TLE8250SJ [INFINEON]

Interface Circuit, PDSO8, SOP-8;
TLE8250SJ
型号: TLE8250SJ
厂家: Infineon    Infineon
描述:

Interface Circuit, PDSO8, SOP-8

电信 光电二极管 电信集成电路
文件: 总31页 (文件大小:710K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE8250  
High Speed CAN Transceiver  
1
Overview  
Features  
Compliant to ISO11898-2: 2003  
Wide common mode range for electromagnetic immunity (EMI)  
Very low electromagnetic emission (EME)  
Excellent ESD robustness  
Guaranteed and improved loop delay symmetry to support CAN FD data  
frames up to 2 MBit/s  
Extended supply range on VCC supply  
CAN short circuit proof to ground, battery and VCC  
TxD time-out function  
Low CAN bus leakage current in power-down state  
Overtemperature protection  
Protected against automotive transients  
Receive-only mode and power-save mode  
Green Product (RoHS compliant)  
AEC Qualified  
Certified according to latest VeLIO (Vehicle LAN Interoperability & Optimization) test requirements for the  
Japanese market  
Applications  
Engine Control Unit (ECUs)  
Transmission Control Units (TCUs)  
Chassis Control Modules  
Electric Power Steering  
Description  
The TLE8250SJ is a transceiver designed for HS CAN networks in automotive and industrial applications. As  
an interface between the physical bus layer and the CAN protocol controller, the TLE8250SJ drives the signals  
to the bus and protects the microcontroller against interferences generated within the network. Based on the  
high symmetry of the CANH and CANL signals, the TLE8250SJ provides a very low level of electromagnetic  
emission (EME) within a wide frequency range.  
The TLE8250SJ fulfills or exceeds the requirements of the ISO11898-2.  
The TLE8250SJ provides a receive-only mode and a power-save mode. It is designed to fulfill the enhanced  
Data Sheet  
www.infineon.com/transceiver  
1
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Overview  
physical layer requirements for CAN FD and supports data rates up to 2 MBit/s.  
On the basis of a very low leakage current on the HS CAN bus interface the TLE8250SJ provides an excellent  
passive behavior in power-down state. These and other features make the TLE8250SJ exceptionally suitable  
for mixed supply HS CAN networks.  
Based on the Infineon Smart Power Technology SPT, the TLE8250SJ provides excellent ESD immunity  
together with a very high electromagnetic immunity (EMI). The TLE8250SJ and the Infineon SPT technology  
are AEC qualified and tailored to withstand the harsh conditions of the automotive environment.  
Three different operating modes, additional fail-safe features like a TxD time-out and the optimized output  
slew rates on the CANH and CANL signals, make the TLE8250SJ the ideal choice for large HS CAN networks  
with high data transmission rates.  
Type  
Package  
Marking  
8250  
TLE8250SJ  
PG-DSO-8  
Data Sheet  
2
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
4.1  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.3  
4.3.1  
4.3.2  
4.3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
High Speed CAN Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Normal-operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power-save Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Receive-only Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power-up and Undervoltage Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Undervoltage on the Transmitter Supply VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5
Fail Safe Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Unconnected Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
TxD Time-out Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Delay Time for Mode Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1  
5.2  
5.3  
5.4  
5.5  
6
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.1  
6.2  
6.3  
7
7.1  
7.2  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Functional Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
ESD Robustness according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Examples for Mode Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Mode Change while the TxD Signal is “low” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Mode Change while the Bus Signal is dominant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.1  
8.2  
8.3  
8.3.1  
8.3.2  
8.4  
9
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10  
Data Sheet  
3
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Block Diagram  
2
Block Diagram  
3
1
VCC  
Transmitter  
7
TxD  
CANH  
CANL  
Timeout  
Driver  
Temp-  
protection  
8
5
6
NEN  
Mode  
control  
NRM  
Receiver  
Normal-mode receiver  
4
RxD  
VCC/2  
=
Bus-biasing  
GND  
2
Figure 1  
Functional block diagram  
Data Sheet  
4
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
1
2
3
4
8
7
6
5
NEN  
CANH  
CANL  
NRM  
TxD  
GND  
