
V
P_5.3.7  
P_5.3.8  
P_5.3.9  
P_5.3.10  
1)  
EN/INUVLO Rising Hysteresis  
VEN/INUVLO(hy  
mV  
st)  
EN/INUVLO input Current LOW IEN/INUVLO(LO 0.45 0.89 1.34 µA  
VEN/INUVLO = 0.8 V;  
VEN/INUVLO = 2 V;  
W)  
EN/INUVLO input Current HIGH IEN/INUVLO(HI 1.1  
2.2  
3.3  
0.7  
µA  
GH)  
Timings  
1)  
SLEEP mode to ACTIVE time  
tACTIVE  
ms  
P_5.3.11  
VIVCC = VIVCC_EXT  
IVCC = 10 µF;  
VIN = 13.5 V;  
;
C
1) Not subject to production test, specified by design.  
Datasheet  
15  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
6
Regulator Description  
The TLD5190 includes all of the functions necessary to provide constant current to the output as usually  
required to drive LEDs. A voltage mode regulation can also be implemented (Refer to Chapter 6.6).  
It is designed to control 4 gate driver outputs in a H-Bridge topology by using only one inductor and 4 external  
MOSFETs. This topology is able to operate in high power BOOST, BUCK-BOOST and BUCK mode applications  
with maximum efficiency.  
The transition between the different regulation modes is done automatically by the device itself, with respect  
to the application boundary conditions.  
The transition phase between modes is seamless.  
6.1  
Regulator Diagram Description  
The TLD5190 includes two analog current control inputs (IIN1, IIN2) to limit the maximum Input current (Block  
A1 and A7 in Figure 7).  
A second analog current control loop (A5, A6 with complessive gain = IFBxgm) connected to the sensing pins  
FBL, FBH regulates the output current.  
The regulator function is implemented by a pulse width modulated (PWM) current mode controller. The error  
in the output current loop is used to determine the appropriate duty cycle to get a constant output current.  
An external compensation network (RCOMP, CCOMP) is used to adjust the control loop to various application  
boundary conditions.  
The inductor current for the current mode loop is sensed by the RSWCS resistor.  
RSWCS is used also to limit the maximum external switches / inductor current.  
If the Voltage across RSWCS exceeds its overcurrent threshold (VSWCS_buck or VSWCS_boost for buck or boost  
operation respectively) the device reduces the duty cycle in order to bring the switches current below the  
imposed limit.  
The current mode controller has a built-in slope compensation as well to prevent sub-harmonic oscillations.  
The control loop logic block (LOGIC) provides a PWM signal to four internal gate drivers. The gate drivers  
(HSGD1,2 and LSGD1,2) are used to drive external MOSFETs in an H-Bridge setup . Once the soft start expires  
a forced CCM regulation mode is performed.  
The control loop block diagram displayed in Figure 7 shows a typical constant current application. The voltage  
across RFB sets the output current. RIN is used to fix the maximum input current.  
Datasheet  
16  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
RIN  
IIN  
RFB  
IOUT  
VIN  
Rfilter  
M4  
M3  
M1  
COUT  
HSGD2  
LSGD2  
HSGD1  
FBH  
FBL  
VOUT  
Cfilter  
LOUT  
+
-
M2  
A5  
LSGD1  
IIN1  
IIN2  
ISWCSx  
SWCS  
SGND  
BOOST  
+
-
A2  
A1  
A8  
A9  
HSGD1  
HSGD2  
RSWCS  
SLOPE SELECTION  
& Compensation  
LOGIC  
CLK  
LSGD1  
LSGD2  
A3  
BUCK  
A6  
A7  
SET  
Vi_REF  
COMP  
RCOMP  
CCOMP  
VCOMP  
Figure 7  
Regulator Block Diagram - TLD5190  
Datasheet  
17  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
6.2  
Adjustable Soft Start Ramp  
The soft start routine limits the current through the inductor and the external MOSFET switches during  
initialization to minimize potential overshoots at the output.  
The soft start routine is applied:  
At first turn on (first PWM rise after EN = High)  
After Output Short to GND or Open Load detection  
After Input Overvoltage detection  
The soft start rising edge gradually increases the current of the inductor (LOUT) over tSOFT_START by clamping the  
COMP voltage . The soft start ramp is defined by a capacitor placed at the SOFT_START pin.  
Selection of the SOFT_START capacitor (CSOFT_START) can be done according to the approximate formula  
described in Equation (6.1):  
Vss _ th _ eff  
(6.1)  
tSOFT _ START  
=
CSOFT _ START  
ISOFT _ START(PU )  
Note:  
Vss_th_eff is the soft start effectiveness threshold, that depends on load condition. Its value is about  
0.7 V for the buck mode and 1.4 V for the boost mode  
The SOFT START pin is also used to implement a fault mask and wait-before-retry time, on rising and falling  
edge respectively, see and chapter Chapter 10.2 for details.  
If an open load or a short on the output is detected, a pull-down current source ISOFT_START_PD (P_6.4.20) is  
activated. Through a pull-up resistor connected from VREF to the SOFT START pin it is possible to source a  
current higher than ISOFT_START_PD, the TLD5190 will latch OFF until the EN/INUVLO pin is toggled. Without any  
resistor to VREF the pull-down current decreases until VSOFT_START_RESET (P_6.4.22) is reached (the pull-up  
current source turns on again). If the fault condition hasn’t been removed until VSOFT_START_LOFF (P_6.4.21) is  
reached, the pull-down current source ISOFT_START_PD turns on again initiating a new cycle. This will continue  
until the fault is removed.  
If an input overvoltage is detected the soft start is kept low as long as the overvoltage remains.  
At first PWMI rise after EN = High, the internal PWM is extended till one of the 2 following condition is reached:  
Until VSOFT_START exceeds VSoft_Start1,2_LOFF  
Until VFBH-FBL exceeds VFBH_FBL_OL  
Datasheet  
18  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
8 clock cycles  
VFB1  
VVFB_S2G  
SWN  
SHORT  
DETECTION  
I
SOFT_START_PU  
SOFT_START_PD  
ISOFT_START  
VSOFT_START  
I
V
soft_Start_reg  
V
soft_Start_LOFF  
Vsoft_Start_RESET  
Application  
Status  
Normal  
Operation  
Normal  
Operation  
Vout shorted to GND  
Event  
Vout short to GND  
applied  
Event  
Vout short to GND  
removed  
Figure 8  
Soft Start timing diagram on a short to ground detected by the VFB pin  
6.3  
Switching Frequency setup  
The switching frequency can be set from 200 kHz to 700 kHz by an external resistor connected from the FREQ  
pin to GND or by supplying a sync signal as specified in chapter Chapter 11.2. Select the switching frequency  
with an external resistor according to the graph in Figure 9 or the following approximate formulas.  
fSW [kHz] = 5375*(RFREQ[kΩ])0.8  
RFREQ[kΩ]= 46023*(fSW[kHz])1.25  
(6.2)  
(6.3)  
Figure 9  
Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ  
Datasheet  
19  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
6.4  
Operation of 4 switches H-Bridge architecture  
Inductor LOUT connects in an H-Bridge configuration with 4 external N channel MOSFETs (M1, M2, M3 & M4)  
Transistor M1 and M3 provides a path between VIN and ground through LOUT in one direction (Driven by top  
and bottom gate drivers HSGD1 and LSGD2)  
