TLE9371SJ [INFINEON]

WK;
TLE9371SJ
型号: TLE9371SJ
厂家: Infineon    Infineon
描述:

WK

文件: 总35页 (文件大小:867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE9371SJ  
CAN signal improvement transceiver  
Features  
Compliant to ISO 11898-2:2016, SAE J2284-4/-5  
Tx-based CAN FD SIC according to CiA 601-4  
Loop delay symmetry for CAN FD data frames up to 8 Mbit/s  
Standby mode with minimized quiescent current  
Wake-up indication on the RxD output  
Wide common mode range for electromagnetic immunity (EMI)  
Excellent ESD robustness ±8 kV HBM and IEC 61000-4-2  
CAN short circuit proof to ground, battery and VCC  
TxD timeout function  
Very low CAN bus leakage current in power-down state  
Overtemperature protection  
Protected against automotive transients according to ISO 7637 and SAE J2962-2  
Green Product (RoHS compliant)  
Potential applications  
Gateway module  
Body control module (BCM)  
Engine control unit (ECU)  
ADAS  
Radar  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
The TLE9371SJ is the first high-speed CAN transceiver generation with signal improvement, used in  
HS Controller Area Networks (CAN) for automotive applications and also for industrial applications. It is  
designed to fulfill the requirements of ISO 11898-2 (2016) physical layer specification as well as SAE J1939 and  
SAE J2284.  
The TLE9371SJ is available in a halogen free and RoHS compliant PG-DSO-8 package.  
Datasheet  
1.0  
2023-02-28  
www.infineon.com/automotive-transceiver  
1
TLE9371SJ  
CAN signal improvement transceiver  
As an interface between the physical bus layer and the HS CAN, the TLE9371SJ protects the microcontroller  
against interference generated in the network. A very high ESD robustness and the optimized RF immunity  
allows the use in automotive applications without additional protection devices, such as suppressor diodes  
or common mode chokes.  
While the TLE9371SJ is not supplied the transmitter is switched off and behaves passive with the lowest  
possible load to all other nodes of the HS CAN.  
Based on the high symmetry of the CANH and CANL output signals, the TLE9371SJ provides very low  
electromagnetic emission (EME) within a wide frequency range. The TLE9371SJ fulfills stringent EMC test  
limits without additional external circuitry, such as a common mode choke.  
Due to the excellent symmetry combined with the optimized delay symmetry of the receiver the TLE9371SJ  
supports CAN FD data frames. Depending on the size of the network and its parasitic effects the device  
supports a transmission rate up to 8 Mbit/s.  
Dedicated low-power modes, like standby mode require very low quiescent current while the device is  
powered up. In standby mode the typical quiescent current on VCC is below 10 µA while the device can still  
wake up from a bus signal on the HS CAN bus.  
Fail-safe features such as overtemperature protection, output current limitation and the TxD timeout feature  
protect the TLE9371SJ and the external circuitry from damage.  
Type  
Package  
Marking  
TLE9371SJ  
PG-DSO-8  
9371  
Datasheet  
2
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
2.1  
2.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
High-speed CAN functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1  
High-speed CAN physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4
Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Normal-operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power-down state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus wake-up pattern (WUP) detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bus wake-up pattern (WUP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
RxD pin wake-up behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
4.4  
4.4.1  
4.4.2  
5
Fail safe functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Unconnected logic input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
V
CC undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
TxD timeout function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Delay time for mode change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1  
6.2  
6.3  
7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power supply interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
CAN controller interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Dynamic transceiver parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.1  
7.1.1  
7.1.2  
7.2  
7.3  
7.4  
7.5  
7.6  
8
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
ESD robustness according to IEC 61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.1  
8.2  
8.3  
Datasheet  
3
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10  
Datasheet  
4
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Block diagram  
1
Block diagram  
3
VCC  
1
8
7
TxD  
STB  
CANH  
CANL  
Timeout  
Driver  
SIC  
Transmitter  
Temp-  
6
Protection  
Mode  
Control  
Receiver  
Normal-mode Receiver  
4
Mux  
RxD  
Wake-  
Logic &  
Filter  
Low-power Receiver  
GND  
VCC/2  
VCC  
=
N.C.  
Bus-biasing  
5
GND  
N.C.  
2
Figure 1  
Block diagram  
Datasheet  
5