VCC  
RxD  
Figure 2  
Pin configuration  
3.2  
Pin Definitions  
Table 1  
Pin No.  
1
Pin definitions and functions  
Symbol  
TxD  
Function  
Transmit Data Input;  
internal pull-up to VCC, “low” for dominant state.  
2
3
GND  
Ground  
VCC  
Transmitter Supply Voltage;  
100 nF decoupling capacitor to GND required.  
4
5
RxD  
Receive Data Output;  
“low” in dominant state.  
NRM  
Not Receive-Only Mode Input;  
control input for selecting receive-only mode,  
internal pull-up to VCC, “low” for receive-only mode.  
6
7
8
CANL  
CANH  
NEN  
CAN Bus Low Level I/O;  
“low” in dominant state.  
CAN Bus High Level I/O;  
“high” in dominant state.  
Not Enable Input;  
internal pull-up to VCC  
,
“low” for normal-operating mode or receive-only mode.  
Data Sheet  
5
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Functional Description  
4
Functional Description  
HS CAN is a serial bus system that connects microcontrollers, sensors and actuators for real-time control  
applications. The use of the Controller Area Network (abbreviated CAN) within road vehicles is described by  
the international standard ISO 11898. According to the 7-layer OSI reference model the physical layer of a  
HS CAN bus system specifies the data transmission from one CAN node to all other available CAN nodes within  
the network. The physical layer specification of a CAN bus system includes all electrical and mechanical  
specifications of a CAN network. The CAN transceiver is part of the physical layer specification. Several  
different physical layer standards of CAN networks have been developed in recent years. The TLE8250SJ is a  
High Speed CAN transceiver without a wake-up function and defined by the international standard ISO11898-  
2.  
4.1  
High Speed CAN Physical Layer  
TxD  
VCC  
=
=
Transmitter supply voltage  
Transmit data input from  
the microcontroller  
TxD  
VCC  
RxD  
=
Receive data output to  
the microcontroller  
CANH =  
CANL =  
Bus level on the CANH  
input/output  
Bus level on the CANL  
input/output  
t
t
VDiff  
=
Differential voltage  
CANH  
CANL  
VCC  
between CANH and CANL  
VDiff = VCANH VCANL  
VDiff  
VCC  
“dominant” receiver threshold  
“recessive” receiver threshold  
t
RxD  
VCC  
tLoop(H,L)  
tLoop(L,H)  
t
Figure 3  
High speed CAN bus signals and logic signals  
Data Sheet  
6
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Functional Description  
The TLE8250SJ is a High-Speed CAN transceiver, operating as an interface between the CAN controller and the  
physical bus medium. A HS CAN network is a two wire, differential network which allows data transmission  
rates for CAN FD frames up to 2 MBit/s. Characteristic for HS CAN networks are the two signal states on the  
HS CAN bus: dominant and recessive (see Figure 3).  
VCC and GND are the supply pins for the TLE8250SJ. The pins CANH and CANL are the interface to the HS CAN  
bus and operate in both directions, as an input and as an output. RxD and TxD pins are the interface to the CAN  
controller, the TxD pin is an input pin and the RxD pin is an output pin. The NEN and NRM pins are the input  
pins for the mode selection (see Figure 4).  
By setting the TxD input pin to logical “low” the transmitter of the TLE8250SJ drives a dominant signal to the  
CANH and CANL pins. Setting TxD input to logical “high” turns off the transmitter and the output voltage on  
CANH and CANL discharges towards the recessive level. The recessive output voltage is provided by the bus-  
biasing (see Figure 1). The output of the transmitter is considered to be dominant, when the voltage difference  
between CANH and CANL is at least higher than 1.5 V (VDiff = VCANH - VCANL).  
Parallel to the transmitter the normal-mode receiver monitors the signal on the CANH and CANL pins and  
indicates it on the RxD output pin. A dominant signal on the CANH and CANL pins sets the RxD output pin to  
logical “low”, vice versa a recessive signal sets the RxD output to logical “high”. The normal-mode receiver  
considers a voltage difference (VDiff) between CANH and CANL above 0.9 V as dominant and below 0.5 V as  
recessive.  
To be conform with HS CAN features, like the bit to bit arbitration, the signal on the RxD output has to follow  
the signal on the TxD input within a defined loop delay tLoop 255 ns.  
Data Sheet  
7
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Functional Description  
4.2  
Modes of Operation  
The TLE8250SJ supports three different modes of operation, power-save mode, receive-only mode and  
normal-operating mode while the transceiver is supplied according to the specified functional range. The  
mode of operation is selected by the NEN and the NRM input pins (see Figure 4).  
VCC > VCC(UV,R)  
power-save mode  
NEN = 0  
NRM = 1  
NEN = 1  
NRM = “X”  
NEN = 1 NRM = “X”  
NEN = 1  
NRM = “X”  
NEN = 0  