Transistor M2 and M4 provides a path between VOUT and ground through LOUT in the other direction  
(Driven by top and bottom gate drivers HSGD2 and LSGD1)  
Nodes SWN1, SWN2, voltage across RSWCS, input and load currents are also monitored by the TLD5190  
BOOST  
BUCK-BOOST  
BUCK  
MODE  
MODE  
MODE  
M1  
M2  
M3  
M4  
ON  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
OFF  
ON  
OFF  
PWM  
PWM  
Figure 10 4 switches H-Bridge architecture Transistor Status summary  
VIN  
VOUT  
M1  
M4  
M3  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
LOUT  
SWN1  
SWN2  
M2  
RSWCS  
Figure 11 4 switches H-Bridge architecture overview  
6.4.1  
Boost mode (VIN < VOUT)  
M1 is always ON, M2 is always OFF  
Every cycle M3 turns ON first and inductor current is sensed (peak current control)  
M3 stays ON until the upper reference threshold is reached across RSWCS (Energizing)  
Datasheet  
20  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
M3 turns OFF, M4 turns ON until the end of the cycle (Recirculation)  
Switches M3 and M4 alternate, behaving like a typical synchronous boost Regulator (see Figure 12)  
VIN  
VOUT  
ON  
M1  
M4  
(2) Recirculation  
ILOUT  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
LOUT  
SWN1  
SWN2  
(1) Energizing  
OFF  
M2  
M3  
t
M1  
+
M4  
M1  
+
M4  
M1  
+
M4  
M1+M3  
M1+M3  
M1+M3  
RSWCS  
Figure 12 4 switches H-Bridge architecture in BOOST mode  
Simplified comparison of 4 switches H-Bridge architecture to traditional asynchronous Boost approach.  
M2 is always OFF in this mode (open)  
M1 is always ON in this mode (closed connection of inductor to VIN)  
M4 acts as a synchronous diode, with significantly lower conduction power losses (I2 x RDSON vs. 0.7 V x I)  
Note:  
Diode is source of losses and lower system efficiency!  
LOUT  
LOUT  
D1  
M1 (ON)  
M4  
VIN  
VOUT  
VOUT  
VIN  
M2  
(OFF)  
HSGD2  
LSGD2  
HSGD1  
M3  
M3  
LSGD1  
RSWCS  
RSWCS  
b) standard asynchronous BOOSTER  
a) 4 switch architecture BOOSTER  
Figure 13 4 switches H-Bridge architecture in BOOST mode compared to standard async Booster  
6.4.2  
Buck mode (VIN > VOUT)  
M4 is always ON, M3 is always OFF  
Every cycle M2 turns ON and inductor current is sensed (valley current control)  
M2 stays ON until the lower reference threshold is reached across RSWCS (Recirculation)  
Datasheet  
21  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
M2 turns OFF, M1 turns ON until the end of the cycle (Energizing)  
Switches M1 and M2 alternate, behaving like a typical synchronous BUCK Regulator (see Figure 14)  
VIN  
VOUT  
ILOUT  
ON  
M1  
M4  
(3) Energizing  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
LOUT  
SWN1  
SWN2  
(4) Recirculation  
t
OFF  
M1  
+
M4  
M1  
+
M4  
M1  
+
M4  
M2  
M3  
M2+M4  
M2+M4  
M2+M4  
RSWCS  
Figure 14 4 switches H-Bridge architecture in BUCK mode  
Simplified comparison of 4 switches architecture to traditional asynchronous Buck approach.  
M3 is always OFF in this mode (open).  
M4 is always ON in this mode (closed connection inductor to VOUT).  
M2 acts as a synchronous diode, with significantly lower conduction losses (I2 x RDSON vs. 0.7 V x I)  
LOUT  
M4  
(ON)  
LOUT  
M1  
M1  
VIN  
VOUT  
VIN  
VOUT  
HSGD1  
LSGD1  
M3  
(OFF)  
HSGD1  
HSGD2  
M2  
LSGD2  
D1  
RSWCS  
b) standard asynchronous BUCK  
a) 4 switch architecture BUCK  
Figure 15 4 switches H-Bridge architecture in BUCK mode compared to standard async BUCK  
6.4.3  
Buck-Boost mode (VIN ~ VOUT)  
When VIN is close to VOUT the controller is in Buck-Boost operation  
All switches are switching in buck-boost operation. The direct energy transfer from the Input to the output  
(M1+M4 = ON) is beneficial to reduce ripple current and improves the energy efficiency of the Buck-Boost  
control scheme  
The two buck boost waveforms and switching behaviors are displayed in Figure 16 below  
Datasheet  
22  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
VIN VOUT  
ILOUT  
VIN  
VOUT  
M1  
M4  
(2) Direct Transfer  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
(4) Direct Transfer  
M1  
+
M3  
M1  
+
M4  
M1  
+
M4  
M1  
+
M3  
M1  
+
M4  
M1  
+
M4  
M1  
+
M3  
M1  
+
M4  
M1  
+
M4  
t
SWN1  
SWN2  
LOUT  
(3) Recirculation  
(1) Energizing  
VIN VOUT  
ILOUT  
M2  
M3  
RSWCS  
M2  
+
M1  
+
M1  
+
M2  
+
M1  
+
M1  
+
M2  
+
M1  
+
M1  
+
t
M4  
M4  
M4  
M4  
M4  
M4  
M4  
M4  
M4  
Figure 16 4 switches H-Bridge architecture in BUCK-BOOST mode  
6.5  
Flexible current sense  
The flexible current sense implementation enables highside and lowside current sensing.  
The Figure 17 displays the application examples for the highside and lowside current sense concept.  
VIN  
VIN  
Highside  
Sensing  
Lowside  
Sensing  
FBH  
FBL  
FBH  
FBL  
Figure 17 Highside and lowside current sensing - TLD5190  
Datasheet  
23  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
6.6  
Programming Output Voltage (Constant Voltage Regulation)  
For a voltage regulator, the output voltage can be set by selecting the values RFB1, RFB2 and RFB3 according to  
the following Equation (6.4):  
VFBH FBL  
VFBH FBL  
VOUT = IFBH  
+
RFB1  
+
IFBL RFB 3 + VFBH FBL  
(6.4)  
RFB 2  
RFB 2  
If Analog dimming is performed, due to the variations on the IFBL (IFBL_HSS (P_6.4.9) and IFBL_LSS (P_6.4.40))  
current on the entire voltage spanning, a non linearity on the output voltage may be observed. To minimize  
this effect RFBx resistors should be properly dimensioned.  
VOUT  
RFB1  
IFBH  
FBH  
RFB2  
IFBL  
FBL  
RFB3  
Figure 18 Programming Output Voltage (Constant Voltage Regulation)  
Datasheet  
24  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
6.7  
Electrical Characteristics  
Table 6  
EC Regulator  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Regulator:  
V
(FBH-FBL) threshold  
V(FBH-FBL) 145.5 150  
154.5 mV VSET = 2 V;  
P_6.4.1  
P_6.4.6  
V(FBH-FBL) threshold @ analog  
dimming 10%  
V(FBH-  
10  
65  
17  
-7.5  
-45  
-
15  
20  
155  
43  
-2.5  
-20  
-
mV VSET = 0.32 V;  
FBL)_10  
1)  
FBH Bias current @ highside  
sensing setup  
IFBH_HSS  
110  
30  
µA  
µA  
µA  
µA  
V
V
= 7 V;  
P_6.4.8  
P_6.4.9  
P_6.4.39  
P_6.4.40  
P_6.9.1  
P_6.9.2  
FBL  
VFBH - FBL = 150 mV;  
1)  
FBL Bias current @ highside  
sensing setup  
IFBL_HSS  
IFBH_LSS  
IFBL_LSS  
V
= 7 V;  
FBL  
VFBH - FBL = 150 mV;  
1)  
FBH Bias current @ lowside  
sensing setup  
-4  
V
= 0 V;  
FBL  
VFBH - FBL = 150 mV;  
1)  
FBL Bias current @ lowside  
sensing setup  
-30  
2
V
= 0 V;  
FBL  
VFBH - FBL = 150 mV;  
1)  
FBH-FBL High Side sensing  
entry threshold  
VFBH_HSS_in  
V
V
increasing;  
FBH1  
c
1)  
FBH-FBL High Side sensing exit VFBH_HSS_d  
-
1.75  
-
V
decreasing;  
FBH  
threshold  
ec  
1)  
OUT Current sense Amplifier gm IFBxgm  
890  
1.4  
91  
µS  
V
P_6.4.10  
P_6.4.11  
P_6.4.12  
Output Monitor Voltage  
VIOUTMON 1.33  
1.47  
93  
VFBH - FBL = 150 mV;  
1)  
Maximum BOOST Duty Cycle  
DBOOST_MA 89  
%
f = 300 kHZ;  
sw  
X
Input Current Sense threshold VIIN1-IIN2  