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Pin configuration  
2
Pin configuration  
2.1  
Pin assignment  
1
2
3
4
8
7
6
5
STB  
CANH  
CANL  
TxD  
GND  
VCC  
RxD  
N.C  
Figure 2  
Pin configuration  
2.2  
Pin definitions and functions  
Table 1  
Pin No.  
1
Pin definitions and functions  
Symbol  
Function  
TxD  
Transmit data input;  
Internal pull-up to VCC, “low” for dominant state.  
2
3
GND  
Ground  
VCC  
Transmitter supply voltage;  
1 uF decoupling capacitor to GND required.  
4
5
6
7
8
RxD  
Receive data output;  
“Low” in dominant state.  
N.C.  
Not connected;  
Pin has no function and is not connected internally.  
CANL  
CANH  
STB  
CAN bus low level I/O;  
“Low” in dominant state.  
CAN bus high level I/O;  
“High” in dominant state.  
Standby input;  
Internal pull-up to VCC, “low” for normal-operating mode.  
Datasheet  
6
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
High-speed CAN functional description  
3
High-speed CAN functional description  
HS CAN is a serial bus system that connects microcontrollers, sensors and actuators for real-time control  
applications. The use of the Controller Area Network (abbreviated CAN) within road vehicles is described by  
the international standard ISO 11898. According to the 7-layer OSI reference model the physical layer of a  
HS CAN bus system specifies the data transmission from one CAN node to all other available CAN nodes within  
the network. The physical layer specification of a CAN bus system includes all electrical specifications of a  
CAN. The CAN transceiver is part of the physical layer. The TLE9371SJ is a high-speed CAN transceiver with a  
dedicated bus wake-up function as defined in the latest ISO 11898-2 HS CAN standard.  
3.1  
High-speed CAN physical layer  
TxD  
VCC  
=
=
Transmitter supply voltage  
Transmit data input from  
the microcontroller  
TxD  
VCC  
RxD  
=
Receive data output to  
the microcontroller  
CANH = Bus level on the CANH  
input/output  
CANL =  
Bus level on the CANL  
input/output  
t
t
VDiff  
=
Differential voltage  
between CANH and CANL  
CANH  
CANL  
VCC  
VDiff = VCANH VCANL  
VDiff  
VCC  
“dominant” receiver threshold  
“recessive” receiver threshold  
t
RxD  
VCC  
tLoop  
tLoop  
t
Figure 3  
High-speed CAN bus signals and logic signals  
Datasheet  
7
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
High-speed CAN functional description  
The TLE9371SJ is a high-speed CAN transceiver, operating as an interface between the CAN controller and the  
physical bus medium. A HS CAN is a two wire, differential network, which allows data transmission rates up to  
8 Mbit/s. The characteristic for a HS CAN is that the logical high level and logical low level (microcontroller  
interface) are converted into a differential signal (CAN bus interface) with the states dominant and recessive,  
see Figure 3.  
The CANH and CANL pins are the interface to the CAN bus and both pins operate as an input and output. The  
RxD and TxD pins are the interface to the microcontroller. The pin TxD is the serial data input from the CAN  
controller, the RxD pin is the serial data output to the CAN controller. The device includes a receiver and a  
transmitter unit, allowing the transceiver to send data to the bus medium and monitor the data from the bus  
medium at the same time, see Figure 1. The device converts the serial data stream from the transmit data  
input TxD, into a differential output signal on the CAN bus, provided by the CANH and CANL pins. The receiver  
stage of the device monitors the data on the CAN bus and converts them to a serial, single-ended signal on the  
RxD output pin. A “low” signal on the TxD pin creates a dominant signal on the CAN bus. The receiver converts  
this dominant signal to a “low” signal on the RxD pin, see Figure 3. The feature of broadcasting data to the CAN  
bus and listening to the data traffic on the CAN bus simultaneously is essential to support the bit-to-bit  
arbitration within the network.  
The voltage levels for HS CAN transceivers are defined in ISO 11898-2. Whether a data bit is dominant or  
recessive depends on the voltage difference between the CANH and CANL pins:  
VDiff = VCANH - VCANL.  
For a dominant signal on the CAN bus the high-speed transceiver creates a differential signal of VDiff 1.5 V. To  
receive a recessive signal from the CAN bus the amplitude of the differential VDiff 0.5 V.  
In a partially supplied high-speed CAN, the CAN bus nodes have different power supply conditions. Some  
nodes are connected to the common power supply while other nodes are disconnected from the power supply  
and in power-down state. Regardless of whether the CAN bus node is supplied or not, each node connected to  
the common bus media must not interfere with the communication. The device supports partially-supplied  
networks. In power-down state, the receiver input resistors are switched off and the transceiver input has a  
high resistance.  
For permanently supplied ECUs, the HS CAN transceiver, the device provides a stand-by mode. In stand-by  
mode, the power consumption of the device is optimized to a minimum, while the device is still able to  