NRM = 0  
NEN = 0  
NRM = 0  
receive-only  
mode  
normal-operating mode  
NEN = 0 NRM = 1  
NEN = 0  
NRM = 1  
NEN = 0  
NRM = 0  
VCC > VCC(UV,R)  
VCC > VCC(UV,R)  
Figure 4  
Mode state diagram  
4.2.1  
Normal-operating Mode  
In normal-operating mode the transmitter and the receiver of the HS CAN transceiver TLE8250SJ are active  
(see Figure 1). The HS CAN transceiver sends the serial data stream on the TxD input pin to the CAN bus. The  
data on the CAN bus is displayed at the RxD pin simultaneously. A logical “low” signal on the NEN pin and a  
logical “high” signal on the NRM pin selects the normal-operating mode, while the transceiver is supplied by  
VCC (see Table 2 for details).  
4.2.2  
Power-save Mode  
The power-save mode is an idle mode of the TLE8250SJ with optimized power consumption. In power-save  
mode the transmitter and the normal-mode receiver are turned off. The TLE8250SJ can not send any data to  
the HS CAN bus nor receive any data from the HS CAN bus.  
The RxD output pin is permanently “high” in the power-save mode.  
A logical “high” signal on the NEN pin selects the power-save mode, while the transceiver is supplied by the  
transmitter supply VCC (see Table 2 for details).  
In power-save mode the bus input pins are not biased. Therefore the CANH and CANL input pins are floating  
and the HS CAN bus interface has a high resistance.  
4.2.3  
Receive-only Mode  
In receive-only mode the normal-mode receiver is active and the transmitter is turned off. The TLE8250SJ can  
receive data from the HS CAN bus, but cannot send any data to the HS CAN bus.  
A logical “low” signal on the NEN pin and a logical “low” signal on the NRM pin selects the receive-only mode,  
while the transceiver is supplied by VCC (see Table 2 for details).  
Data Sheet  
8
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Functional Description  
4.3  
Power-up and Undervoltage Condition  
By detecting an undervoltage event or by switching off the transmitter power supply VCC, the transceiver  
TLE8250SJ changes the mode of operation (details see Figure 5).  
normal-operating  
mode  
VCC “on”  
NEN “0”  
NRM “1”  
VCC “on”  
NEN “0”  
NRM “1”  
NEN NRM VCC  
0
1
“on”  
VCC “on”  
NEN “0”  
NRM “0”  
VCC “on”  
NEN “0”  
NRM “1”  
power-down  
receive-only  
state  
mode  
VCC “on”  
NEN “0”  
NRM “0”  
NEN NRM VCC  
NEN NRM VCC  
“X”  
“X”  
“off”  
0
0
“on”  
VCC “on”  
NEN “1”  
NRM “X”  
VCC “on”  
NEN “1”  
NRM “X”  
power-save  
mode  
VCC “on”  
NEN “0”  
NRM “0”  
VCC “on”  
NEN “0”  
NRM “X”  
NEN NRM VCC  
“X” “on”  
1
Figure 5  
Power-up and undervoltage  
Modes of operation  
Table 2  
Mode  
NEN  
NRM  
VCC  
Bus-bias Transmitter Normal-mode Low-power  
Receiver  
Receiver  
Normal-operating “low”  
“high”  
“X”  
“on”  
“on”  
“on”  
“off”  
V
CC/2  
floating “off”  
CC/2 “off”  
“on”  
“on”  
not available  
not available  
not available  
not available  
Power-save  
Receive-only  
“high”  
“low”  
“off”  
“low”  
“X”  
V
“on”  
Power-down state “X1)”  
1) “X”: Don’t care  
floating “off”  
“off”  
Data Sheet  
9
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Functional Description  
4.3.1  
Power-down State  
Independent of the NEN and NRM input pins the TLE8250SJ is in power-down state when the transmitter  
supply voltage VCC is turned off (see Figure 5).  
In the power-down state the input resistors of the receiver are disconnected from the bus biasing VCC/2. The  
CANH and CANL bus interface of the TLE8250SJ is floating and acts as a high-impedance input with a very  
small leakage current. The high-ohmic input does not influence the recessive level of the CAN network and  
allows an optimized EME performance of the entire HS CAN network (see also Table 2).  
4.3.2  
Power-up  
The HS CAN transceiver TLE8250SJ powers up if the transmitter supply VCC is connected to the device. By  
default the device powers up in power-save mode, due to the internal pull-up resistor on the NEN pin to VCC  
.
In case the device needs to power-up to normal-operating mode, the NEN pin needs to be pulled active to  
logical “low” while the NRM pin is logical “high” (see Figure 5).  
Data Sheet  
10  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Functional Description  
4.3.3  
Undervoltage on the Transmitter Supply VCC  
In case the transmitter supply VCC falls below the threshold VCC < VCC(UV,F), the transceiver TLE8250SJ can not  
provide the correct bus levels to the CANH and CANL anymore. The normal-mode receiver is powered by the  
transmitter supply VCC. In case of insufficient VCC supply the TLE8250SJ can neither transmit the CANH and  
CANL signals correctly to bus nor can it receive them properly. Therefore the TLE8250SJ powers down and  
blocks both, the transmitter and the receiver.  
The transceiver TLE8250SJ powers up again, when the transmitter supply VCC recovers from the undervoltage  