VIIN1-IIN2  
46  
50  
54  
mV  
mS  
V
P_6.4.13  
P_6.4.14  
P_6.4.15  
1)  
Input Current sense Amplifier IIN_gm  
gm  
2.12  
1
1)  
Input current Monitor Voltage VIINMON  
0.95  
1.05  
60  
V
= 50 mV;  
IIN1 - IIN2  
V
1)  
IIN1 = VVIN(ON) to 55 V;  
Switch Peak Over Current  
Threshold - BOOST  
VSWCS_boost 40  
VSWCS_buck -60  
50  
mV  
mV  
P_10.8.1  
5
1)  
Switch Peak Over Current  
Threshold - BUCK  
-50  
-40  
P_10.8.1  
6
Soft Start  
Soft Start pull up current  
ISoft_Start_P 22  
26  
32  
µA  
µA  
VSoft_Start = 1 V;  
VSoft_Start = 1 V;  
P_6.4.19  
P_6.4.20  
U
Soft Start pull down current  
ISoft_Start_P 2.2  
2.6  
3.2  
D
Datasheet  
25  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
Table 6  
EC Regulator (cont’d)  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1.85  
Soft Start Latch-OFF Threshold VSoft_Start_L 1.65  
1.75  
V
V
V
P_6.4.21  
P_6.4.22  
P_6.9.3  
OFF  
Soft Start Reset Threshold  
VSoft_Start_R 0.1  
0.2  
2
0.3  
2.1  
ESET  
Soft Start Voltage during  
regulation  
VSoft_Start_r 1.9  
1)No Faults  
eg  
Oscillator  
Switching Frequency  
fSW  
285  
300  
315  
kHz Tj = 25°C;  
P_6.4.23  
RFREQ= 37.4 k;  
SYNC Frequency  
fSYNC  
200  
2
700  
kHz  
V
P_6.4.24  
P_6.4.25  
SYNC  
VSYNC,ON  
Turn On Threshold  
SYNC  
Turn Off Threshold  
VSYNC,OFF  
ISYNC,H  
0.8  
45  
18  
V
P_6.4.26  
P_6.4.62  
P_6.4.63  
SYNC  
High Input Current  
15  
6
30  
12  
µA  
µA  
VSYNC = 2.0 V;  
VSYNC = 0.8 V;  
SYNC  
ISYNC,L  
Low Input Current  
Gate Driver for external Switch  
Gate Driver undervoltage  
threshold VBST1,2-  
VSWN1,2_UVth  
VBST1,2  
VSWN1,2_UVt  
-
3.4  
4
V
VBST1,2 - VSWN1,2  
decreasing;  
P_6.4.64  
h
HSGD1,2 NMOS driver on-state RDS(ON_PU) 1.4  
2.3  
1.2  
2.3  
1.2  
3.7  
2.2  
3.7  
1.8  
VBST1,2 - VSWN1,2 = 5 V; P_6.4.28  
source = 100 mA;  
VBST1,2 - VSWN1,2 = 5 V; P_6.4.29  
Isink = 100 mA;  
resistance (Gate Pull Up)  
I
HS  
HSGD1,2 NMOS driver on-state RDS(ON_PD) 0.6  
resistance (Gate Pull Down)  
HS  
LSGD1,2 NMOS driver on-state RDS(ON_PU) 1.4  
VIVCC_EXT = 5 V;  
Isource = 100 mA;  
P_6.4.30  
P_6.4.31  
P_6.4.32  
resistance (Gate Pull Up)  
LS  
LSGD1,2 NMOS driver on-state RDS(ON_PD)L 0.4  
VIVCC_EXT = 5 V;  
Isink = 100 mA;  
1)  
resistance (Gate Pull Down)  
S
HSGD1,2 Gate Driver peak  
sourcing current  
IHSGD1,2_SR 380  
mA  
VHSGD1,2 - VSWN1,2 = 1 V  
C
to 4 V;  
V
BST1,2 - VSWN1,2 = 5 V  
1)  
HSGD1,2 Gate Driver peak  
sinking current  
IHSGD1,2_SN 410  
mA  
P_6.4.33  
VHSGD1,2 - VSWN1,2 = 4 V  
K
to 1 V;  
VBST1,2 - VSWN1,2 = 5 V  
Datasheet  
26  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Regulator Description  
Table 6  
EC Regulator (cont’d)  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
P_6.4.34  
Min.  
Max.  
1)  
LSGD1,2 Gate Driver peak  
sourcing current  
ILSGD1,2_SRC 370  
mA  
VLSGD1,2 = 1 V to 4 V;  
V
IVCC_EXT = 5 V;  
1)  
LSGD1,2 Gate Driver peak  
sinking current  
ILSGD1,2_SN 550  
mA  
P_6.4.35  
VLSGD1,2 = 4 V to 1 V;  
K
V
IVCC_EXT = 5 V;  
1)  
LSGD1,2 OFF to HSGD1,2 ON  
delay  
tLSOFF-  
15  
35  
30  
60  
40  
75  
ns  
ns  
P_6.4.36  
P_6.4.37  
HSON_delay  
1)  
HSGD1,2 OFF to LSGD1,2 ON  
delay  
tHSOFF-  
LSON_delay  
1) Not subject to production test, specified by design  
Datasheet  
27  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Digital Dimming Function  
7
Digital Dimming Function  
PWM dimming is adopted to vary LEDs brightness with greatly reduced chromaticity shift. PWM dimming  
achieves brightness reduction by varying the duty cycle of a constant current in the LED string.  
7.1  
Description  
A PWM signal can be transmitted to the TLD5190 as described below.  
PWM via direct interface  
The PWMI pin can be fed with a pulse width modulated (PWM) signals, this enables when HIGH and disables  
when LOW the gate drivers of the main switches.  
µC  
PWM  
Digital dimming  
PWMI  
VSS AGND  
Figure 19 Digital Dimming Overview  
To avoid unwanted output overshoots due to not soft start assisted startups, PWM dimming in LOW state  
should not be used to suspend the output current for long time intervals. To stop in a safe manner  
EN/INUVLO=LOW can be used.  
Datasheet  
28  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Digital Dimming Function  
tACTIVE  
VEN/INUVLO  
VEN/INUVLOth  
t
t
VIVCC_EXT_RTH,d  
+VIVCCX_HYST  
tPWMI,H  
TPWMI  
VPWMI  
VPWMI,ON  
VPWMI,OFF  
t
Switching  
activity  
t
t
ILED  
VIOUTMON  
200mV  
t
Softstart  
Normal  
Gate ON  
Diag ON  
Normal  
Gate ON  
Dim  
Normal  
Gate ON  
Diag ON  
Dim  
Dim  
Power ON  
Gate OFF  
Diag OFF  
Gate OFF  
Diag OFF  
Gate OFF  
Diag OFF  
Diagnosis ON  
Figure 20 Timing Diagram LED Dimming and Start up behavior example ( VVIN stable in the functional range  
and not during startup)  
Datasheet  
29  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Digital Dimming Function  
7.2  
Electrical Characteristics  
Table 7  
EC Digital Dimming  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test Condition Number  
Min.  
Max.  
PWMI Input:  
PWMI  
Turn On Threshold  
VPWMI,ON  
VPWMI,OFF  
IPWMI,H  
2
V
P_7.2.1  
P_7.2.2  
P_7.2.4  
P_7.2.5  
PWMI  
Turn Off Threshold  
0.8  
45  
18  
V
PWMI  
High Input Current  
15  
6
30  
12  
µA  
µA  
VPWMI = 2.0 V;  
VPWMI = 0.8 V;  
PWMI  
IPWMI,L  
Low Input Current  
Datasheet  
30  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Analog Dimming  
8
Analog Dimming  
The analog dimming feature allows further control of the output current. This approach is used to:  
Reduce the default current in a narrow range to adjust to different binning classes of the used LEDs.  
Adjust the load current to enable the usage of one hardware for several LED types where different current  
levels are required.  
Reduce the current at high temperatures (protect LEDs from overtemperature).  
Reduce the current at low input voltages (for example, cranking-pulse breakdown of the supply or power  
derating).  
8.1  
Description  
The analog dimming feature is adjusting the average load current level via the control of the feedback error  
Amplifier voltage (VFBH-FBL).  
The SET pin is used to adjust the mean output current/voltage. The VSET range where analog dimming is  
enabled is from 200 mV to 1.5 V. Different application scenarios are described in Figure 22.  
Using the SET pin to adjust the output current:  
For the calculation of the output current IOUT the following Equation (8.1) is used:  
VFBH VFBL  
IOUT  
=
(8.1)  
RFB  
A decrease of the average output current can be achieved by controlling the voltage at the SET pin (VSET  
between 0.2 V and 1.4 V. The mathematical relation is given in the Equation (8.2) below:  
)
V SET 200 mV  
I OUT  
=
(8.2)  
R FB 8  
If VSET is 200 mV (typ.) the LED current is only determined by the internal offset voltages of the comparators.  
To assure the switching activity is stopped and IOUT = 0, VSET has to be < 100 mV, see Figure 21.  
VFBH-FBL  
150mV  
100mV  
0mV  
VSET  