recognize wake-up patterns on the CAN bus and signal the wake-up event to the external microcontroller.  
The voltage level on the digital input TxD and on the digital output RxD is determined by the power supply  
level at the VCC pin. Depending on the voltage level at the VCC pin, the signal levels on the logic pins (STB, TxD  
and RxD) are compatible with microcontrollers having a 5 V I/O supply.  
Datasheet  
8
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Modes of operation  
4
Modes of operation  
The device supports the following modes of operation, see Figure 4:  
Normal-operating mode  
Standby mode  
The mode selection input pin STB triggers mode changes. If a wake-up event occurs on the HS CAN bus, then  
the device indicates that on the RxD output pin in stand-by mode, but it does not trigger a mode change. An  
power-down event on the supply VCC powers down the device.  
STB = 0  
AND  
tmode expired  
Normal-  
Standby  
operating  
mode  
mode  
STB = 1  
AND  
tmode expired  
VCC is in the  
functional range  
for at least tPON  
Power-down  
Any mode  
state  
VCC < VCC_POD  
Figure 4  
Mode state diagram  
Datasheet  
9
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Modes of operation  
4.1  
Normal-operating mode  
In normal-operating mode all functions of the device are available and the device is fully functional. Data can  
be received from the HS CAN bus as well as be transmitted to the HS CAN bus.  
The transmitter is enabled and drives data stream on the TxD input pin to the bus pins CANH and CANL  
The receiver is enabled and converts the signals from the bus to a serial data stream on the RxD output pin  
The bus biasing is connected to VCC/2 if VCC > VCC_UV  
The TxD timeout function is enabled, see Chapter 5.4  
The overtemperature protection is enabled, see Chapter 5.6  
The undervoltage detection on VCC is enabled, see Chapter 5.3  
Conditions for entering normal-operating mode of the device:  
If VCC > VCC_POD and the STB pin is “low”, then the device enters normal-operating mode after tMode from  
standby mode, see Figure 4  
If a “low” signal is applied on TxD input pin during a mode change to normal-operating mode, device disables  
the transmitter as long as “low” signal is applied on the TxD input pin. If a “high” signal is applied on the TxD  
input pin for at least tTxD_rel, then the device enables the transmitter, see Figure 5.  
Mode  
TxD  
Any Mode  
Normal-operating Mode  
0.7 x  
VCC  
tTxD_rel  
t
disabled  
enabled  
Transmitter  
Mode  
TxD  
Any Mode  
Normal-operating Mode  
t
disabled  
enabled  
Transmitter  
Figure 5  
Mode change to normal-operating mode with dominant signal on TxD  
Datasheet  
10  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Modes of operation  
4.2  
Standby mode  
The standby mode is the low-power mode of the device. In standby mode the following functions are defined:  
The transmitter is disabled and does not drive the data stream on the TxD input pin to the bus pins CANH  
and CANL  
The normal-mode receiver is disabled and the data available on the bus is blocked.  
The device monitors the CAN bus for a valid wake-up pattern, see Chapter 4.4.  
The RxD output pin indicates a CAN bus wake-up, see Chapter 4.4.2  
Bus biasing is connected to GND  
TxD dominant timeout function is disabled  
The overtemperature protection is disabled  
The undervoltage detection on VCC is disabled, see Chapter 5.3  
Conditions for entering standby mode of the device:  
If VCC > VCC_POD and the STB pin is “high”, then the device enters standby mode after tMode from normal-  
operation mode  
If VCC is in the functional rage for at least tPON, then the device enters standby mode from power-down state  
Datasheet  
11  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Modes of operation  
4.3  
Power-down state  
In power-down state the device is not functional and has the following behavior:  
The transmitter and receiver are disabled  
The bus biasing is set to high impedance  
The TxD timeout function is disabled  
The overtemperature protection is disabled  
The undervoltage detection on VCC is disabled  
RxD follows the VCC voltage  
Conditions for entering power-down state of the device:  
V
CC is below the VCC_POD threshold  
VCC  
V
CC is in the functional  
range  
VCC_POD  
tPON  
t
Any mode of operation  
Power-down State  
Stand-by State  
Figure 6  
Power-down and power-up behavior  
Datasheet  
12  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Modes of operation  
4.4  
Bus wake-up pattern (WUP) detection  
The device has implemented the bus wake-up mechanism according to ISO 11898-2:2016. In standby mode  
the low power receiver monitors the activity on the CAN bus and in case it detects a wake-up pattern, it  
indicates the wake-up signal on the RxD output pin. A wake-up event does not trigger a mode change. The  
device remains in standby mode until the microcontroller has requested a mode change to the normal-  
operating mode.  
4.4.1  
Bus wake-up pattern (WUP)  