condition.  
VCC  
VCC undervoltage monitor  
VCC(UV,R)  
hysteresis  
VCC(UV,H)  
VCC undervoltage monitor  
VCC(UV,F)  
tDelay(UV) delay time undervoltage  
t
any mode of operation  
power-down state  
power-save mode  
NEN  
NRM  
“high” due the internal  
pull-up resistor1)  
“X” = don’t care  
“X” = don’t care  
t
t
“high” due the internal  
pull-up resistor1)  
1) assuming no external signal applied  
Figure 6  
Undervoltage on the transmitter supply VCC  
Data Sheet  
11  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Fail Safe Functions  
5
Fail Safe Functions  
5.1  
Short Circuit Protection  
The CANH and CANL bus outputs are short circuit proof, either against GND or a positive supply voltage. A  
current limiting circuit protects the transceiver against damages. If the device is heating up due to a  
continuous short on the CANH or CANL, the internal overtemperature protection switches off the bus  
transmitter.  
5.2  
Unconnected Logic Pins  
All logic input pins have an internal pull-up resistor to VCC. In case the VCC supply is activated and the logical  
pins are open, the TLE8250SJ enters into the power-save mode by default. In power-save mode the  
transmitter of the TLE8250SJ is disabled and the bus bias is floating.  
5.3  
TxD Time-out Function  
The TxD time-out feature protects the CAN bus against permanent blocking in case the logical signal on the  
TxD pin is continuously “low”. A continuous “low” signal on the TxD pin might have its root cause in a locked-  
up microcontroller or in a short circuit on the printed circuit board, for example. In normal-operating mode, a  
logical “low” signal on the TxD pin for the time t > tTxD enables the TxD time-out feature and the TLE8250SJ  
disables the transmitter (see Figure 7). The receiver is still active and the data on the bus continues to be  
monitored by the RxD output pin.  
t > tTxD  
TxD time–out released  
TxD time-out  
CANH  
CANL  
t
TxD  
t
RxD  
t
Figure 7  
TxD time-out function  
Figure 7 illustrates how the transmitter is deactivated and activated again. A permanent “low” signal on the  
TxD input pin activates the TxD time-out function and deactivates the transmitter. To release the transmitter  
after a TxD time-out event the TLE8250SJ requires a signal change on the TxD input pin from logical “low” to  
logical “high”.  
Data Sheet  
12  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Fail Safe Functions  
5.4  
Overtemperature Protection  
The TLE8250SJ has an integrated overtemperature detection to protect the TLE8250SJ against thermal  
overstress of the transmitter. The overtemperature protection is active in normal-operating mode and  
disabled in power-save mode and receive-only mode. In case of an overtemperature condition, the  
temperature sensor will disable the transmitter (see Figure 1) while the transceiver remains in normal-  
operating mode.  
After the device has cooled down the transmitter is activated again (see Figure 8). A hysteresis is implemented  
within the temperature sensor.  
TJSD (shut down temperature)  
cool down  
TJ  
˂T  
switch-on transmitter  
t
CANH  
CANL  
t
TxD  
t
RxD  
t
Figure 8  
Overtemperature protection  
5.5  
Delay Time for Mode Change  
The HS CAN transceiver TLE8250SJ changes the mode of operation within the time window tMode. Depending  
on the selected mode of operation, the RxD output pin is set to logical “high” during the mode change.  
In this case the RxD output does not reflect the status on the CANH and CANL input pins (see as an example  
Figure 12 and Figure 13).  
Data Sheet  
13  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
General Product Characteristics  
6
General Product Characteristics  
6.1  
Absolute Maximum Ratings  
Table 3  
Absolute maximum ratings voltages, currents and temperatures1)  
All voltages with respect to ground; positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Voltages  
Transmitter supply voltage VCC  
CANH DC voltage versus GND VCANH  
CANL DC voltage versus GND VCANL  
-0.3  
-40  
-40  
-40  
6.0  
40  
40  
40  
V
V
V
V
P_6.1.1  
P_6.1.2  
P_6.1.3  
P_6.1.4  
Differential voltage between VCAN SDiff  
CANH and CANL  
Voltages at the input pins:  
NEN, NRM, TxD  
VMAX_IN  
-0.3  
-0.3  
6.0  
V
V
P_6.1.5  
P_6.1.6  
Voltages at the output pin:  
RxD  
VMAX_OUT  
VCC  
Currents  
RxD output current  
Temperatures  
IRxD  
-20  
20  
mA  
P_6.1.7  
Junction temperature  
Storage temperature  
ESD Resistivity  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_6.1.8  
P_6.1.9  
TS  
ESD immunity at CANH, CANL VESD_HBM_CAN -10  
versus GND  
10  
2
kV  
kV  
V
HBM  
P_6.1.10  
P_6.1.11  
P_6.1.12  
(100 pF via 1.5 k)2)  
ESD immunity at all other  
pins  
VESD_HBM_ALL -2  
HBM  
(100 pF via 1.5 k)2)  
ESD immunity to GND  
VESD_CDM -750  
750  
CDM3)  