200mV  
1.4V 1.5V  
Analog Dimming  
Disabled  
Analog Dimming Enabled  
Figure 21 Analog Dimming Overview  
Datasheet  
31  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Analog Dimming  
Multi-purpose usage of the Analog dimming feature  
1) A μC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET  
pin of the TLD5190.  
2) The usage of an external resistor divider connected between VREF (accurate regulated supply output) SET  
and GND can be chosen for systems without μC on board. The concept allows control of the LED current by  
placing low power resistors.  
3) Furthermore a temperature sensitive resistor (Thermistor) to protect the LED loads from thermal  
destruction can be connected.  
4) If the analog dimming feature is not needed, the SET pin should be connected to the VREF pin.  
5) Instead of a DAC, the μC can provide a PWM signal and an external R-C filter to produce a constant voltage  
for the analog dimming. The voltage level depends on the PWM frequency (fPWM) and duty cycle which can be  
controlled by the μc software after reading the coding resistor placed on the LED module.  
µC_supply  
1
2
D/A-Output  
µC  
SET  
VREF  
SET  
CREF  
RSET2  
VSET  
GND  
RSET1  
GND  
VSET  
Cfilter  
3
4
VREF  
SET  
VREF  
SET  
CREF  
CREF  
Rthermistor  
Rfilter  
RSET1  
GND  
VSET  
GND  
Cfilter  
VSET ~ VREF  
Cfilter  
µC_supply  
PWM output  
5
PWM  
SET  
Rfilter  
µC  
(e.g. XC2000)  
Cfilter  
VSET  
GND  
Figure 22 Different use cases for analog dimming pin SET  
8.2  
Electrical Characteristics  
Datasheet  
32  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Analog Dimming  
Table 8  
EC Analog Dimming  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Source current on SET Pin  
ISET_source  
1
µA  
V
= 0.2 V to 1.4 V; P_8.3.4  
SET  
1) Specified by design: not subject to production test.  
Datasheet  
33  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Linear Regulator  
9
Linear Regulator  
The TLD5190 features an integrated voltage regulator for the supply of the internal gate driver stages.  
Furthermore an external voltage regulator can be connected to the IVCC_EXT pin to achieve an alternative  
gate driver supply if required.  
9.1  
IVCC Description  
When the IVCC pin is connected to the IVCC_EXT pin, the internal linear voltage regulator supplies the internal  
gate drivers with a typical voltage of 5 V and current up to ILIM (P_9.2.2). An external output capacitor with low  
ESR is required on pin IVCC for stability and buffering transient load currents. During normal operation the  
external MOSFET switches will draw transient currents from the linear regulator and its output capacitor  
(Figure 23, drawing A). Proper sizing of the output capacitor must be considered to supply sufficient peak  
current to the gate of the external MOSFET switches. A minimum capacitance value is given in parameter CIVCC  
(P_9.2.4).  
Alternative IVCC_EXT Supply Concept:  
The IVCC_EXT pin can be used for an external voltage supply to alternatively supply the MOSFET Gate drivers.  
This concept is beneficial in the high input voltage range to avoid power losses in the IC (Figure 23, drawing B).  
Integrated undervoltage protection for the external switching MOSFET:  
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage. This  
undervoltage reset threshold circuit will turn OFF the gate drivers in case the IVCC or IVCC_EXT voltage falls  
below their undervoltage Reset switch OFF Thresholds VIVCC_RTH,d (P_9.2.9) and VIVCC_EXT_RTH,d (P_9.2.5).  
The Undervoltage Reset threshold for the IVCC and the IVCC_EXT pins help to protect the external switches  
from excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of the  
external logic level N-channel MOSFETs.  
A
B
IVCC  
Power  
IVCC  
Internal  
VREG  
Internal  
VREG  
VIN  
VIN  
Power  
On Reset  
On Reset  
External  
VREG  
IVCC_EXT  
IVCC_EXT  
Gate Drivers  
Gate Drivers  
Figure 23 Voltage Regulator Configurations  
Datasheet  
34  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Linear Regulator  
9.2  
Electrical Characteristics  
Table 9  
EC Line Regulator  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test Condition Number  
Min.  
Max.  
IVCC  
Output Voltage  
VIVCC  
ILIM  
4.8  
70  
5
5.2  
V
VIN= 13.5 V;  
0.1 mA IIVCC 50 mA;  
1)  
P_9.2.1  
P_9.2.2  
P_9.2.3  
Output Current  
Limitation  
90  
200  
110  
350  
mA  
mV  
VIVCC = 4 V;  
VIN = 5 V;  
Drop out Voltage (VIN -  
VDR  
VIVCC  
)
IIVCC = 10 mA;  
1) 2)  
IVCC Buffer Capacitor  
CIVCC  
10  
µF  
V
P_9.2.4  
P_9.2.5  
3)  
IVCC_EXT Undervoltage VIVCC_EXT_R 3.7  
3.9  
4.1  
Reset switch OFF  
VIVCC_EXT decreasing;  
TH,d  
Threshold  
3)  
IVCC Undervoltage Reset VIVCC_RTH,d 3.7  
switch OFF Threshold  
3.9  
0.33  
2
4.1  
V
V
V
P_9.2.9  
P_9.2.6  
P_9.2.8  
VIVCC decreasing;  
VIVCC increasing;  
IVCC and IVCC_EXT  
Undervoltage Hysterisis  
VIVCCX_HYST 0.3  
0.36  
2.06  
V
IVCC_EXT increasing;  
VREF voltage  
VREF  
1.94  
0 IVREF 200 µA;  
1) Not subject to production test, specified by design  
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.  
Use capacitors with LOW ESR.  
3) Selection of external switching MOSFET is crucial. VIVCC_EXT_RTH,d and VIVCC_RTH,d min. as worst case VGS must be  
considered.  
Datasheet  
35  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Protection and Diagnostic Functions  
10  
Protection and Diagnostic Functions  
10.1  
Description  
The TLD5190 has integrated circuits to diagnose and protect against overvoltage, open load, short circuits of  
the load and overtemperature faults.  
In IDLE state, only the Over temperature Shut Down, Over Temperature Warning, IVCC or IVCC_EXT  
Undervoltage Monitor or VEN/INUVLO Undervoltage Monitor are reported according to specifications.  
In Figure 24 a summary of the protection, diagnostic and monitor functions is displayed.  
Protection and Diagnostic  
Overvoltages  
EF1, EF2  
Open Load  
No output current  
OR  
Short at the Load  
Linear Regulators  
OFF  
(only IVCC disabled  
Device  
Overtemperature  
OR  
in case of  
Input  
overtemperature)  
Undervoltage  
Monitoring  
IOUTMON  
IINMON  
IOUT  
IIN  
KILIS Factor 8  
KILIS Factor 20  
Figure 24 Protection, Diagnostic and Monitoring Overview - TLD5190  
Input  
Condition  
Open Load /  
Overvoltages  
Output  
Level*  
False  
True  
EF1  
H
H
EF2  
H
L
Gate Drivers  
IVCC  
Active  
Active  
Sw*  
L
False  
True  
False  
True  
H
L
H
L
H
H
H
L
Sw*  
L
Sw*  
L
Active  
Active  
Active  
Shutdown  
Shorted LED fault  
Overtemperature  
*Note:  
Sw = Switching  
False = Condition does not exist  
True = Condition does exist  
Figure 25 Diagnostic Truth Table - TLD5190  
Note:  
A device Overtemperature event overrules all other fault events!  
Datasheet  
36  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Protection and Diagnostic Functions  
10.2  
Output Overvoltage, Open Load, Short circuit protection  