The wake-up pattern contains a dominant signal with the pulse width tFilter, followed by a recessive signal with  
the pulse width tFilter and another dominant signal with the pulse width tFilter. tWake starts at the first valid  
dominant pulse (pulse width > tFilter). The subsequent recessive and dominant pulse must occur within tWake to  
fulfill a wake-up pattern, see Figure 7. As long as the device does not detect a wake-up event, the RxD output  
remains “high”.  
t < tWake  
VDiff  
Min(VDiff_D_STB_Range  
)
t > tFilter  
t > tFilter  
Max(VDiff_R_STB_Range  
)
t > tFilter  
t
wake-up  
detected  
Figure 7  
Remote wake-up signal  
4.4.2  
RxD pin wake-up behavior  
If the device detects a wake-up event, then it sets the RxD output pin to “low” and then the RxD output follows  
the CAN bus signal with the delay of tWU as long as the pulse width exceeds the filter time tFilter, see Figure 8.  
Datasheet  
13  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Modes of operation  
VDiff  
tWU  
t < tFilter  
Min(VDiff_D_STB_Range  
)
t > tFilter  
tWU  
t > tFilter  
tWU  
t > tFilter  
Max(VDiff_R_STB_Range  
)
t < tFilter  
t
t
VRxD  
70% of VCC  
30% of VCC  
wake-up  
detected  
Figure 8  
RxD signal follows the CAN bus signal  
If at least one of the following conditions is fulfilled, then the device disables the RxD pin wake up behavior:  
A mode change to normal-operating mode is performed during a wake-up pattern  
The voltage supply VCC < VCC_POD  
Datasheet  
14  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Fail safe functions  
5
Fail safe functions  
5.1  
Short circuit protection  
The CANH and CANL bus pins are proven to cope with a short circuit fault against GND and against the supply  
voltages. A current limiting circuit protects the transceiver against damages. If the device heats up due to a  
continuous short on the CANH or CANL pin, the internal overtemperature protection switches off the bus  
transmitter.  
5.2  
Unconnected logic input pins  
If the input pins are not connected and floating, then the integrated pull-up resistors at the digital input pins  
force the device into fail safe behavior, see .  
Table 2  
Input signal  
TxD  
Unconnected logical input pins  
Default state  
“High”  
Comment  
Pull-up resistor to VCC  
Pull-up resistor to VCC  
STB  
“High”  
5.3  
VCC undervoltage  
If VCC < VCC_UV, then the VCC supply of the transceiver is in undervoltage condition with the following functions  
independent of the transceiver mode, see Figure 9:  
Transmitter is deactivated  
The bus biasing is set to GND  
VCC  
tVCC_UV_filter  
VCC_UV  
tVCC_recovery  
VCC_POD  
t
Transmitter  
Enabled  
1)  
Disabled  
Enabled  
1)  
CANH  
CANL  
Bus Biasing = GND  
1) Functionallity depents on Mode of operation  
Figure 9  
Undervoltage on the transmitter supply VCC  
5.4  
TxD timeout function  
If the logical signal on the TxD pin is permanently “low”, then the TxD timeout feature protects the CAN bus  
from blocked communication due to this errant logic signal. A permanent “low” signal on the TxD pin can  
occur due to a locked-up microcontroller or in a short circuit on the printed circuit board, for example. In  
normal-operating mode, a “low” signal on the TxD pin for the time t > tTXD_TO enables the TxD timeout feature  
Datasheet  
15  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Fail safe functions  
and the device disables the transmitter, see Figure 10. The receiver is still active and the RxD output pin  
continues monitoring data on the bus.  
TxD  
t
t > tTxD  
TxD time–out released  
TxD time-out  
CANH  
CANL  
t
t
RxD  
Figure 10 TxD timeout function  
5.5  
Delay time for mode change  
The HS CAN transceiver device changes the mode of operation within the time window tMode. During the mode  
change from standby mode to a non-low power mode the device sets the RxD output to “high” and RxD does  
not reflect the status on the CANH and CANL input pins.  
5.6  
Overtemperature protection  
The device has an integrated overtemperature detection to protect the device against thermal overstress of  
the transmitter. The overtemperature protection is only active in normal-operating mode. If an  
overtemperature condition (TJunction TJSD) occurs, then the temperature sensor disables the transmitter while  
the transceiver remains in normal-operating mode. After the device cools down (TJunction < TJSD) the device  
activates the transmitter again, see Figure 11. A hysteresis is implemented within the temperature sensor.  
Datasheet  
16  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Fail safe functions  
TJSD (shut down temperature)  
cool down  
TJ  
ΔT  
switch-on transmitter  
t
t
CANH  
CANL  
TxD  
RxD  
t
t
Figure 11 Overtemperature protection  
Datasheet  
17  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
General product characteristics  
6
General product characteristics  
6.1  
Absolute maximum ratings  
Table 3  
Absolute maximum ratings voltages, currents and temperatures1)  
All voltages with respect to ground; positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Voltages  
Transmitter supply voltage  
VCC  
-0.3  
-40  
6.0  
40  
V