1) Not subject to production test, specified by design  
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001  
3) ESD susceptibility, Charge Device Model “CDM” according to EIA/JESD22-C101 or ESDA STM5.3.1  
Note:  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability. Integrated  
protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal-operating range. Protection  
functions are not designed for continuos repetitive operation.  
Data Sheet  
14  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
General Product Characteristics  
6.2  
Functional Range  
Table 4  
Functional range  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Supply Voltages  
Transmitter supply voltage VCC  
4.5  
5.5  
V
P_6.2.1  
P_6.2.2  
Thermal Parameters  
1)  
Junction temperature  
Tj  
-40  
150  
°C  
1) Not subject to production test, specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
6.3  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, please visit www.jedec.org.  
Table 5  
Thermal resistance1)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
K/W 2) TLE8250SJ  
Number  
P_6.3.2  
Min. Typ. Max.  
Thermal Resistances  
Junction to Ambient PG-  
DSO-8  
RthJA  
130  
Thermal Shutdown (junction temperature)  
Thermal shutdown  
temperature  
TJSD  
150  
175  
10  
200  
°C  
K
P_6.3.3  
P_6.3.4  
Thermal shutdown  
hysteresis  
ΔT  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board. The product  
(TLE8250SJ) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).  
Data Sheet  
15  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Electrical Characteristics  
7
Electrical Characteristics  
7.1  
Functional Device Characteristics  
Table 6  
Electrical characteristics  
4.5 V < VCC < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current Consumption  
Current consumption at VCC ICC  
normal-operating mode  
2.6  
38  
5
mA recessive state,  
P_7.1.1  
P_7.1.2  
VTxD = VNRM = VCC  
NEN = 0 V;  
mA dominant state,  
,
V
Current consumption at VCC ICC  
60  
normal-operating mode  
V
V
TxD = VNEN = 0 V,  
NRM = VCC  
;
Current consumption at VCC ICC(ROM)  
receive-only mode  
2
5
3
mA VNEN = VNRM = 0 V;  
P_7.1.3  
P_7.1.4  
Current consumption at VCC ICC(PSM)  
12  
µA VTxD = VNEN = VNRM = VCC;  
power-save mode  
Supply Resets  
VCC undervoltage monitor  
rising edge  
VCC(UV,R)  
VCC(UV,F)  
VCC(UV,H)  
3.8  
4.0  
4.3  
V
P_7.1.5  
P_7.1.6  
P_7.1.7  
P_7.1.8  
VCC undervoltage monitor  
falling edge  
3.65 3.85 4.3  
V
1)  
VCC undervoltage monitor  
hysteresis  
150  
mV  
µs  
VCC undervoltage delay time tDelay(UV)  
Receiver Output RxD  
100  
1) (see Figure 6);  
“High” level output current IRD,H  
2
-4  
4
-2  
mA VRxD = VCC - 0.4 V,  
VDiff < 0.5 V;  
P_7.1.9  
“Low” level output current  
IRD,L  
mA VRxD = 0.4 V, VDiff > 0.9 V;  
P_7.1.10  
Data Sheet  
16  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Transmission Input TxD  
“High” level input voltage  
threshold  
VTxD,H  
VTxD,L  
0.5  
0.7  
V
V
recessive state;  
dominant state;  
P_7.1.11  
P_7.1.12  
× VCC × VCC  
“Low” level input voltage  
threshold  
0.3  
0.4  
× VCC × VCC  
Pull-up resistance  
Input hysteresis  
Input capacitance  
RTxD  
10  
25  
450  
50  
kΩ  
mV  
pF  
P_7.1.13  
P_7.1.14  
P_7.1.15  
1)  
VHYS(TxD)  
CTxD  
1)  
10  
16  
TxD permanent dominant  
time-out  
tTxD  
4.5  
ms normal-operating mode; P_7.1.16  
Not Enable Input NEN  
“High” level input voltage  
threshold  
VNEN,H  
VNEN,L  
0.5 ´ 0.7 ´  
V
V
power-save mode;  
P_7.1.17  
VCC  
VCC  
“Low” level input voltage  
threshold  
0.3 ´ 0.4 ´  
normal-operating mode, P_7.1.18  
receive-only mode;  
VCC  
10  
VCC  
25  
Pull-up resistance  
RNEN  
50  
10  
kW  
pF  
1)  
P_7.1.19  
P_7.1.20  
P_7.1.21  
Input capacitance  
CNEN  
1)  
Input hysteresis  
VHYS(NEN)  
200  
mV  
Not Receive-only Input NRM  
“High” level input voltage  
threshold  
VNRM,H  
VNRM,L  
0.5 ´ 0.7 ´  
V
V
normal-operating mode, P_7.1.22  
power-save mode;  
VCC  
VCC  
“Low” level input voltage  
threshold  
0.3 ´ 0.4 ´  
receive-only mode,  
power-save mode;  
P_7.1.23  
VCC  
10  
VCC  
25  
Pull-up resistance  
Input capacitance  
Input hysteresis  
Bus Receiver  
RNRM  
50  
10  
kW  
pF  
P_7.1.24  
P_7.1.25  
P_7.1.26  
1)  
CNRM  
1)  
VNRM(HYS)  
200  
mV  
2)  
Differential receiver  
threshold dominant  
normal-operating mode and  
receive-only mode  
VDiff_D  
0.75 0.9  
V
V
V
P_7.1.27  
P_7.1.28  
P_7.1.29  
2)  
Differential receiver  
threshold recessive  
normal-operating mode and  
receive-only mode  
VDiff_R  
0.5  
0.66  
1) 2)  
Differential range dominant VDiff_D_Range 0.9  
8.0  
Normal-operating mode  
Data Sheet  
17  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
P_7.1.30  
Min. Typ. Max.  
1) 2)  
Differential range recessive VDiff_R_Range -3.0  
0.5  
V
Normal-operating mode  
Common mode range  
CMR  