The VFB pin measures the voltage on the application output and in accordance with the populated resistor  
divider, short to ground, open load and output overvoltage thresholds are set. Refer to Figure 26 for more  
details.  
VIN  
CIVCC  
IVCC  
D2  
D1  
VOUT  
RFB  
BST1  
BST2  
CBST1 CBST2  
M1  
M2  
M4  
VVFB_OVTH  
VVFB_OL,rise  
RVFBH  
COUT  
HSGD1  
SWN1  
LOUT  
M3  
LSGD1  
SWCS  
RVFBL  
VVFB_S2G  
RSWCS  
SGND  
PGND  
LSGD2  
SWN2  
HSGD2  
VFB  
FBH  
FBL  
Figure 26 VFB Protection Pin - Overview  
10.2.1  
Short Circuit protection  
The device detects a short circuit at the output if this condition is verified:  
The pin VFB falls below the threshold voltage VVFB_S2G for at least 8 clock cycles  
During the rising edge of the Soft Start the short circuit detection via VFB is ignored until VSOFT_START_LOFF (see  
Figure 8).  
A voltage divider between VOUT, VFB pin and AGND is used to adjust the application short circuit thresholds  
following Equation (10.1).  
RVFBH + RVFBL  
Vshort  
= VVFB  
(10.1)  
_ led  
_ S 2 G  
RVFBL  
The TLD5190 provides an open-drain status pin, EF1, which pulls low when the short circuit is detected. The  
only time the FB pin will be below VVFB_S2G is during start-up or if the LEDs are shorted. During start-up the  
TLD5190 ignores the detection of a short circuit or an open load until the soft-start capacitor reaches 1.75 V.  
To prevent false tripping after startup, a large enough soft-start capacitor must be used to allow the output to  
get up to approximately 50% of the final value.  
Note:  
If the short circuit condition disappears, the device will re-start with the soft start routine as  
described in Chapter 6.2.  
10.2.2  
Overvoltage Protection  
A voltage divider between VOUT, VFB pin and AGND is used to adjust the overvoltage protection threshold (refer  
to Figure 26).  
Datasheet  
37  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Protection and Diagnostic Functions  
To fix the overvoltage protection threshold the following Equation (10.2) is used:  
RVFBH + RVFBL  
VOUT _ OV _ protected =VVFB _ OVTH  
(10.2)  
RVFBL  
In case of overvoltage event at the output, the open-drain status pin EF2 will toggle to LOW, while EF1 will stay  
at HIGH. After the overvoltage event disappeared the device will auto restart and the status pin EF2 will toggle  
to HIGH.  
10.2.3  
Open Load Protection  
To reliably detect an open load event, two conditions need to be observed:  
1) Voltage threshold: VVFB > VVFB_OL,rise  
2) Output current information: V(FBH-FBL) < VFBH_FBL_OL  
During the rising edge of the Soft Start the open load detection is ignored until VSOFT_START_LOFF  
.
The TLD5190 provides an open-drain status pin, EF2, which pulls low when the VFB pin is above VVFB_OL,rise  
threshold and the voltage across V(FBH-FBL) is less than VFBH_FBL_OL. If the open LED clamp voltage is programmed  
correctly using the VFB pin, then the VFB pin should never exceed 1.28 V (VVFBOL,fall when the LEDs are  
connected.  
After an Open Load error the TLD5190 is autorestarting the output control accordingly to the implemented  
Softstart routine. An Open Load error causes an increase of the output voltage as well. An Overvoltage  
condition could be reported in combination with an Open Load error (in general, multiple error detection may  
happen if more error detection thresholds are reached during the autorestart funcion, as possible  
consequence of reactive behavior at the output node during open load).  
The COMP capacitor is discharged during an Open Load condition to prevent spikes if load reconnects. This  
measure could artificially generate Short Circuit detections after open loads events.  
10.3  
Input voltage monitoring, protection and power derating  
Input overvoltage and undervoltage shutdown levels can both be defined through an external resistor divider,  
as shown in Figure 27.  
Both INOVLO and EN/INUVLO pin voltages are internally compared to their respective thresholds by means of  
hysteretic comparators.  
Datasheet  
38  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Protection and Diagnostic Functions  
Neglecting the hysteresis, the following equations hold:  
R1  
UVth = 1 +  
EN / INUVLO th  
(10.3)  
(10.4)  
R2 + R3  
R1 + R2  
OVth = 1 +  
INOVLO  
th  
R3  
VOUT IOUT  
PIN  
=
(10.5)  
η
VOUT IOUT  
I IN  
(10.6)  
(10.7)  
(10.8)  
VIN _ boundary  
=
η
V IN 1IN 2  
I IN  
=
R IN  
VFBH FBL  
IOUT  
=
RFB  
Figure 27 Input Voltage Protection  
In case of overvoltage event at the input, the open-drain status pin EF2 will toggle to LOW, while EF1 will stay  
at HIGH. The softstart capacitor will be discharged by an internal pull down switch.  
After the overvoltage event disappeared the device will auto restart with the softstart function, and the status  
pin EF2 will toggle to HIGH.  
10.4  
Input current Monitoring and Limiter  
The two inputs (IIN1, IIN2) can be used to limit and monitor the Input current (Block A1 and A7 in Figure 7).  
Datasheet  
39  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Protection and Diagnostic Functions  
The control loop reduces the Comp voltage when the voltage accross the pins reaches Input Current Sense  
threshold VIIN1-IIN2 to keep the input current below IINMax Equation (10.9)  
(10.9)  
VIIN1 IIN2  
IINMax = ---------------------------  
RIIN  
The IINMON pin provides a linear indication of the current flowing through the input. The following  
Equation (10.10) is applicable:  
VIINMON = I IN RIN 20  
(10.10)  
Note:  
If the RIN value is choosen in a way that the current limitiation is much bigger than the nominal input  
current during the application the current measurement becomes inaccurate. Best results for an  
accurate current measurement via the VIINMON pin is to set the current limit only slightly above the  
specific application related nominal input current.  
10.5  
Output current Monitoring  
The IOUTMON pin provides a linear indication of the current flowing through the LEDs. The following  
Equation (10.11) is applicable:  
(10.11)  
VIOUTMON = 200 mV + IOUT RFB 8  
Datasheet  
40  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Protection and Diagnostic Functions  
10.6  
Device Temperature Monitoring  
A temperature sensor is integrated on the chip. The temperature monitoring circuit compares the measured  
temperature to the shutdown threshold.  
If the internal temperature sensor reaches the shut-down temperature, the Gate Drivers plus the IVCC  
regulator are shut down as described in Figure 28.  
The CLKOUT function is disabled during an overtemperature event and will autorestart when the device  
cooled down and IVCC is present again.  
Note:  
The Device will start up with a soft start routine after a overtemperature condition disappear.  
Tj  
T
jSD  
ΔΤ  
TjSO  
t
Ta  
xSGDx  
t
LED  
current  
t
EF1, EF2  
and IVCC  
5V  
t
Device  
OFF  
Overtemp  
Fault  
Overtemp  
Fault  
Overtemp Overtemp  
ON  
Fault Fault  
Normal Operation  
ON  
ON  