V
P_7.1.1  
P_7.1.3  
CANH and CANL DC voltage  
versus GND  
VCANH  
Differential voltage between VCAN_Diff  
CANH and CANL  
-40  
40  
V
V
V
P_7.1.4  
P_7.1.8  
P_7.1.10  
Voltages at the digital I/O pins: VMAX_IO  
STB, TxD  
-0.3  
-0.3  
6.0  
Voltages at the digital I/O pins: VMAX_RxD  
VCC+0.3  
RxD  
Currents  
RxD output current  
Temperatures  
IRxD  
-5  
5
mA  
P_7.1.11  
Junction temperature  
Storage temperature  
ESD robustness  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_7.1.12  
P_7.1.13  
TS  
2)  
ESD robustness at CANH,  
CANL versus GND  
VESD_HBM_CAN -8  
8
2
kV  
kV  
P_7.1.14  
P_7.1.15  
HBM;  
100 pF via 1.5 kΩ  
2)  
ESD robustness at all other  
pins  
VESD_HBM_ALL -2  
HBM;  
100 pF via 1.5 kΩ  
3)  
ESD robustness at corner pins VESD_CDM_CP -750  
750  
500  
V
V
P_7.1.16  
P_7.1.17  
CDM  
3)  
ESD robustness at any other VESD_CDM  
-500  
pins  
CDM  
1) Not subject to production test, specified by design.  
2) Human body model (HBM) robustness according to AE - Q100-002  
3) Charge device model (CDM) robustness according to AEC - Q100-011 Rev-D; voltage level refers to test condition (TC)  
mentioned in the standard.  
Note:  
Latchup robustness: class II according to AEC - Q100-04.  
Datasheet  
18  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
General product characteristics  
Note:  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability. Integrated  
protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal-operating range. Protection  
functions are not designed for continuos repetitive operation.  
Datasheet  
19  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
General product characteristics  
6.2  
Functional range  
Table 4  
Functional range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Supply voltages  
Transmitter supply voltage  
Thermal parameters  
Junction temperature  
VCC  
Tj  
4.75  
5.25  
150  
V
P_7.2.1  
P_7.2.3  
1)  
-40  
°C  
1) Not subject to production test, specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
6.3  
Thermal resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, please visit www.jedec.org.  
Table 5  
Thermal resistance1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Thermal resistances  
2)  
Junction to ambient  
PG-DSO-8  
RthJA_DSO8  
120  
K/W  
P_7.3.2  
Thermal shutdown (junction temperature)  
Thermal shutdown temperature,  
rising  
TJSD  
170  
5
180  
10  
190  
20  
°C  
K
Temperature  
falling: minimum  
150°C  
P_7.3.3  
P_7.3.4  
Thermal shutdown hysteresis  
T  
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board. The product (chip  
and package) was simulated on a 76.2 mm × 114.3 mm × 1.5 mm board with two inner copper layers (2 × 70 µm Cu,  
2 × 35 µm Cu).  
Datasheet  
20  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Electrical characteristics  
7
Electrical characteristics  
7.1  
Power supply interface  
7.1.1  
Current consumption  
Table 6  
Current consumption  
4.75 V < VCC < 5.25 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Current consumption at VCC  
normal-operating mode,  
recessive state  
ICC_R  
2.8  
38  
4
mA VTxD = VCC  
;
P_8.1.4  
VSTB = 0 V;  
VCANH = VCANL = VCC/2  
Current consumption at VCC  
normal-operating mode,  
dominant state  
ICC_D  
48  
20  
mA VTxD = VSTB = 0 V;  
t < tTxD  
P_8.1.9  
Current consumption at VCC  
ICC(STB)  
µA  
VTxD = VSTB = VCC  
P_8.1.15  
standby mode  
Datasheet  
21  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Electrical characteristics  
7.1.2  
Undervoltage detection  
Table 7  
Undervoltage detection  
4.75 V < VCC < 5.25 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
4.25 4.35 4.5  
VCC undervoltage threshold  
VCC undervoltage filter time  
VCC undervoltage recovery  
VCC_UV  
V
1)  
P_8.1.25  
P_8.1.27  
P_8.1.28  
tVCC_UV_filter  
tVCC_recovery  
1
10  
70  
µs  
µs  
1)  
time  
VCC power-down threshold  
Power-up delay time  
VCC_POD  
tPON  
2.0  
2.5  
3.0  
V
1)  
P_8.1.31  
P_8.1.33  
280  
µs  
Figure 6  
1) Not subject to production test, specified by design.  
Datasheet  
22  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Electrical characteristics  
7.2  
CAN controller interface  
Table 8  
CAN controller interface  
4.75 V < VCC < 5.25 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Receiver output RxD  
“High” level output current  
IRxD_H  
IRxD_L  
1
-2  
2
-1  
mA VRxD = VCC - 0.4 V;  
Diff < 0.5 V  
mA VRxD = 0.4 V;  
Diff > 0.9 V  
P_8.2.2  
P_8.2.3  
V
“Low” level output current  
V
Transmitter input TxD  
“High” level input voltage  
VTxD_H  
VTxD_L  
0.7 ×  
VCC  
6.0  
V
V
Recessive state  
Dominant state  
P_8.2.5  
P_8.2.7  
“Low” level input voltage  
-0.3  
0.3 ×  
VCC  
Internal pull-up resistor TxD  
Input capacitance  
RTxD  
CTxD  
tTxD  
35  
50  
70  
10  
4
kΩ  
pF  
P_8.2.9  
1)  
P_8.2.10  
P_8.2.11  
TxD dominant timeout  
1
ms  
Normal-operating  
mode  
Standby input STB  
“High” level input voltage  
VMode_H  
VMode_L  
0.7 ×  
VCC  
6.0  
V
V
P_8.2.15  
P_8.2.17  
“Low” level input voltage  
-0.3  
0.3 ×  
VCC  
Normal-operating  
mode  
Internal pull-up resistor  