-12  
12  
V
VCC = 5 V;  
1)  
P_7.1.31  
P_7.1.32  
Differential receiver  
hysteresis normal-operating  
mode  
VDiff,hys  
90  
mV  
CANH, CANL input resistance Ri  
Differential input resistance RDiff  
10  
20  
- 1  
20  
40  
30  
60  
1
krecessive state;  
krecessive state;  
P_7.1.33  
P_7.1.34  
P_7.1.35  
Input resistance deviation  
between CANH and CANL  
ΔRi  
%
1) recessive state;  
1)  
Input capacitance CANH,  
CANL versus GND  
CIn  
20  
10  
40  
20  
pF  
pF  
V
V
= VCC  
;
;
P_7.1.36  
P_7.1.37  
TxD  
TxD  
1)  
Differential input  
capacitance  
CInDiff  
= VCC  
Bus Transmitter  
CANL/CANH recessive  
output voltage  
normal-operating mode  
VCANL/H  
VDiff_NM  
VCANL  
VCANH  
VDiff  
2.0  
2.5  
3.0  
50  
V
VTxD = VCC  
no load;  
,
,
P_7.1.38  
P_7.1.39  
P_7.1.40  
P_7.1.41  
P_7.1.42  
CANH, CANL recessive  
output voltage difference  
normal-operating mode  
-500  
0.5  
mV VTxD = VCC  
no load;  
CANL dominant  
output voltage  
normal-operating mode  
2.25  
4.5  
3.0  
V
V
V
VTxD = 0 V;  
CANH dominant  
output voltage  
normal-operating mode  
2.75  
1.5  
VTxD = 0 V;  
VTxD = 0 V,  
50 < RL < 65 ,  
4.75 < VCC < 5.25 V;  
CANH, CANL dominant  
output voltage difference  
normal-operating mode  
according to ISO 11898-2  
V
Diff = VCANH - VCANL  
CANH, CANL dominant  
output voltage difference  
normal-operating mode  
VDiff_EXT  
1.4  
3.3  
5.0  
V
V
VTxD = 0 V,  
45 < RL < 70 ,  
4.75 < VCC < 5.25 V;  
P_7.1.43  
P_7.1.44  
V
Diff = VCANH - VCANL  
Differential voltage  
dominant high extended bus  
load  
VDiff_HEX_BL 1.5  
VTxD = 0 V,  
RL = 2240,  
4.75 V < VCC < 5.25 V,  
Normal-operating mode  
static behavior;1)  
Data Sheet  
18  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
VCC = 5.0 V, VTxD = 0 V;  
Number  
P_7.1.45  
Min. Typ. Max.  
Driver dominant symmetry VSYM  
normal-operating mode  
4.5  
5
5.5  
100  
-40  
5
V
VSYM = VCANH + VCANL  
CANL short circuit current  
CANH short circuit current  
Leakage current, CANH  
Leakage current, CANL  
ICANLsc  
ICANHsc  
ICANH,lk  
ICANL,lk  
40  
75  
mA VCANLshort = 18 V,  
CC = 5.0 V, t < tTxD  
P_7.1.46  
P_7.1.47  
P_7.1.48  
P_7.1.49  
V
,
,
VTxD = 0 V;  
-100 -75  
mA VCANHshort = -3 V,  
VCC = 5.0 V, t < tTxD  
V
TxD = 0 V;  
µA VCC = 0 V,  
0 V < VCANH < 5 V,  
CANH=VCANL  
µA VCC = 0 V,  
0 V < VCANL < 5 V,  
VCANH=VCANL  
-5  
-5  
V
;
5
;
Dynamic CAN-Transceiver Characteristics  
Propagation delay  
TxD-to-RxD “low”  
(“recessive to dominant)  
tLoop(H,L)  
tLoop(L,H)  
td(L),T  
170  
170  
90  
230  
230  
140  
140  
140  
140  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
P_7.1.50  
P_7.1.51  
P_7.1.52  
P_7.1.53  
P_7.1.54  
P_7.1.55  
Propagation delay  
TxD-to-RxD “high”  
(dominant to recessive)  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
TxD “low” to bus dominant  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
TxD “high” to bus recessive  
td(H),T  
90  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
bus dominant to RxD “low”  
td(L),R  
90  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
td(H),R  
90  
CL = 100 pF,  
bus recessive to RxD “high”  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Delay Times  
Delay time for mode change tMode  
20  
µs  
1) (see Figure 12 and  
Figure 13);  
P_7.1.56  
Data Sheet  
19  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
CAN FD Characteristics  
Received recessive bit width tBit(RxD)_2MB 430  
500  
500  
530  
530  
20  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF, tBit = 500 ns,  
(see Figure 11);  
P_7.1.57  
at 2 MBit/s  
Transmitted recessive bit  
width  
tBit(Bus)_2MB 450  
CL = 100 pF,  
P_7.1.58  
P_7.1.59  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF, tBit = 500 ns,  
(see Figure 11);  
at 2 MBit/s  
Receiver timing symmetry  
at 2 MBit/s  
ΔtRec_2MB  
-45  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
ΔtRec = tBit(RxD) - tBit(Bus)  
CRxD = 15 pF, tBit = 500 ns,  
(see Figure 11);  
1) Not subject to production test, specified by design.  
2) In respect to the common mode range.  
Data Sheet  
20  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Electrical Characteristics  
7.2  
Diagrams  
5
NRM  
7
6
CANH  
CANL  
1
8
TxD  
NEN  
CL  
RL  
4
3
RxD  
VCC  
CRxD  
GND  
2
100 nF  
Figure 9  
Test circuits for dynamic characteristics  
TxD  
0.7 x VCC  
0.3 x VCC  
t
t
td(L),T  
td(H),T  
VDiff  
0.9 V  
0.5 V  
td(H),R  
td(L),R  
tLoop(H,L)  
tLoop(L,H)  
RxD  
0.7 x VCC  
0.3 x VCC  
t
Figure 10  
Timing diagrams for dynamic characteristics  
Data Sheet  
21  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Electrical Characteristics  
TxD  
0.7 x VCC  
0.3 x VCC  
0.3 x VCC  
t
t
5 x tBit  
tBit  
tLoop(H,L)  
tBit(Bus)  
VDiff = VCANH - VCANL  
VDiff  
0.9 V  
0.5 V  
tLoop(L,H)  
tBit(RxD)  
RxD  
0.7 x VCC  
0.3 x VCC  
t
Figure 11  