Figure 28 Device Overtemperature Protection Behavior  
Datasheet  
41  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Protection and Diagnostic Functions  
10.7  
Electrical Characteristics  
Table 10  
EC Protection and Diagnosis  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
0.53  
Max.  
0.59  
Short Circuit Protection  
Short to GND threshold  
Temperature Protection:  
VVFB_S2G  
0.563  
V
VVFB decreasing;  
P_10.8.1  
1)  
1)  
Over Temperature  
Shutdown  
Tj,SD  
160  
175  
10  
190  
°C  
°C  
P_10.8.4  
P_10.8.5  
Over Temperature  
Tj,SD,hyst  
Shutdown Hysteresis  
Overvoltage Protection:  
VFB Over Voltage  
Feedback Threshold  
VVFB_OVTH 1.42  
1.46  
40  
1.50  
58  
V
P_10.8.6  
P_10.8.7  
Output Over Voltage  
Feedback Hysteresis  
VVFB_OVTH, 25  
mV  
Output Voltage  
decreasing;  
HYS  
Open Load and Open Feedback Diagnostics  
Open Load rising  
Threshold  
VVFB_OL,rise 1.29  
1.34  
15  
1.39  
22.5  
1.33  
V
VFBH-FBL = 0 V;  
VFB = 1.4 V;  
P_10.8.9  
P_10.8.10  
P_10.8.11  
Open Load reference  
Voltage VFBH-FBL  
VFBH_FBL_O  
mV  
V
L
Open Load falling  
Threshold  
VVFB_OL,fall 1.23  
1.28  
VFBH-FBL = 0 V;  
Input Overvoltage protection  
Input Overvoltage rising VINOVLOth 1.9  
Threshold  
2
2.1  
62  
V
P_10.8.12  
P_10.8.13  
Input Overvoltage  
VINOVLO(hys 18  
40  
mV  
Threshold Hysteresis  
t)  
Error Flags  
EF1,2 Pin Output  
Impedance  
REF12  
2.1  
kΩ  
1)Fault Condition  
I=100uA  
P_10.8.14  
1) Specified by design; not subject to production test.  
Note:  
Integrated protection functions are designed to prevent IC destruction under fault conditions  
described in the datasheet. Fault conditions are considered as “outside” normal operating range.  
Protection functions are not designed for continuous repetitive operation.  
Datasheet  
42  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Infineon FLAT SPECTRUM Feature set  
11  
Infineon FLAT SPECTRUM Feature set  
11.1  
Description  
The Infineon FLAT SPECTRUM feature set has the target to minimize external additional filter circuits. The goal  
is to provide several beneficial concepts to provide easy adjustments for EMC improvements after the layout  
is already done and the HW designed.  
11.2  
Synchronization Function  
The TLD5190 features a SYNC input pin which can be used by a µC pin to define an oscillator switching  
frequency. The µC is responsible to synchronize with various devices by applying appropriate SYNC signals to  
the dedicated DC/DC devices in the system. Refer to Figure 29  
Note:  
The Synchronization function can not be used when the Spread Spectrum is active.  
H-Bridge DCDC  
MASTER  
BUCK-  
BOOST  
SYNC  
GATE  
LOGIC  
CONTROL  
e.g. 400kHz  
Phaseshift A  
H-Bridge DCDC  
Slave  
BUCK-  
BOOST  
GATE  
SYNC1  
SYNC2  
defined phase shift between  
Outputs of different devices  
SYNC  
µC  
LOGIC  
INPUT  
e.g. 400kHz  
Phaseshift B  
CONTROL  
Figure 29 Synchronization Overview  
11.3  
CLKOUT Function  
The CLKOUT pin provides an in-phase clock signal provided by the internal oscillator. This signal can be used  
to synchronize two devices for extending output power capability.  
Datasheet  
43  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Infineon FLAT SPECTRUM Feature set  
DCDC  
MASTER  
BUCK-  
BOOST  
GATE  
OUTPUT  
LOGIC  
CONTROL  
CLKOUT  
DCDC  
Slave  
BUCK-  
BOOST  
GATE  
SYNC  
LOGIC  
INPUT  
CONTROL  
Figure 30 CLKOUT Overview  
Datasheet  
44  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Infineon FLAT SPECTRUM Feature set  
11.4  
Spread Spectrum  
The Spread Spectrum modulation technique significantly improves the lower frequency range of the  
spectrum (f < 30 MHz).  
By using the spread spectrum technique, it is possible to optimize the input filter only for the peak limits, and  
also pass the average limits (average emission limits are -20dB lower than the peak emission limits). By using  
spread spectrum, the need for low ESR input capacitors is relaxed because the input capacitor series resistor  
is important for the low frequency filter characteristic. This can be an economic benefit if there is a strong  
requirement for average limits.  
The TLD5190 features a built in Spread Spectrum function which can be enabled via an external Pin  
(SPREAD_SPECTRUM = HIGH). The modulation frequency fFM, P_11.6.3 and the deviation frequency fdev  
,
P_11.6.2 are internally fixed. Refer to Figure 31 for more details.  
Note:  
The Spread Spectrum function can not be used when the synchronization pin is used.  
fSW  
fdev  
t
1
f
FM  
Figure 31 Spread Spectrum Overview  
Datasheet  
45  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Infineon FLAT SPECTRUM Feature set  
11.5  
EMC optimized schematic  
Figure 32 below displays the Application circuit with additional external components for improved EMC  
behavior.  
LPI  
CIN2  
VIN  
RIIN  
DVS  
Alternative  
external  
VREG supply  
CPI1 CPI2  
CPI3 CPI4  
IVCC_EXT  
IVCC  
CIVCC  
VIN  
IIN2  
CIN1  
D1  
LPO  
D2  
RFB  
Rfilter  
Cfilter  
RM4  
BST1  
BST2  
COUT  
DHSG1  
RM1  
CBST2  
R1  
R2  
R3  
M4  
IIN1  
EN/INUVLO  
M1  
RVFBH  
CBST1  
HSGD1  
SWN1  
CM1  
RM2  
CM4  
RHSG1  
CPO1 CPO2  
CPO3 CPO4  
LOUT  
RHSG2  
M3  
RVFBL  
DLSG1  
INOVLO  
COMP  
RM3  
CM3  
M2  
CCOMP  
RCOMP  
LSGD1  
SWCS  
CM2  
RLSG1  
CSOFT_START  
RFREQ  
DLSG2  
RLSG2  
DHSG2  
SOFT_START  
FREQ  
RSWCS  
4LED in  
series /  
1A  
SGND  
PGND1  
PGND2  
µC SYNC signal  
Digital dimminig  
SYNC  
PWMI  
LSGD2  
IINMON  
IOUTMON  
CLKOUT  
Spread Spectrum  
Advanced monitoring via µC  
SYNC of other DCDC  
SWN2  
HSGD2  
VFB  
Spread Spectrum ON /OFF  
VREF  
SET  
EF1  
FBH  
FBL  
CREF  
CFBH-FBL  
CFBH  
Analog dimminig  
Errorflag monitoring  
VSS AGND  
EF2  
CFBL  
Figure 32 Application Drawing Including Additional Components for an Improved EMC Behavior  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Datasheet  
46  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Infineon FLAT SPECTRUM Feature set  
11.6  
Electrical Characteristics  
Table 11  
EC Spread Spectrum  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Spread Spectrum Parameters  
Frequency Deviation  
1)  
fdev  
±16  
12  
%
P_11.6.2  
P_11.6.3  
SPREAD_SPECT  
RUM = HIGH;;  
1)  
Frequency Modulation  
fFM  
kHz  
SPREAD_SPECT  
RUM = HIGH;  
Input Characteristics (SPREAD_SPECTRUM)  
SPREAD_SPECTRUM  
Turn On Threshold  
VSPREAD_SPECT  
2
V
P_11.6.5  
P_11.6.6  
RUM,ON  
SPREAD_SPECTRUM  
Turn Off Threshold  
VSPREAD_SPECT  
0.8  
45  
18  
V
RUM,OFF  
SPREAD_SPECTRUM  
High Input Current  
ISPREAD_SPECT 15  
30  
12  
µA  
µA  
VSPREAD_SPECTRUM = P_11.6.8  
2.0 V;  
RUM,H  
SPREAD_SPECTRUM  
Low Input Current  
ISPREAD_SPECT  
6
0
VSPREAD_SPECTRUM = P_11.6.9  
0.8 V;  
RUM,L  
Output Characteristics (CLKOUT)  
L level output voltage  
VCLKOUT(L)  
VCLKOUT(H)  
0.4  
V
V
ICLKOUT = -2 mA;  
ICLKOUT = 2 mA;  
P_11.6.10  
P_11.6.11  
H level output voltage  
VIVCC  
-
VIVCC  
0.4 V  