Input capacitance  
RMode  
CMode  
35  
50  
70  
10  
kΩ  
1)  
P_8.2.19  
P_8.2.20  
pF  
1) Not subject to production test, specified by design.  
Datasheet  
23  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Electrical characteristics  
7.3  
Receiver  
Table 9  
Receiver characteristics  
4.75 V < VCC < 5.25 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Common mode range  
VCMR  
-12  
12  
V
V
P_8.3.1  
P_8.3.4  
1)  
Differential range dominant  
state,  
VDiff_D_Range 0.9  
8.0  
VCMR  
normal-operating mode  
1)  
Differential range recessive  
state,  
normal-operating mode  
VDiff_R_Range -3.0  
0.5  
8.0  
0.4  
50  
V
P_8.3.6  
P_8.3.8  
P_8.3.10  
P_8.3.12  
P_8.3.13  
VCMR  
1)  
Differential range dominant  
state,  
standby mode  
VDiff_D_STB_R 1.15  
V
VCMR  
ange  
1)  
Differential range recessive  
state,  
standby mode  
VDiff_R_STB_R -3.0  
V
VCMR  
ange  
Single ended internal  
resistance  
RCAN_H  
RCAN_L  
,
30  
60  
kΩ  
kΩ  
1) recessive state;  
-2 V VCANH 7 V;  
-2 V VCANL 7 V  
1) recessive state;  
-2 V VCANH 7 V;  
-2 V VCANL 7 V  
Differential internal resistance RDiff  
100  
Input resistance deviation  
between CANH and CANL  
Ri  
-1  
1
%
1) recessive state;  
P_8.3.14  
P_8.3.15  
P_8.3.16  
V
CANH = VCANL = 5 V  
1)2)  
Input capacitance CANH,  
CANL versus GND  
CIn  
20  
10  
40  
20  
pF  
pF  
1)2)  
Differential input capacitance CInDiff  
1) Not subject to production test, specified by design.  
2) S2P-method; f = 10 MHz.  
Datasheet  
24  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Electrical characteristics  
7.4  
Transmitter  
Table 10  
Transmitter characteristics  
4.75 V < VCC < 5.25 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
CANL, CANH recessive state  
output voltage  
VCANL,H  
2.0  
2.5  
3.0  
V
Normal-operating  
mode;  
P_8.4.2  
VTxD = VCC  
;
no load  
CANH, CANL recessive state  
differential output voltage  
VDiff_R_NM = VCANH -VCANL  
VDiff_R_NM  
-50  
50  
mV Normal-operating  
mode;  
P_8.4.4  
VTxD = VCC  
;
no load  
CANL dominant state output VCANL  
voltage,  
normal-operating mode  
0.5  
2.25  
4.5  
V
V
V
V
VTxD = 0 V;  
45 < RL < 65 Ω  
P_8.4.5  
P_8.4.6  
P_8.4.7  
P_8.4.8  
CANH dominant state output VCANH  
voltage,  
normal-operating mode  
2.75  
1.5  
VTxD = 0 V;  
45 < RL < 65 Ω  
Differential voltage dominant VDiff_D_NM  
state,  
normal-operating mode  
2.0  
2.0  
3.0  
VDiff = VCANH - VCANL  
VTxD = 0 V;  
50 < RL < 65 Ω  
;
Differential voltage extended VDiff_EXT_BL 1.4  
3.3  
Dominant state;  
bus load  
normal-operating  
mode;  
VTxD = 0 V;  
45 < RL < 70 Ω  
1)  
Differential voltage dominant VDiff_HEXT_BL 1.5  
state high extended bus load  
normal-operating mode  
5.0  
0.2  
0.1  
V
V
V
P_8.4.9  
VTxD = 0 V;  
RL = 2240 Ω  
CANH, CANL recessive output VDiff_STB  
voltage difference standby  
mode  
-0.2  
No load  
P_8.4.10  
CANL, CANH recessive output VCANL,H_STB -0.1  
voltage standby mode  
No load  
P_8.4.11  
P_8.4.12  
1)2)  
Driver symmetry  
VSYM  
0.95 × 1.0 × 1.05 × V  
VSYM = VCANH + VCANL  
VCC  
VCC  
VCC  
C1 = 4.7 nF  
CANL short circuit current  
ICANLsc  
-115  
115  
mA -3 V < VCANLshort < 18 V; P_8.4.13  
t < tTxD  
TxD = 0 V  
mA -3 V < VCANHshort < 18 V; P_8.4.14  
t < tTxD  
VTxD = 0 V  
;
V
CANH short circuit current  
ICANHsc  
-115  
115  
;
Datasheet  
25  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Electrical characteristics  
Table 10  
Transmitter characteristics (cont’d)  
4.75 V < VCC < 5.25 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
CANH leakage current  
ICANH,lk  
-5  
5
µA  
VCC = 0 V;  
0 V < VCANH 5 V;  
CANH = VCANL  
P_8.4.16  
V
CANL leakage current  
ICANL,lk  
-5  
5
µA  
VCC = 0 V;  
P_8.4.18  
0 V < VCANL 5 V;  
VCANH = VCANL  
Signal improvement  
resistance  
RSI  
75  
125  
530  
P_8.4.19  
P_8.4.20  
Signal improvement time  
tSIC  
450  
ns  
1) Not subject to production test, specified by design.  
2) VSYM observed during dominant and recessive state and also during the transition from dominant to recessive and  
vice versa, while TxD is stimulated by a square wave signal. This parameter must be valid for all the possible  
transmission rates.  
Datasheet  
26  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Electrical characteristics  
7.5  
Dynamic transceiver parameters  
Table 11  
Electrical characteristics dynamic transceiver parameters  
4.75 V < VCC < 5.25 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Loop delay from TxD to RxD  
tLoop  
80  
190  
ns  
C1 = 0 pF;  
C2 = 100 pF;  
P_8.5.1  
CRxD = 25 pF;  
CVCC = 100 nF;  
RL = 60 ;  
TxD = rise (10% to 90%)  
V
and fall (90% to 10%)  
time < 10 ns;  
125 kbit/s < 1/tBit  
<
8 Mbit/s;  
see Figure 12,  
Figure 13  
Transmitter propagation  
delay TxD to bus (“high” until  
recessive; “low” until  
dominant)  
tprop_T  
30  
80  
ns  
C1 = 0 pF;  
C2 = 100 pF;  
P_8.5.3  
C
VCC = 100 nF;  
RL = 60 ;  
TxD = rise (10% to 90%)  
V
and fall (90% to 10%)  
time < 10 ns;  
see Figure 12,  
Figure 13  
Propagation delay bus to RxD tprop_R  
(dominant until “low”;  
recessive until “high”)  
30  
110  
ns  
C1 = 0 pF;  
C2 = 100 pF;  
CRxD = 25 pF;  
P_8.5.4  
CVCC = 100 nF;  
RL = 60 ;  
VTxD = rise (10% -> 90%)  
and fall (90% -> 10%)  
time < 10 ns;  
see Figure 12,  
Figure 13  
Delay times  
Delay time for mode change tMode  
20  
5
µs  
µs  
P_8.5.5  
P_8.5.6  
Transmitter release time after tTxD_rel  
entering normal-operating  
mode in dominant state  
CAN activity filter time  
Bus wake-up timeout  
Bus wake-up delay time  
tFilter  
tWake  
tWU  
0.5  
0.8  
1.8  
10  
5
µs  
ms  
µs  
P_8.5.7  
P_8.5.8  
P_8.5.9  
1)  
Datasheet  
27  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Electrical characteristics  
Table 11  
Electrical characteristics dynamic transceiver parameters (cont’d)  
4.75 V < VCC < 5.25 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
CAN FD characteristics  
Loop delay symmetry  
tBit(RxD)  
-30  
20  
ns  
tBit(RxD) = tBit(RxD)  
tBit(TxD)  
-
P_8.5.10  
;
C1 = 0 pF;  
C2 = 100 pF;  
CRxD = 25 pF;  
CVCC = 100 nF;  
RL = 60 ;  
VTxD = rise (10% to 90%)  
and fall (90% to 10%)  
time < 10 ns;  
125 kbit/s < 1/tBit  
8 Mbit/s;  
<
see Figure 12,  
Figure 13  
Receiver propagation delay  
symmetry (received recessive  
bit width)  
tRec  
-20  
15  
ns  
tRec = tBit(RxD) - tBit(Bus)  
C1 = 0 pF;  
C2 = 100 pF;  
;
P_8.5.11  
CRxD = 25 pF;  
CVCC = 100 nF;  
RL = 60 ;  
VTxD = rise (10% to 90%)  
and fall (90% to 10%)  
time < 10 ns;  
125 kbit/s < 1/tBit  
<
8 Mbit/s;  
see Figure 12, and  
Figure 14  
Transmitter propagation  
delay symmetry (transmitted  
recessive bit width)  
tBit(Bus)  
-10  
10  
ns  
tBit(Bus) = tBit(Bus)  
tBit(TxD)  
C1 = 0 pF;  
-
P_8.5.12  
;
C2 = 100 pF;  
CRxD = 25 pF;  
CVCC = 100 nF;  
RL = 60 ;  
VTxD = rise (10% to 90%)  
and fall (90% to 10%)  
time < 10 ns;  
125 kbit/s < 1/tBit  
<
8 Mbit/s;  
see Figure 12 and  
Figure 14  
1) Not subject to production test, specified by design.  
Datasheet  
28  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Electrical characteristics  
7.6  
Diagrams  
TxD  
RxD  
CANH  
RL/2  
CRxD  
C2  
Transceiver  
C1  
RL/2  
6
CANL  
VCC  
CVcc  
GND  
Figure 12 Test circuit  
TxD  
0.7 x VCC  
0.3 x VCC  
t
t
tprop_T  
tprop_T  
VDiff  
0.9 V  
0.5 V  
tprop_R  
tprop_R  
tLoop  
tLoop  
RxD  
0.7 x VCC  
0.3 x VCC  
t
Figure 13 Timing diagram for dynamic characteristics  
Datasheet  
29  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Electrical characteristics  
TxD  
0.7 x VCC  
0.3 x VCC  
t
n * tBit(TXD)  
tBit(TXD)  
VDiff  
900 mV  
500 mV  
t
t
tBit(BUS)  
RxD  
0.7 x VCC  
0.3 x VCC  
tBit(RXD)  
Figure 14 CAN FD electrical parameters  
Datasheet  
30  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Application information  
8
Application information  
8.1  
ESD robustness according to IEC 61000-4-2  
Tests for ESD robustness according to IEC 61000-4-2 Gun test (150 pF, 330 ) have been performed. The results  
and test conditions are available in a separate test report.  
Table 12  
ESD robustness according to IEC 61000-4-2  
Result Unit  
Performed Test  
Remarks  
Electrostatic discharge voltage at pin CANH and +8  
kV  
1) Positive pulse  
CANL versus GND  
Electrostatic discharge voltage at pin CANH and -8  
kV  
1) Negative pulse  
CANL versus GND  
1) Not subject to production test. ESD robustness ESD GUN according to GIFT / ICT paper: “EMC Evaluation of CAN  
Transceivers, version IEC TS62228”, section 4.3. (DIN EN 61000-4-2).  
Tested by external test facility IBEE Zwickau – EMC test report available on request.  
8.2  
Application example  
VBAT  
I
Q1  
LDO  
GND  
1 μF  
CANH CANL  
22 μF  
EN  
3
VCC  
1 μF  
N.C.  
5
8
1
4
120  
Ohm  
TLE9371  
VCC  
Out  
Out  
In  
STB  
7
CANH  
TxD  
RxD  
Microcontroller  
6
CANL  
GND  
GND  
2
I
Q1  
LDO  
GND  
1 μF  
22 μF  
EN  
3
VCC  
1 μF  
N.C.  
5
TLE9371  
VCC  
8
1
4
Out  
Out  
In  
STB  
TxD  
RxD  
7
6
CANH  
Microcontroller  
CANL  
GND  
120  
Ohm  
GND  
2
example ECU design  
CANH  
CANL  
Figure 15 Application diagram  
Datasheet  
31  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Application information  
8.3  
Further application information  
For further information you may visit: http://www.infineon.com/tle9371vsj  
Datasheet  
32  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Package information  
9
Package information  
1)  
4.93+-00..1035  
0.33×45°  
0.64+-00..2235  
6+-00..1260  
2)  
0.41+-00..0068  
1.27  
8
5
4
1
Pin1 marking  
1) Does not include plastic or metal protrusion of 0.25 max. per side  
2) Does not include dambar protrusion of 0.1 max. per side  
All dimensions are in units mm  
The drawing is in compliance with ISO 128-30, Projection Method 1 [  
]
Figure 16 PG-DSO-8  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
Datasheet  
33  
1.0  
2023-02-28  
TLE9371SJ  
CAN signal improvement transceiver  
Revision history  
10  
Revision history  
Revision  
Date  
Changes  
1.0  
2023-02-28 Datasheet created  
Datasheet  
34  
1.0  
2023-02-28  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2022-11-18  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2023 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
Z8F65761338  