Recessive bit width - five dominant bits followed by one recessive bit  
Data Sheet  
22  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Application Information  
8
Application Information  
8.1  
ESD Robustness according to IEC61000-4-2  
Tests for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 ) have been performed. The  
results and test conditions are available in a separate test report.  
Table 7  
ESD robustness according to IEC61000-4-2  
Result Unit  
Performed Test  
Remarks  
Electrostatic discharge voltage at pin CANH and +8  
kV  
1)Positive pulse  
CANL versus GND  
Electrostatic discharge voltage at pin CANH and -8  
kV  
1)Negative pulse  
CANL versus GND  
1) ESD susceptibility “ESD GUN” according to GIFT / ICT paper: “EMC Evaluation of CAN Transceivers, version 03/02/IEC  
TS62228”, section 4.3. (DIN EN61000-4-2)  
Tested by external test facility (IBEE Zwickau, EMC test report no. TBD).  
Data Sheet  
23  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Application Information  
8.2  
Application Example  
VBAT  
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
CANH  
CANL  
EN  
3
VCC  
100 nF  
22 uF  
120  
Ohm  
TLE8250SJ  
VCC  
8
1
4
5
Out  
Out  
In  
NEN  
7
6
CANH  
CANL  
TxD  
Microcontroller  
e.g. XC22xx  
RxD  
NRM  
optional:  
common mode choke  
Out  
GND  
GND  
2
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
EN  
3
VCC  
100 nF  
22 uF  
TLE8250SJ  
VCC  
8
1
4
5
Out  
NEN  
7
6
CANH  
Out  
In  
TxD  
RxD  
Microcontroller  
e.g. XC22xx  
CANL  
2
optional:  
Out  
NRM  
GND  
common mode choke  
120  
Ohm  
GND  
CANH  
CANL  
example ECU design  
Application circuit  
Figure 12  
Data Sheet  
24  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Application Information  
8.3  
Examples for Mode Changes  
The mode change is executed independently of the signal on the HS CAN bus. The CANH, CANL inputs may  
be either dominant or recessive. They can be also permanently shorted to GND or VCC  
.
A mode change is performed independently of the signal on the TxD input. The TxD input may be either  
logical “high” or “low”.  
Analog to that, changing the NEN input pin to logical “high” changes the mode of operation to the power-save  
mode. Changing the NEN input pin and the NRM input pin to logical “low” changes the mode of operation to  
the receive-only mode. Both mode changes are independent on the signals at the CANH, CANL and TxD pins.  
Note:  
In case the TxD signal is “low” setting the NRM input pin to logical “high” and the NEN input pin to  
logical “low” changes the device to normal-operating mode and drives a dominant signal to the  
HS CAN bus”.  
Note:  
The TxD time-out is only effective in normal-operating mode. The TxD time-out timer starts when the  
TLE8250SJ enters normal-operating mode and the TxD input is set to logical “low”.  
Data Sheet  
25  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Application Information  
8.3.1  
Mode Change while the TxD Signal is “low”  
The example in Figure 13 shows a mode change to normal-operating mode while the TxD input is logical  
“low”. The HS CAN signal is recessive, assuming all other HS CAN bus subscribers are also sending a recessive  
bus signal.  
While the transceiver TLE8250SJ is in power-save mode, the transmitter and the normal-mode receiver are  
turned off. The TLE8250SJ drives no signal to the HS CAN bus nor does it receive any signal from the HS CAN  
bus. Changing the NEN to logical “low” turns the mode of operation to normal-operating mode, while the TxD  
input signal remains logical “low”. The transmitter and the normal-mode receiver remain disabled until the  
mode transition is completed. In normal-operating mode the transceiver and the normal-mode receiver are  
active. The “low” signal on the TxD input drives a dominant signal to the HS CAN bus and the RxD output pin  
becomes logical “low”, following the dominant signal on the HS CAN bus.  
Changing the mode of operation from normal-operating mode to receive-only mode by setting the NRM input  
pin to “low”, disables the transmitter and the TxD input, but the normal-mode receiver and the RxD output  
remain active. The HS CAN bus becomes recessive since the transmitter is disabled. The RxD input indicates  
the recessive HS CAN bus signal by a logical “high” output signal (see also the example in Figure 13).  
Mode changes between the power-save mode on the one side and the normal-operating mode or the receive-  
only mode on the other side, disable the transmitter and the normal-mode receiver. No signal can be driven  
to the HS CAN bus nor can it be received from the HS CAN bus. Mode changes between the normal-operating  
mode and the receive-only mode disable the transmitter and the normal mode receiver remains active. The  
HS CAN transceiver TLE8250SJ monitors the HS CAN bus also during the mode transition from normal-  