1) Specified by design; not subject to production test.  
Datasheet  
47  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Application Information  
12  
Application Information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
CIN2  
VIN  
RIIN  
Alternative  
external  
VREG supply  
CIVCC  
IVCC_ext  
IVCC  
VIN  
IIN2  
CIN1  
D2  
D1  
COUT2  
COUT3  
BST1  
BST2  
RFB  
Rfilter  
Cfilter  
CBST1 CBST2  
COUT1  
M1  
M2  
M4  
IIN1  
EN/INUVLO  
HSGD1  
SWN1  
LOUT  
INOVLO  
M3  
CCOMP  
LSGD1  
SWCS  
RCOMP  
COMP  
CSOFT_START  
SOFT_START  
High  
Power  
LED Load  
RFREQ  
FREQ  
SGND  
SYNC of other DCDC  
CLKOUT  
SYNC  
PGND1  
PGND2  
LSGD2  
SWN2  
HSGD2  
VFB  
µC SYNC signal  
RSYNC  
Spread Spectrum ON/OFF  
Digital dimminig  
Spread_spectrum  
PWMI  
RPWMI  
IVCC_ext  
VREF  
SET  
CREF  
FBH  
FBL  
RSET  
Analog dimminig  
RSENSE  
RSENSE  
IINMON  
IOUTMON  
Advanced monitoring  
EF1  
EF2  
Errorflag monitoring  
VSS AGND  
Figure 33 Application Drawing - TLD5190 as current regulator  
Table 12  
BOM - TLD5190 as current regulator (IOUT = 1 A, fSW = 300 kHz)  
Reference Designator  
Value  
Manufacturer  
--  
Part Number  
BAT46WJ  
X7R  
Type  
D1 , D2  
BAT46WJ  
1 µF, 100 V  
4.7 µF, 100 V  
470 nF, 6.3 V  
22 nF, 16 V  
22 nF, 16 V  
4.7 µF, 100 V  
100 nF, 100 V  
10 µF , 10 V  
100 nF, 16 V  
--  
Diode  
CIN1  
TDK  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
IC  
CIN2  
TDK  
X7R  
Cfilter  
TDK  
X7R  
CCOMP  
TDK  
X7R  
CSOFT_START  
COUT1  
COUT2 , COUT3 , CREF  
CIV  
BST1 , CBST2  
TDK  
X7R  
TDK  
X7R  
TDK  
X7R  
TDK  
X7R  
C
TDK  
X7R  
IC1  
Infineon  
Coilcraft  
Panasonic  
Panasonic  
Panasonic  
TLD5190  
LOUT  
Rfilter  
RFB  
10 µH  
XAL1010-103MEC  
Inductor  
Resistor  
Resistor  
Resistor  
50 , 1%  
--  
--  
--  
0.150 , 1%  
0.003 , 1%  
RIN  
Datasheet  
48  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Application Information  
Table 12  
BOM - TLD5190 as current regulator (IOUT = 1 A, fSW = 300 kHz)  
Reference Designator  
R1 , R2 , R3 , REN , RPWMI  
Value  
Manufacturer  
Panasonic  
Part Number  
--  
Type  
,
XX k, 1%  
Resistor  
RSense1 , RSense2 , RSYNC  
,
REF1 , REF2 , RSET  
R
VFBL , RVFBH  
1.5 k, 56 k, 1%  
0 Ω  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Infineon  
--  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
RCOMP  
--  
RFREQ  
37.4 k, 1%  
0.005 , 1%  
--  
RSWCS  
ERJB1CFRO5U  
IPG20N10S4L-35  
M1 , M2 , M3 , M4  
Dual MOSFET:  
100 V / 35 m, N-ch  
CIN2  
VIN  
RIIN  
Alternative  
external  
VREG supply  
CIVCC  
IVCC_ext  
VIN  
IIN2  
CIN1  
IVCC  
D2  
D1  
COUT3  
COUT2  
BST1  
BST2  
Rfilter  
Cfilter  
CBST1 CBST2  
COUT1  
VOUT  
M1  
M2  
M4  
IIN1  
EN/INUVLO  
HSGD1  
SWN1  
LOUT  
INOVLO  
M3  
CCOMP  
LSGD1  
SWCS  
RCOMP  
CSS  
COMP  
SS  
RFREQ  
FREQ  
SGND  
PGND1  
PGND2  
SYNC of other DCDC  
CLKOUT  
SYNC  
CFF  
µC SYNC signal  
RSYNC  
Spread Spectrum ON/OFF  
Digital dimminig  
Spread_spectrum  
PWMI  
LSGD2  
SWN2  
HSGD2  
VFB  
RPWMI  
IVCC_ext  
VREF  
SET  
CREF  
FBH  
RSET  
Analog dimminig  
RSENSE  
RSENSE  
IINMON  
IOUTMON  
Advanced monitoring  
FBL  
EF1  
EF2  
Errorflag monitoring  
VSS AGND  
Figure 34 Application Drawing - TLD5190 as 10V voltage regulator  
Table 13  
BOM - TLD5190 as voltage regulator (IOUT = 1 A, fSW = 300 kHz)  
Reference Designator  
Value  
Manufacturer  
--  
Part Number  
BAT46WJ  
X7R  
Type  
D1 , D2  
CIN1  
BAT46WJ  
Diode  
1 µF, 100 V  
4.7 µF, 100 V  
470 nF, 6.3 V  
22 nF, 16 V  
10 nF, 50 V  
22 nF, 16 V  
4.7 µF, 100 V  
TDK  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
CIN2  
TDK  
X7R  
Cfilter  
TDK  
X7R  
CCOMP  
CFF  
TDK  
X7R  
TDK  
X7R  
CSOFT_START  
COUT1  
TDK  
X7R  
TDK  
X7R  
Datasheet  
49  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Application Information  
Table 13  
BOM - TLD5190 as voltage regulator (IOUT = 1 A, fSW = 300 kHz)  
Reference Designator  
COUT2 , COUT3 , CREF  
CIVCC  
Value  
Manufacturer  
TDK  
Part Number  
Type  
100 nF, 100 V  
10 µF , 10 V  
100 nF, 16 V  
--  
X7R  
Capacitor  
Capacitor  
Capacitor  
IC  
TDK  
X7R  
CBST1 , CBST2  
TDK  
X7R  
IC1  
Infineon  
Coilcraft  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
TLD5190  
LOUT  
10 µH  
XAL1010-103MEC  
Inductor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Rfilter  
50 , 1%  
--  
--  
--  
--  
--  
RFB2 , RFB3  
150, 10.1k, 1%  
1.5 k, 1%  
0.003 , 1%  
XX k, 1%  
RFF  
RIN  
R1 , R2 , R3 , REN , RPWMI  
,
RSense1 , RSense2 , RSYNC  
,
REF1 , REF2 , RSET  
R
VFBL , RVFBH  
1.5 k, 56 k, 1%  
0 Ω  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Infineon  
--  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
RCOMP  
--  
RFREQ  
37.4 k, 1%  
0.005 , 1%  
--  
RSWCS  
ERJB1CFRO5U  
IPG20N10S4L-35  
M1 , M2 , M3 , M4  
Dual MOSFET:  
100 V / 35 m, N-ch  
Datasheet  
50  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Application Information  
12.1  
Further Application Information  
Typical Performance Characteristics of Device  
TJꢁ=ꢁ25°C,ꢁVIN=12Vꢁunlessꢁotherwiseꢁspecified  
IVCCꢁDropoutꢁvsꢁCurrentꢁ  
IVCCꢁVoltageꢁvsꢁTemperature  
5,20  
5,15  
5,10  
5,05  
5,00  
4,95  
4,90  
4,85  
4,80  
2,5  
2
IIVCC=10mA  
Tj=ꢀ40°C  
Tj=150°C  
Tj=25°C  
1,5  
1
0,5  
0
0
10  
20  
30  
40  
50  
ꢀ40  
10  
60  
110  
LDOꢁcurrentꢁ[mA]  
Temperatureꢁ[°C]  
IVCCꢁLoadꢁregulationꢁ  
V(FBHꢀFBL)ꢁThresholdꢁvsꢁVFBH  
5,2  
154  
153  
152  
151  
150  
149  
148  
147  
146  
5,15  
5,1  
AnalogꢁDim.ꢁ=ꢁ100%  
5,05  
5
4,95  
4,9  
4,85  
4,8  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
60  
IIVCC[mA]  
VFBHꢁ[V]  
V(FBHꢀFBL)ꢁThresholdꢁvsꢁTemp  
IOUTMONꢁVoltageꢁvsꢁTemp  
1,44  
1,43  
1,42  
1,41  
1,4  
154  
153  
152  
151  
150  
149  
148  
147  
146  
AnalogꢁDim.=100%,ꢁFBH=0,15V  
AnalogꢁDim.=100%,ꢁFBH=12V  
AnalogꢁDim.=100%,ꢁFBH=60V  
V(FBHꢀFBL) =ꢁꢁ150mV  
1,39  
1,38  
1,37  
1,36  
ꢀ40  
10  
60  
110  
ꢀ40  
10  
60  
110  
Temperatureꢁ[°C]  
Temperatureꢁ[°C]  
Figure 35 Characterization Diagrams 1  
Datasheet  
51  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Application Information  
TJꢁ=ꢁ25°C,ꢁVIN=12Vꢁunlessꢁotherwiseꢁspecified  
IOUTMONꢁVoltageꢁvsꢁV(FBHꢀFBL)  
V(IIN1ꢀIIN2)ꢁThresholdꢁvsꢁTemp  
1,4  
1,2  
1
53  
52  
51  
50  
49  
48  
47  
VIIN1=8V  
VIIN1=13.5V  
VIIN1=55V  
0,8  
0,6  
0,4  
0,2  
0
0
20  
40  
60  
80  
100  
120  
140  
ꢀ40  
10  
60  
110  
V(FBHꢀFBL) [mV]  
Temperatureꢁ[°C]  
IINMONꢁVoltageꢁvsꢁTemp  
IFBH ,ꢁIFBL vsꢁVFBH  
120  
100  
80  
1,04  
1,03  
1,02  
1,01  
1
I_FBLꢁ[uA]  
I_FBHꢁ[uA]  
V(IIN1ꢀIIN2)ꢁ=ꢁ50mV  
V(FBHꢀFBL) =ꢁꢁ150mV  
60  
40  
20  
0,99  
0,98  
0,97  
0,96  
0
ꢀ20  
ꢀ40  
0
5
10 15 20 25 30 35 40 45 50 55 60  
ꢀ40  
10  
60  
110  
VFBHꢁ[V]  
Temperatureꢁ[°C]  
OscillatorꢁFrequencyꢁvsꢁTemp  
V(BSTxꢀSWNx)ꢁvsꢁTemp  
800  
700  
600  
500  
400  
300  
200  
100  
4
3,9  
3,8  
3,7  
3,6  
3,5  
3,4  
3,3  
3,2  
3,1  
R_FREQ=61.9ꢁkOhm  
R_FREQ=37.4ꢁkOhm  
R_FREQ=12.7ꢁkOhm  
VBSTxꢀVSWNx_decꢁ[V]  