相关型号:

INFINEON

TLE94003EP

TLE94003EP 是受保护的三倍半桥驱动器,专为驱动汽车应用中小型直流电机而设计,如后视镜调节或加热、通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联方式驱动直流电机负载。通过直接接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。
INFINEON

TLE94004EP

TLE94004EP 是受保护的四倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过直接接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。
INFINEON

TLE94104EP

TLE9410EP 是受保护的四倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过 16 位 SPI 接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、开路负载、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。
INFINEON

TLE94106ES

TLE94106ES 是受保护的六倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。 半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过 16 位 SPI 接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、开路负载、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-24,提供良好的热性能,节省 PCB 板空间和成本。
INFINEON

TLE94108EL

TLE94108EL 是受保护的八倍半桥驱动器,专为汽车运动控制应用而设计,如加热,通风和空调(HVAC)的活门直流电机控制。它属于一个较大的半桥驱动器系列,可提供三路至十二路输出,设有直接接口或SPI接口。该半桥驱动器旨在以顺序或并行方式驱动直流电机负载。正向 (cw)、反向 (ccw)、制动和高阻抗等工作模式通过16位SPI接口进行控制。该器件提供各种诊断功能,如短路、开路负载、电源故障和过热检测。结合其低静态电流,该器件在汽车应用中具有吸引力。采用小型小脚距散热焊盘封装PG-SSOP-24,具有良好的散热性能,可减少PCB板的占用空间和成本。
INFINEON

TLE94108ELXUMA1

Brush DC Motor Controller, 2A, PDSO24, SSOP-24
INFINEON

TLE94108ES

It is part of a larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI interface. The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It offers diagnosis features such as short circuit, open load, power supply failure and overtemperature detection. In combination with its low quiescent current, this device is attractive among others for automotive applications. The small fine pitch exposed pad package, PG-TSDSO-24, provides good thermal performance and reduces PCB-board space and costs.
INFINEON

TLE94110ELXUMA1

Brush DC Motor Controller, 2A, PDSO24, SSOP-24
INFINEON

TLE94110ES

It is part of a larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI interface. The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It offers diagnosis features such as short circuit, open load, power supply failure and overtemperature detection. In combination with its low quiescent current, this device is attractive among others for automotive applications. The small fine pitch exposed pad package, PG-TSDSO-24, provides good thermal performance and reduces PCB-board space and costs.
INFINEON

TLE94112ES

It is part of a larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI interface. The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It offers diagnosis features such as short circuit, open load, power supply failure and overtemperature detection. In combination with its low quiescent current, this device is attractive among others for automotive applications. The small fine pitch exposed pad package, PG-TSDSO-24, provides good thermal performance and reduces PCB-board space and costs.
INFINEON

TLE9461

Lite LDO System Basis Chip supports CAN Flexible Data-Rate(FD) and Partial Networking (PN)
INFINEON