operating mode to receive-only mode and vice versa.  
8.3.2  
Mode Change while the Bus Signal is dominant  
The example in Figure 14 shows a mode change while the bus is dominant and the TxD input signal is set to  
logical “high”.  
While the transceiver TLE8250SJ is in power-save mode, the transmitter and the normal-mode receiver are  
turned off. The TLE8250SJ drives no signal to the HS CAN bus nor does it receive any signal from the HS CAN  
bus. Changing the NEN to logical “low” turns the mode of operation to normal-operating mode, while the TxD  
input signal remains logical “high”. The transmitter and the normal-mode receiver remain disabled until the  
mode transition is completed. In normal-operating mode the transceiver and the receiver are active and  
therefor the RxD output changes to logical “low” indicating the dominant signal on the HS CAN bus.  
Changing the mode of operation from normal-operating mode to receive-only mode by setting the NRM input  
pin to “low”, disables the transmitter and the TxD input, but the normal-mode receiver and the RxD output  
remain active. Since the dominant signal on the HS CAN bus is driven by another HS CAN bus subscriber, the  
bus remains dominant and the RxD input indicates the dominant HS CAN bus signal by a logical “low” output  
signal (see also the example in Figure 14).  
Data Sheet  
26  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Application Information  
Note: The signals on the HS CAN bus are “recessive, the “dominant” signal is  
generated by the TxD input signal  
t = tMode  
t = tMode  
NEN  
t = tMode  
t = tMode  
t
t
t
NRM  
TxD  
VDIFF  
t
t
RxD  
power-save  
transition  
normal-operating  
transition  
receive-only  
transition  
normal-operating  
transition  
power-save  
normal-mode  
RxD output  
blocked  
RxD output  
blocked  
normal-mode  
normal-mode receiver and RxD output active  
TxD input and transmitter blocked  
receiver blocked  
receiver blocked  
TxD input and transmitter  
blocked  
TxD input and transmitter  
active  
TxD input and transmitter  
active  
TxD input and transmitter  
blocked  
Figure 13  
Example for a mode change while the TxD is “low”  
Data Sheet  
27  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Application Information  
Note: The “dominant” signal on the HS CAN bus is set by another HS CAN bus subscriber.  
t = tMode  
t = tMode  
NEN  
t = tMode  
t = tMode  
t
t
t
NRM  
TxD  
VDIFF  
t
t
RxD  
power-save  
transition  
normal-operating  
transition  
receive-only  
transition  
normal-operating  
transition  
power-save  
normal-mode  
RxD output  
blocked  
RxD output  
blocked  
normal-mode  
normal-mode receiver and RxD output active  
TxD input and transmitter blocked  
receiver blocked  
receiver blocked  
TxD input and transmitter  
blocked  
TxD input and transmitter  
active  
TxD input and transmitter  
active  
TxD input and transmitter  
blocked  
Figure 14  
Example for a mode change while the HS CAN is dominant  
8.4  
Further Application Information  
Please contact us for information regarding the pin FMEA.  
Existing application note.  
For further information you may visit: http://www.infineon.com/  
Data Sheet  
28  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Package Outline  
9
Package Outline  
0.35 x 45˚  
1)  
4-0.2  
C
1.27  
B
0.1  
±0.25  
0.64  
+0.1 2)  
-0.06  
0.41  
±0.2  
6
M
M
0.2  
A B 8x  
0.2  
C 8x  
8
5
1
4
A
1)  
5-0.2  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
Figure 15  
PG-DSO-8 (Plastic Dual Small Outline PG-DSO-8)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
29  
Rev. 1.0  
2016-07-15  
TLE8250  
High Speed CAN Transceiver  
Revision History  
10  
Revision History  
Revision  
1.0  
Date  
Changes  
2016-07-15 Data Sheet created.  
Data Sheet  
30  
Rev. 1.0  
2016-07-15  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2016-07-15  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
WARNINGS  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2016 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

TLE8250SJXUMA1

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8250VSJ

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8250XSJ

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8250_16

High Speed CAN Transceiver
INFINEON

TLE8251V

High Speed CAN Transceiver with Bus Wake-up
INFINEON

TLE8251VSJ

High Speed CAN Transceiver with Bus Wake-up
INFINEON

TLE8251VSJXUMA1

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8261-2E

Universal System Basis Chip
INFINEON

TLE8261E

Universal System Basis Chip HERMES Rev. 1.0
INFINEON

TLE8261EXUMA1

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36
INFINEON

TLE8261EXUMA3

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36
INFINEON

TLE8262-2E

Universal System Basis Chip
INFINEON