VBSTxꢀVSWNx_incꢁ[V]  
ꢀ40  
10  
60  
110  
ꢀ40  
10  
60  
110  
Temperatureꢁ[°C]  
Temperatureꢁ[°C]  
Figure 36 Characterization Diagrams 2  
Datasheet  
52  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Application Information  
TJ = 25°C, VIN=12V unless otherwise specified  
VREF Voltage vs Temperature  
VREF Load Regulation  
2,04  
2,03  
2,02  
2,01  
2
2,06  
2,04  
2,02  
2
VIN=8V  
VIN=13.5V  
VIN=40V  
Iref = 100uA  
1,99  
1,98  
1,97  
1,96  
1,98  
1,96  
1,94  
-40  
10  
60  
110  
0
50  
100  
150  
200  
Temperature [°C]  
IREF [uA]  
LSGDx on-state resistance vs Temp  
HSGDx on resistance vs Temp  
4,5  
4
4,5  
4
HSGDx_Pull-up  
3,5  
3
3,5  
3
HSGDx_Pull-down  
LSGDx_Pull-Up  
2,5  
2
2,5  
2
LSGDx_Pull-down  
1,5  
1
1,5  
1
0,5  
0
0,5  
0
-40  
10  
60  
110  
-40  
10  
60  
110  
Temperature [°C]  
Temperature [°C]  
VCOMP Voltage vs LSGD Duty Cycle  
V(SWCS-SGND) Treshold vs Temp  
120  
100  
80  
60  
40  
20  
0
60  
40  
Boost  
Buck  
LSGD1_Buck [%]  
LSGD2_Boost [%]  
20  
0
V(SWCS-SGND) =0  
fsw=300kHz  
-20  
-40  
-60  
0,6  
0,8  
1
1,2  
1,4  
1,6  
-40  
10  
60  
110  
VCOMP [V]  
Temperature [°C]  
Figure 37 Characterization Diagrams 3  
For further information you may contact http://www.infineon.com/  
Datasheet  
53  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Package Outlines  
13  
Package Outlines  
0ꢀ9 MAXꢀ  
(0ꢀ65)  
11 x 0ꢀ5 = 5ꢀ5  
0ꢀ1  
7
A
0ꢀ5  
0ꢀ26  
0ꢀ03  
6ꢀ8  
0ꢀ1  
+0ꢀ031)  
2)  
37  
B
0ꢀ05  
36  
25  
0ꢀ13  
24  
48x  
0ꢀ08  
48  
13  
1
12  
Index Marking  
48x  
0ꢀ1  
0ꢀ4 x 45°  
0ꢀ05  
Index Marking  
0ꢀ23  
(0ꢀ35)  
M
A B C  
(0ꢀ2)  
0ꢀ05 MAXꢀ  
(5ꢀ2)  
(6)  
C
1) Vertical burr 0ꢀ03 maxꢀ, all sides  
2) These four metal areas have exposed diepad potential  
PG-VQFN-48-29, -31-PO V05  
Figure 38 PG-VQFN-48-31 (with LTI)  
Datasheet  
54  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Package Outlines  
H
C
0.6±0.15  
SEATING  
PLANE  
0.08  
48x  
C
COPLANARITY  
9
0.2 A-B D  
48x  
BOTTOMVIEW  
1)  
7
2)  
0.2 A-B D H  
4x  
5
EXPOSEDDIEPAD  
D
A
B
48  
1
48  
1
INDEXMARKING  
0.5  
0.22±0.05  
0.08  
A-B D C  
48x  
1)DOESNOTINCLUDEPLASTICORMETALPROTRUSIONO0F.25MAX.PERSIDE  
2)EXPOSEDPADFORSOLDERINGPURPOSE  
Figure 39 PG-TQFP-48-9  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Datasheet  
55  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Revision History  
14  
Revision History  
Revision  
Rev. 1.0  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Date  
Changes  
2016-05-20 Released Datasheet  
2018-02-08 Added: CCM on regulator description Chapter 6.1  
2018-02-08 Added TQFP package  
2018-02-08 Corrected graph VCOMP vs DUTY  
2018-02-08 Corrected soft start behavior Chapter 6.2 “if an open load”  
2018-02-08 Divided In and out overvoltage protection def. Chapter 10.2 Chapter 10.3  
2018-02-08 Removed “Flex” from Family name. Chapter 1  
2018-02-08 Specified Complessive gain of error amp Chapter 6.1  
2018-02-08 Improved description of soft start Chapter 6.2  
2018-02-08 Added Soft Start mask in the Short circuit description Chapter 10.2  
2018-02-08 Added input current limiter description Chapter 10.4  
2018-02-08 Removed Parameter 6.4.2 covered now by updated 6.4.1 Chapter 6.6  
Datasheet  
56  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
Table of Content  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
4.3  
5
5.1  
5.2  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Different Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6
6.1  
6.2  
6.3  
Regulator Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Regulator Diagram Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Adjustable Soft Start Ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Switching Frequency setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Operation of 4 switches H-Bridge architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Boost mode (VIN < VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Buck mode (VIN > VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Buck-Boost mode (VIN ~ VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Flexible current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Programming Output Voltage (Constant Voltage Regulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.4  
6.4.1  
6.4.2  
6.4.3  
6.5  
6.6  
6.7  
7
7.1  
7.2  
Digital Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8
8.1  
8.2  
Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9
9.1  
9.2  
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
IVCC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
10  
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Output Overvoltage, Open Load, Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Short Circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Open Load Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Input voltage monitoring, protection and power derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Input current Monitoring and Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Output current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Device Temperature Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
10.1  
10.2  
10.2.1  
10.2.2  
10.2.3  
10.3  
10.4  
10.5  
10.6  
10.7  
11  
11.1  
Infineon FLAT SPECTRUM Feature set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Datasheet  
57  
Rev. 1.1  
2018-02-08  
TLD5190  
H-Bridge DC/DC Controller  
11.2  
11.3  
11.4  
11.5  
11.6  
Synchronization Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
CLKOUT Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
EMC optimized schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
12  
12.1  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13  
14  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table of Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Datasheet  
58  
Rev. 1.1  
2018-02-08  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-02-08  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
WARNINGS  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
(doc_number)  

相关型号:

TLD5190_18

H-Bridge DC/DC Controller
INFINEON

TLD5191ES

TLD5191ES 是一款具有内置保护功能的同步 MOSFET H 桥 DC-DC 控制器。 该设计有利于以最高的系统效率和最少的外部组件驱动高功率 LED。 TLD5191ES 具有模拟和数字 (PWM) 调光及嵌入式 PWM 发生器。 开关频率可在 200 kHz 至 700 kHz 范围内调节。 内置扩频开关频率调制和强制连续电流调节模式改善了整体 EMC 行为。 此外,电流模式调节方案提供了一个由小型外部补偿元件维持的稳定调节环路。 可调软启动功能可限制启动时的电流峰值和电压过冲。 TLD5191ES 适用于汽车环境以及工业和消费类应用(例如无线充电)。
INFINEON

TLD5541-1

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1QU

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1QV

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1_18

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD55411QUXUMA1

LED Driver,
INFINEON

TLD55411QV

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD55411QVXUMA1

LED Driver, 4-Segment, PQCC48, VQFN-48
INFINEON

TLD5S10AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S11AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC