KC80524TX400256 [INTEL]

RISC Microprocessor, 32-Bit, 400MHz, PBGA615;
KC80524TX400256
型号: KC80524TX400256
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 32-Bit, 400MHz, PBGA615

文件: 总81页 (文件大小:593K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOBILE PENTIUM II PROCESSOR IN  
Micro-PGA AND BGA PACKAGES AT 400 MHz, 366 MHz,  
333 MHz, 300PE MHz, AND 266PE MHz  
Available at 400 MHz, 366 MHz, 333 MHz,  
300PE MHz, and 266PE MHz  
Fully compatible with previous Intel  
microprocessors  
— Binary compatible with all applications  
— Support for MMX™ technology  
Supports the Intel Architecture with  
Dynamic Execution  
Integrated primary 16-Kbyte instruction  
cache and 16-Kbyte write back data cache  
Power Management Features  
— Quick Start and Deep Sleep modes  
provide extremely low power  
dissipation  
Integrated second level cache (256-Kbyte)  
Micro-PGA and BGA packaging  
technologies  
Low-Power GTL+ processor system bus  
interface  
— Supports thin form factor notebook  
designs  
Integrated math co-processor  
Integrated thermal diode  
— Exposed die enables more efficient heat  
dissipation  
The Intel Mobile Pentium II processor introduces a higher level of performance for today’s mobile  
computing environment, including multimedia enhancements and improved Internet and communications  
capabilities. It provides an improved performance1 available for applications running on advanced operating  
systems such as Windows* 98. On top of its built-in power management capabilities, the Pentium II  
processor takes advantage of software designed for Intel’s MMX technology to unleash enhanced color,  
smoother graphics and other multimedia and communications enhancements.  
The Mobile Pentium II processor may contain design defects or errors know as errata that may cause the  
product to deviate from published specifications. Current characterized errata are available upon request.  
1.  
Refer to the Mobile Pentium II Processor Performance Brief.  
INTEL CORPORATION  
ORDER NUMBER: 245103-003  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or  
otherwise, to any intellectual property rights is granted by this document or by the sale of Intel products. Except as provided in  
Intel's terms and conditions of sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or  
implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular  
purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving or life sustaining applications.  
Intel retains the right to make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel  
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from  
future changes to them.  
The Mobile Pentium® II processor may contain design defects or errors known as errata which may cause the product to  
deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be  
obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com  
Copyright © Intel Corporation, 1999.  
.
*Third-party brands and names are the property of their respective owners  
ii  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
CONTENTS  
PAGE  
PAGE  
3.4 Maximum Ratings .................................... 16  
3.5 DC Specifications..................................... 18  
3.6 AC Specifications..................................... 23  
1. INTRODUCTION .............................................. 1  
1.1 Overview.................................................... 2  
1.2 Terminology............................................... 2  
1.3 References ................................................ 2  
3.6.1 System Bus, Clock, APIC, TAP,  
CMOS and Open-Drain AC  
Specifications ................................. 23  
2. MOBILE PENTIUM® II PROCESSOR  
FEATURES ...................................................... 4  
4. SYSTEM SIGNAL SIMULATIONS ................. 37  
2.1 Feature Differences between the Mobile  
Pentium® II Processor at 400 MHz and  
Mobile Pentium® II Processor at 366 MHz  
and  
4.1 System Bus Clock (BCLK) Signal Quality  
Specifications........................................... 37  
4.2 Low Power GTL+ Signal Quality  
Specifications........................................... 38  
below ........................................................ 4  
2.2 Power Management................................... 4  
2.2.1 Clock Control Architecture................ 4  
2.2.2 Normal State .................................... 6  
2.2.3 Auto Halt State ................................. 6  
2.2.4 STOP GRANT State......................... 6  
2.2.5 QUICK START State........................ 6  
2.2.6 HALT/GRANT SNOOP State............ 7  
2.2.7 SLEEP State .................................... 8  
2.2.8 Deep Sleep State ............................. 8  
4.3 Non-Low Power GTL+ Signal Quality  
Specifications........................................... 41  
4.3.1 Overshoot and Undershoot Guidelines42  
4.3.1 Ringback Specification.................... 43  
4.3.2 Settling Limit Guideline................... 43  
5. MECHANICAL SPECIFICATIONS ................. 44  
5.1 Dimensions of the Micro-PGA Package ... 44  
5.2 Dimensions of the BGA Package............. 46  
5.3 Signal Listings.......................................... 49  
2.2.9 Operating System Implications of  
Quick Start and Sleep States............ 8  
6. THERMAL SPECIFICATIONS........................ 62  
6.1 Thermal Diode.......................................... 63  
6.2 Case Temperature ................................... 64  
2.3 Low Power GTL+ ....................................... 8  
2.3.1 GTL+ Signals.................................... 9  
2.4 Mobile Pentium® II Processor CPUID......... 9  
7. PROCESSOR INITIALIZATION AND  
CONFIGURATION.......................................... 65  
3. ELECTRICAL SPECIFICATIONS .................. 11  
3.1 Processor System Signals ....................... 11  
3.1.1 Power Sequencing Requirements... 12  
3.1.2 Test Access Port (TAP) Connection13  
3.1.3 Catastrophic Thermal Protection .... 13  
3.1.4 Unused Signals .............................. 13  
3.1.5 Signal State in Low Power States... 13  
3.2 Power Supply Requirements.................... 14  
3.2.1 Decoupling Recommendations....... 14  
3.2.2 Voltage Planes ............................... 14  
3.3 System Bus Clock and Processor Clocking15  
7.1 Description............................................... 65  
7.1.1 Quick Start Enable.......................... 65  
7.1.2 System Bus Frequency................... 65  
7.1.3 APIC Disable .................................. 65  
7.2 Clock Frequencies and Ratios.................. 65  
8. PROCESSOR INTERFACE............................ 66  
8.1 Alphabetical Signal Reference ................. 66  
8.2 Signal Summaries.................................... 72  
INTEL CORPORATION  
iii  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
LIST OF FIGURES  
PAGE  
Figure 1.1 Signal Groups of a Mobile Pentium® II  
Processor-Based System .................... 1  
Figure 2.1 Clock Control States............................. 5  
Figure 3.1 Ramp Rate Requirement..................... 13  
Figure 3.2 PLL LC Filter ...................................... 14  
Figure 3.3 Generic Clock Waveform.................... 30  
Figure 3.4 Valid Delay Timings............................ 31  
Figure 3.5 Setup and Hold Timings ..................... 31  
Figure 3.6 Reset and Configuration Timings........ 32  
Figure 3.7 Power-On Reset Timings.................... 33  
Figure 3.8 Test Timings (Boundary Scan) ........... 34  
Figure 3.9 Test Reset Timings............................. 34  
Figure 3.10 Quick Start/Deep Sleep Timing......... 35  
Figure 3.11 Stop Grant/Sleep/Deep Sleep Timing36  
Figure 4.1 BCLK Generic Clock Waveform ......... 38  
Figure 4.2 GTL+ Receiver Ringback Tolerance.... 39  
Figure 4.3 Maximum Acceptable GTL+  
Overshoot/Undershoot Waveform for  
the Mobile Pentium® II Processor at  
400 MHz ............................................ 41  
Figure 4.4 Non-GTL+ Signal Ringback and Settling  
Limit................................................... 42  
Figure 5.1 Micro-PGA Package-Top and Side  
View................................................... 45  
Figure 5.2 Micro-PGA Package - Bottom View.... 46  
Figure 5.3 Surface-Mount BGA Package - Top and  
Side View........................................... 48  
Figure 5.4 Surface-Mount BGA Package - Bottom  
View................................................... 49  
Figure 5.5 Pin/Ball Map - Top View ..................... 50  
Figure 6.1 Technique for Measuring Case  
Temperature...................................... 64  
Figure 8.1 PWRGOOD Relationship at Power-On70  
iv  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
LIST OF TABLES  
PAGE  
PAGE  
Table 2.1 VTOL, CMOS and Open Drain Signal  
Table 3.19 TAP Signal AC Specifications............ 28  
Table 3.20 Quick Start/Deep Sleep AC  
Characteristics..................................... 4  
Table 2.2 Clock State Characteristics.................... 7  
Table 2.3 Mobile Pentium II Processor CPUID .... 9  
Table 2.4 Mobile Pentium II Processor CPUID  
Cache and TLB Descriptors................. 9  
Table 3.1 System Signal Groups......................... 11  
Table 3.2 Recommended Resistors for Open Drain  
Signals............................................... 12  
Table 3.3 LC Filter Specifications........................ 15  
Table 3.4 Core Frequency to System Bus Ratio  
Configuration ..................................... 15  
Table 3.5 Absolute Maximum Ratings for Mobile  
Pentium II Processor at 400 MHz .... 16  
Table 3.6 Absolute Maximum Ratings for Mobile  
Pentium II Processor at 366 MHz and  
Specifications..................................... 29  
Table 3.21 Stop Grant/Sleep/Deep Sleep AC  
Specifications..................................... 29  
Table 4.1 BCLK Signal Quality Specifications...... 37  
Table 4.2 Low Power GTL+ Signal Group Ringback  
Specification for the Mobile Pentium® II  
Processor .......................................... 39  
Table 4.3. GTL+ Signal Group  
Overshoot/Undershoot Tolerance at the  
Processor Core for the Mobile  
Pentium® II Processor at  
400 MHz ............................................ 40  
Table 4.4 Signal Ringback Specifications for Non-  
GTL+ Signals for the Mobile Pentium®  
Below................................................. 17  
Table 3.7 Power Specifications for Mobile  
Pentium® II Processor at 400 MHz.... 18  
Table 3.8 Power Specifications for Mobile  
Pentium® II Processor at 366 MHz and  
Below................................................. 19  
Table 3.9 Power Specifications for Low Voltage  
Pentium® II Processor....................... 20  
Table 3.10 Low Power GTL+ Signal Group DC  
Specifications .................................... 21  
Table 3.11. Low Power GTL+ Bus DC  
II Processor at 400 MHz..................... 43  
Table 4.5 Signal Ringback Specifications for Non-  
GTL+ Signals for the Mobile Pentium®  
II Processor at 366 MHz and Below... 43  
Table 5.1 Micro-PGA Package Mechanical  
Specifications..................................... 44  
Table 5.2 Surface-Mount BGA Package  
Specifications..................................... 47  
Table 5.3 Signal Listing in Order by Pin/Ball  
Number.............................................. 51  
Table 5.4 Signal Listing in Order by Signal Name 57  
Table 5.5 Voltage and No-Connect Ball/Pin  
Locations ........................................... 61  
Table 6.1 Mobile Pentium II Processor (0.18 m)  
Power Specifications.......................... 62  
Table 6.2 Thermal Diode Interface....................... 63  
Table 6.3. Thermal Diode Specifications ............. 63  
Table 8.1 Input Signals........................................ 73  
Table 8.2 Output Signals ..................................... 74  
Table 8.3 Input/Output Signals (Single Driver)..... 74  
Table 8.4 Input/Output Signals (Multiple Driver)... 75  
Specifications .................................... 21  
Table 3.12 Clock, APIC, TAP, CMOS and Open-  
Drain Signal Group DC Specifications  
for the Mobile Pentium® II Processor at  
400 MHz ............................................ 22  
Table 3.13 Clock, APIC, TAP, CMOS and Open-  
Drain Signal Group DC Specifications  
for the Mobile Pentium® II Processor at  
366 MHz and Below........................... 23  
Table 3.14 System Bus Clock AC Specifications. 24  
Table 3.15 Valid Mobile Pentium II Processor  
Frequencies....................................... 25  
Table 3.16 Low Power GTL+ Signal Groups AC  
Specifications .................................... 25  
Table 3.17 CMOS and Open-Drain Signal Groups  
AC Specifications .............................. 26  
Table 3.18 Reset Configuration AC Specifications27  
INTEL CORPORATION  
v
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
64-bit high performance system bus. The integrated  
L2 cache is designed to help improve performance;  
1. INTRODUCTION  
it complements the system bus by providing critical  
data faster and reducing total system power  
consumption. The Mobile Pentium® II processor’s  
64-bit wide Low Power Gunning Transceiver Logic  
(GTL+) system bus is compatible with the 440BX  
AGPSet and provides a glue-less, point-to-point  
interface for an I/O bridge/memory controller.  
Figure 1.1 shows the various parts of a Mobile  
Pentium II processor-based system and how the  
Mobile Pentium II processor connects to them.  
The Mobile Pentium® II processor is now offered at  
400 MHz, 366 MHz, 333 MHz, 300PE MHz, and  
266PE MHz, with a system bus speed of 66 MHz.  
The Mobile Pentium® II processor at 400 MHz in  
Micro-PGA and BGA packages are the first mobile  
processors manufactured in 0.18 m technology.  
Processors at frequencies 366 MHz and below are  
manufactured in 0.25 m processing technology.  
The Mobile Pentium® II processor consists of a  
processor core with an integrated L2 cache and a  
Thermal  
Sensor  
Mobile  
Pentium® II  
Processor  
TAP  
System  
Bus  
DRAM  
443BX  
North Bridge  
PCI  
OR  
PIIX4E/M  
South Bridge  
System  
Controller  
V0000-05  
ISA/EIO  
Figure 1.1 Signal Groups of a Mobile Pentium® II Processor-Based System  
INTEL CORPORATION  
1
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
the name of the signal) it is in an electrical low state.  
1.1 Overview  
Otherwise, signals are driven in an electrical high  
state when they are asserted. In state machine  
diagrams, a signal name in a condition indicates the  
condition of that signal being asserted. If the signal  
name is preceded by a ‘!’ symbol, then it indicates  
the condition of that signal not being asserted. For  
example, the condition ‘!STPCLK# and HS’ is  
equivalent to ‘the active low signal STPCLK# is  
unasserted (i.e., it is at 1.5V for the 400 MHz, and  
2.5V for the 366 MHz and below) and the HS  
condition is true.’ The symbols ‘L’ and ‘H’ refer  
respectively to electrical low and electrical high  
signal levels. The symbols ‘0’ and ‘1’ refer  
respectively to logical low and logical high signal  
levels. For example, BD[3:0] = ‘1010’ = ‘HLHL’  
refers to a hexadecimal ‘A’, and D[3:0]# = ‘1010’ =  
‘LHLH’ also refers to a hexadecimal ‘A’.  
Performance improved over existing mobile  
processors  
Supports the Intel Architecture with Dynamic  
Execution  
Supports the Intel Architecture MMX  
technology  
Integrated Intel Floating-Point Unit  
compatible with the IEEE 754 standard  
Integrated primary (L1) instruction and data  
caches  
4-way set associative, 32-byte line size,  
1 line per sector  
16-Kbyte instruction cache and 16-Kbyte  
writeback data cache  
Cacheable range programmable by  
processor programmable registers  
1.3  
References  
Integrated second level (L2) cache  
Pentium® II Processor at 233 MHz, 266 MHz, 300  
MHz and 333 MHz (Order Number 243335)  
4-way set associative, 32-byte line size, 1  
line per sector  
Operates at full core speed  
Pentium® II Processor Developer’s Manual  
(Order Number 243502)  
256-Kbyte, ECC protected cache data array  
4 Gbyte cacheable range  
CKDM66-M Clock Driver Specification  
Low Power GTL+ system bus interface  
(Contact your Intel Field Sales Representative)  
64-bit data bus, 66-MHz operation  
Uniprocessor, two loads only (processor and  
I/O bridge/memory controller)  
CK97 Clock Driver Specification  
(Contact your Intel Field Sales Representative)  
Short trace length and low capacitance  
allows for single ended termination  
Intel Architecture Software Developer’s Manual  
(Order Number 243193)  
Voltage reduction technology  
Volume I: Basic Architecture  
(Order Number 243190)  
Volume II: Instruction Set Reference  
(Order Number 243191)  
Advanced processor clock control  
Quick Start for low power, low exit latency  
clock “throttling”  
Deep Sleep mode for extremely low power  
dissipation  
Volume III: System Programming Guide  
(Order Number 243192)  
Thermal diode for measuring processor  
temperature  
Mobile Pentium II Processor (0.18 m)I/O Buffer  
Models, IBIS Format (Available in electronic form;  
contact your Intel Field Sales Representative)  
1.2  
Terminology  
Mobile Pentium® II Processor System Bus Layout  
Guideline (Order Number 243672-001)  
In this document a ‘#’ symbol following a signal  
name indicates that the signal is active low. This  
means that when the signal is asserted (based on  
2
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Mobile Pentium® II Processor Mechanical and  
Thermal Design Guide (Order Number 243671-001)  
INTEL CORPORATION  
3
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
2. MOBILE PENTIUM® II PROCESSOR  
FEATURES  
Pull-up/pull-down recommendation for almost  
all signals  
CMOS signal DC specifications  
CMOS signal AC specifications  
VTOL pin impedance  
2.1 Feature Differences between the  
Mobile Pentium® II Processor at  
400 MHz and Mobile Pentium® II  
Processor at 366 MHz and below  
Core voltages, VCC and VCCP  
Power specifications  
CPUID  
CMOS/Open Drain signal voltage tolerance  
Table 2.1 VTOL, CMOS and Open Drain Signal Characteristics  
Mobile Pentium® II  
Processor  
VTOL Pin  
CMOS/Open Drain Signal  
CMOS/Open Drain Signal  
Voltage Tolerance (VCMOS  
)
Trip Voltage (VTRIP  
)
400 MHz  
Short to Vss  
1.5V  
2.5V  
0.75V  
366 MHz and below High Impedance  
1.25V  
not in mobile systems. Performing state transitions  
not shown in Figure 2.1 is neither recommended nor  
supported.  
2.2 Power Management  
2.2.1  
Clock Control Architecture  
The Mobile Pentium II processor clock control  
architecture (Figure 2.1) has been optimized for  
leading edge “Deep Green” desktop and mobile  
computer designs.  
The clock control architecture consists of seven  
different clock states: Normal, Auto Halt, Stop  
Grant, Quick Start, HALT/Grant Snoop, Sleep and  
Deep Sleep states. The Stop Grant and Quick Start  
clock states are mutually exclusive, i.e., a strapping  
option on signal A15# chooses which state is  
entered when the STPCLK# signal is asserted.  
Strapping the A15# signal to ground at Reset  
enables the Quick Start state; otherwise, asserting  
the STPCLK# signal puts the processor into the  
Stop Grant state. The Stop Grant state has a higher  
power level than the Quick Start state and is  
designed for SMP platforms. The Quick Start state  
has a much lower power level, but it can only be  
used in uniprocessor platforms. Table 2.2 provides  
clock state characteristics (power numbers based  
on estimates for a Mobile Pentium II processor at  
400 MHz and 366 MHz), which are described in  
detail in the following sections.  
The Auto Halt state provides a low power clock state  
that can be controlled through the software  
execution of the HLT instruction. The Quick Start  
state provides a very low power, low exit latency  
clock state that can be used for hardware controlled  
“idle” computer states. The Deep Sleep state  
provides an extremely low power state that can be  
used for “Power-on Suspend” computer states,  
which is an alternative to shutting off the processor’s  
power. Compared to the Pentium processor exit  
latency of 1 msec, the exit latency of the Deep  
Sleep state has been reduced to 30 sec in the  
Mobile Pentium II processor. The Stop Grant and  
Sleep states shown in Figure 2.1 are intended for  
use in “Deep Green” desktop and server systems —  
4
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
STPCLK# and  
QSE and SGA  
Quick  
Normal  
HS=false  
Start  
(!STPCLK# and !HS)  
or RESET#  
HLT and  
halt bus cycle  
STPCLK# and  
QSE and SGA  
BCLK  
stopped  
halt  
break  
!STPCLK#  
and HS  
BCLK on  
and QSE  
STPCLK# and  
!QSE and SGA  
Auto  
Halt  
HS=true  
Snoop  
serviced occurs  
Snoop  
Deep  
Sleep  
(!STPCLK#  
and !HS) or  
stop break  
!STPCLK#  
and HS  
Snoop  
occurs  
Snoop  
serviced  
STPCLK# and  
!QSE and SGA  
Snoop  
occurs  
Stop  
Grant  
HALT/Grant  
Snoop  
Snoop  
serviced  
SLP#  
BCLK on  
and !QSE  
BCLK  
stopped  
!SLP# or  
RESET#  
Sleep  
V0001-00  
NOTES: halt break - A20M#, BINIT#, FLUSH#, INIT#, INTR, NMI, PREQ#, RESET#, SMI#  
HLT - HLT instruction executed  
HS - Processor Halt State  
QSE - Quick Start State Enabled  
SGA - Stop Grant Acknowledge bus cycle issued  
Stop break - BINIT#, FLUSH#, RESET#  
Figure 2.1 Clock Control States  
INTEL CORPORATION  
5
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
be serviced when the processor returns to the  
Normal state. Only one occurrence of each interrupt  
event will be latched. A transition back to the  
Normal state can be made by the de-assertion of  
the STPCLK# signal, or the occurrence of a stop  
break event (a BINIT#, FLUSH# or RESET#  
assertion).  
2.2.2  
Normal State  
The Normal state of the processor is the normal  
operating mode where the processor’s internal clock  
is running and the processor is actively executing  
instructions.  
2.2.3  
Auto Halt State  
The processor will return to the Stop Grant state  
after the completion of a BINIT# bus initialization  
unless STPCLK# has been de-asserted. RESET#  
assertion will cause the processor to immediately  
initialize itself, but the processor will stay in the Stop  
Grant state after initialization until STPCLK# is  
deasserted. If the FLUSH# signal is asserted, the  
processor will flush the on-chip caches and return to  
the Stop Grant state. A transition to the Sleep state  
can be made by the assertion of the SLP# signal.  
This is a low power mode entered by the processor  
through the execution of the HLT instruction. The  
power level of this mode is similar to the Stop Grant  
state. A transition to the Normal state is made by a  
halt break event (one of the following signals going  
active: NMI, INTR, BINIT#, INIT#, RESET#,  
FLUSH# or SMI#).  
Asserting the STPCLK# signal while in the Auto Halt  
state will cause the processor to transition to the  
Stop Grant or Quick Start state, where a Stop Grant  
Acknowledge bus cycle will be issued. Deasserting  
STPCLK# will cause the processor to return to the  
Auto Halt state without issuing a new Halt bus cycle.  
While in the Stop Grant state, assertions of SMI#,  
INIT#, INTR and NMI will be latched by the  
processor. These latched events will not be serviced  
until the processor returns to the Normal state. Only  
one of each event will be recognized upon return to  
the Normal state.  
The SMI# interrupt is recognized in the Auto Halt  
state. The return from the System Management  
Interrupt (SMI) handler can be to either the Normal  
state or the Auto Halt state. See the Intel®  
Architecture Software Developer’s Manual, Volume  
III: System Programmer’s Guide for more  
information. No Halt bus cycle is issued when  
returning to the Auto Halt state from System  
Management Mode (SMM).  
2.2.5  
QUICK START State  
This is a mode entered by the processor with the  
assertion of the STPCLK# signal when it is  
configured for the Quick Start state (via the A15#  
strapping option). In the Quick Start state the  
processor is only capable of acting on snoop  
transactions generated by the system bus priority  
device. Because of its snooping behavior, Quick  
Start can only be used in a Uniprocessor (UP)  
configuration.  
The FLUSH# signal is serviced in the Auto Halt  
state. After the on-chip and off-chip caches have  
been flushed, the processor will return to the Auto  
Halt state without issuing  
Transitions in the A20M# and PREQ# signals are  
recognized while in the Auto Halt state.  
a Halt bus cycle.  
A transition to the Deep Sleep state can be made by  
stopping the clock input to the processor.  
A
transition back to the Normal state (from the Quick  
Start state) is made only if the STPCLK# signal is  
deasserted.  
2.2.4  
STOP GRANT State  
The processor enters this mode with the assertion  
of the STPCLK# signal when it is configured for  
Stop Grant state (via the A15# strapping option).  
The processor is still able to respond to snoop  
requests and latch interrupts. Latched interrupts will  
While in this state the processor is limited in its  
ability to respond to input. It is incapable of latching  
any interrupts, servicing snoop transactions from  
symmetric bus masters or responding to FLUSH# or  
6
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
BINIT# assertions. While the processor is in the  
progress while the processor is in the Quick Start  
state.  
Quick Start state, it will not respond properly to any  
input signal other than STPCLK#, RESET# or  
BPRI#. If any other input signal changes, then the  
behavior of the processor will be unpredictable. No  
serial interrupt messages may begin or be in  
RESET# assertion will cause the processor to  
immediately initialize itself, but the processor will  
stay in the Quick Start state after initialization until  
STPCLK# is deasserted.  
Table 2.2 Clock State Characteristics  
Clock State  
Normal  
Exit Latency  
Power  
Varies  
1.25 W  
Snooping?  
Yes  
System Uses  
N/A  
Normal program execution  
Auto Halt  
Approximately 10 bus clocks  
Yes  
S/W controlled entry idle  
mode  
Stop Grant  
Quick Start  
Approximately 10 bus clocks  
1.25 W  
Yes  
Yes  
H/W controlled entry/exit  
mobile throttling  
Through snoop, to  
HALT/Grant Snoop state:  
immediate  
0.5 W  
H/W controlled entry/exit  
mobile throttling  
Through STPCLK#, to Normal  
state: 8 bus clocks  
HALT/Grant A few bus clocks after the end Not specified  
Yes  
No  
Supports snooping in the low  
power states  
Snoop  
of snoop activity.  
Sleep  
To Stop Grant state 10 bus  
clocks  
0.5 W  
H/W controlled entry/exit  
desktop idle mode support  
Deep Sleep  
30 sec  
150 mW  
No  
H/W controlled entry/exit  
powered-on suspend support  
NOTE: Not 100% tested. Specified at 50°C by design/characterization.  
2.2.6  
HALT/GRANT SNOOP State  
snoop has been serviced, the processor will return  
to its previous state. If the HALT/Grant Snoop state  
is entered from the Quick Start state, then the input  
signal restrictions of the Quick Start state still apply  
in the HALT/Grant Snoop state, except for those  
signal transitions that are required to perform the  
snoop.  
The processor will respond to snoop transactions on  
the system bus while in the Auto Halt, Stop Grant or  
Quick Start state. When a snoop transaction is  
presented on the system bus the processor will  
enter the HALT/Grant Snoop state. The processor  
will remain in this state until the snoop has been  
serviced and the system bus is quiet. After the  
INTEL CORPORATION  
7
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
The input signal restrictions for the Deep Sleep  
state are the same as for the Sleep state, except  
that RESET# assertion will result in unpredictable  
behavior.  
2.2.7  
SLEEP State  
The Sleep state is a very low power state in which  
the processor maintains its context and the phase-  
locked loop (PLL) maintains phase lock. The Sleep  
state can only be entered from the Stop Grant state.  
After entering the Stop Grant state, the SLP# signal  
can be asserted, causing the processor to enter the  
Sleep state. The SLP# signal is not recognized in  
the Normal or Auto Halt states.  
2.2.9  
Operating System Implications of  
Quick Start and Sleep States  
There are a number of architectural features of the  
Mobile Pentium® II processor that are not available  
when the Quick Start state is enabled or do not  
function in the Quick Start or Sleep state as they do  
in the Stop Grant state. These features are part of  
the time-stamp counter and performance monitor  
counters. The time-stamp counter and the  
performance monitor counters are not guaranteed to  
count in the Quick Start or Sleep states.  
The processor can be reset by the RESET# signal  
while in the Sleep state. If RESET# is driven active  
while the processor is in the Sleep state then SLP#  
and STPCLK# must immediately be driven inactive  
to ensure that the processor correctly initializes  
itself.  
Input signals (other than RESET#) may not change  
while the processor is in the Sleep state or  
transitioning into or out of the Sleep state. Input  
signal changes at these times will cause  
unpredictable behavior. Thus, the processor is  
incapable of snooping or latching any events in the  
Sleep state.  
2.3  
Low Power GTL+  
The Mobile Pentium® II processor system bus  
signals use a variation of the low voltage swing GTL  
signaling technology. The Mobile Pentium II  
processor system bus specification is similar to the  
Pentium II processor system bus specification,  
which is a version of GTL with enhanced noise  
margins and less ringing. The Mobile Pentium II  
processor system bus specification reduces system  
cost and power consumption by raising the  
termination voltage and termination resistance and  
changing the termination from dual ended to single  
ended. Because the specification is different from  
the standard GTL specification and from the  
Pentium II processor GTL+ specification, it is  
referred to as Low Power GTL+.  
While in the Sleep state, the processor can enter its  
lowest power state, the Deep Sleep state. Removing  
the processor’s input clock puts the processor in the  
Deep Sleep state. PICCLK may be removed in the  
Sleep state.  
2.2.8  
Deep Sleep State  
The Deep Sleep state is the lowest power mode the  
processor can enter while maintaining its context.  
The Deep Sleep state is entered by stopping the  
BCLK input to the processor, while it is in the Sleep  
or Quick Start state. For proper operation, the BCLK  
input should be stopped in the low state.  
The Pentium II processor GTL+ system bus  
depends on incident wave switching and uses flight  
time for timing calculations of the GTL+ signals. The  
Low Power GTL+ system bus is short and lightly  
loaded. With Low Power GTL+ signals, timing  
calculations are based on capacitive derating.  
Analog signal simulation of the system bus including  
trace lengths is highly recommended to ensure that  
there are no significant transmission line effects.  
Contact your field sales representative to receive  
the IBIS models for the Mobile Pentium II processor.  
The processor will return to the Sleep or Quick Start  
state from the Deep Sleep state when the BCLK  
input is restarted. Due to the PLL lock latency, there  
is a 30 sec delay after the clocks have started  
before this state transition happens. PICCLK may  
be removed in the Deep Sleep state. PICCLK  
should be designed to turn on when BCLK turns on  
when transitioning out of the Deep Sleep state.  
8
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
The GTL+ system bus of the Pentium II processor  
PRDY# and RESET#. These two signals connect to  
the debug port and might not meet the maximum  
length requirements. If PRDY# or RESET# do not  
meet the layout requirements for Low Power GTL+,  
then they must be terminated using dual-ended  
termination at 120 . Higher resistor values can be  
used if simulations show that the signal quality  
specifications in Section 4 are met.  
was designed to support high-speed data transfers  
with multiple loads on a long bus that behaves like a  
transmission line. However, in a mobile system, the  
system bus only has two loads (the processor and  
the chipset) and the bus traces are short enough  
that transmission line effects are not significant. It is  
possible to change the layout and termination of the  
system bus to take advantage of the mobile  
environment using the same GTL+ I/O buffers. The  
benefit is that it reduces the number of terminating  
resistors in half and substantially reduces the AC  
and DC power dissipation of the system bus. Low  
Power GTL+ uses GTL+ I/O buffers but only two  
loads are allowed. The trace length is limited and  
the bus is terminated at one end only. Since the  
system bus is small and lightly loaded, it behaves  
like a capacitor, and the GTL+ I/O buffers behave  
like high-speed open-drain buffers. With a 66-MHz  
bus frequency, the pull-up would be 120 . If 100  
2.4  
Mobile Pentium® II Processor  
CPUID  
The Mobile Pentium II processor has the same  
CPUID family and model number as some  
Celeron™ processors. The Mobile Pentium II  
processor can be distinguished from these Celeron  
processors by looking at the stepping number and  
the CPUID cache descriptor information. A Mobile  
Pentium II processor has a stepping number in the  
range of 0AH to 0FH (0AH to 0CH for the 400 MHz,  
0DH to 0FH for the 366 MHz and below) and an L2  
cache descriptor of 042H (256-Kbyte L2 cache). If  
the stepping number is less than 0AH or the L2  
cache descriptor is not 042H then the processor is a  
Celeron processor. The L2 cache must be properly  
initialized for the L2 cache descriptor information to  
be correct. After a power-on RESET, or when the  
CPUID instruction is executed, the EAX register  
contains the values shown in Table 2.3. After the L2  
cache is initialized, the CPUID cache/TLB  
descriptors will be the values shown in Table 2.4.  
termination resistors are used rather than 120  
then 20% more power will be dissipated in the  
termination resistors. 120 termination is  
recommended to conserve power.  
,
Refer to the Mobile Pentium® II Processor System  
Bus Layout Guideline (Order Number 243672-001)  
for details on laying out the Low Power GTL+  
system bus.  
2.3.1  
GTL+ Signals  
Two signals of the system bus can potentially not  
meet the Low Power GTL+ layout requirements:  
Table 2.3 Mobile Pentium II Processor CPUID  
Type [13:12] Family [11:8] Model [7:4]  
Reserved [31:14]  
Stepping [3:0]  
0DH– 0FH (400 MHz)  
X
0
6
6
0AH – 0CH (366 MHz and below)  
Table 2.4 Mobile Pentium II Processor CPUID Cache and TLB Descriptors  
01H, 02H, 03H, 04H, 08H, 0CH, 42H  
Cache and TLB Descriptors  
INTEL CORPORATION  
9
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
10  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
All Low Power GTL+ signals are synchronous with  
3. ELECTRICAL SPECIFICATIONS  
3.1 Processor System Signals  
the BCLK signal. All TAP signals are synchronous  
with the TCK signal except TRST#. All CMOS input  
signals can be applied asynchronously.  
Table 3.1 lists the processor system signals by type.  
Table 3.1 System Signal Groups  
Signals  
Group Name  
Low Power GTL+ Input  
Low Power GTL+ Output  
Low Power GTL+ I/O  
BPRI#, DEFER#, RESET#, RS[2:0]#, RSP#, TRDY#  
PRDY#  
A[35:3]#, ADS#, AERR#5, AP[1:0]#, BERR#, BINIT#, BNR#, BP[3:2]#,  
BPM[1:0]#, BREQ0#, D[63:0]#, DBSY#, DEP[7:0]#, DRDY#, HIT#, HITM#,  
LOCK#, REQ[4:0]#, RP#  
CMOS Input 1, 2  
A20M#, BSEL, FLUSH#, IGNNE#, INIT#, INTR, NMI, PREQ#, PWRGOOD,  
SLP#, SMI#, STPCLK#  
Open Drain Output 2  
Clock 3  
FERR#, IERR#, VTOL  
BCLK  
APIC Clock 2  
APIC I/O 2  
PICCLK  
PICD[1:0]  
Thermal Diode  
TAP Input 2  
THERMDA, THERMDC  
TCK, TDI, TMS, TRST#  
TDO  
TAP Output 2  
Power/Other 4  
EDGECTRLN, NC, PLL1, PLL2, TESTHI, TESTHI2, TESTHI3, TESTLO, VCC,  
VCCP, VREF, VSS  
NOTES:  
1. See Section 8 for information on the PWRGOOD signal.  
2. Except for the 1.6V tolerant VTOL, these signals are tolerant to 1.5V for the 400 MHz, and 2.5V tolerant  
for the 366 MHz and below. See Table 3.2 for the recommended pull-up resistor.  
3. BCLK is a 2.5V tolerant signal.  
INTEL CORPORATION  
11  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
4. VCC is the power supply for the core logic.  
PLL1 and PLL2 are the power supply for the PLL analog section.  
VCCP is the power supply for the CMOS voltage references.  
VREF is the voltage reference for the Low Power GTL+ input buffers.  
VSS is system ground.  
5. The AERR# processor bus pin is removed as a processor feature for the 400 MHz. The pin must still be  
terminated to VCC through a 120 pull-up resistor. But the processor must not be configured to drive or  
observe the pin.  
The CMOS and TAP inputs can be driven from  
ground to VCMOS. The TAP outputs are open  
drain and should be pulled up to VCMOS using  
resistors with the values shown in Table 3.2. If  
open drain drivers are used for input signals, then  
they should also be pulled up to VCMOS using  
resistors with the values shown in Table 3.2.  
Table 3.2 Recommended Resistors for Open Drain Signals  
Recommended  
Resistor Value (  
Open Drain Signal 1  
)
150 pull-up  
680 pull-up  
1K pull-up  
TDI, TDO, TESTHI3 2  
STPCLK#  
INIT#, TCK, TESTHI, TESTHI2, TESTHI3 2, TMS  
TRST#  
680 - 1K pull-down  
1.5K pull-up (400 MHz)  
A20M#, FERR#, FLUSH#, IERR#, IGNNE#, INTR, NMI, PREQ#,  
PWRGOOD, SLP#, SMI#, VTOL  
4.7K pull-up (366 MHz and  
Below)  
NOTE:  
1. Refer to Section 3.1.4 for the required pull-up or pull-down resistors for signals that are not being used.  
2. The TESTHI3 signal must be pulled up to VCC using a 150 resistor on 400 MHz processors. On  
366 MHz and below the resistor may be between 150 and 1K  
.
3.1.1  
Power Sequencing Requirements  
The VCC power plane must not rise too fast. At least  
200 sec (TR) must pass from the time that VCC is at  
10% of its nominal value until the time that VCC is at  
90% of its nominal value (See Figure 3.1).  
The Mobile Pentium® II processor has no power  
sequencing requirements. It is recommended that  
all of the processor power planes rise to their  
specified values within one second of each other.  
12  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
thermal diode to protect the processor and the  
system against excessive temperatures.  
3.1.4  
Unused Signals  
All signals named NC must be unconnected. All  
signals named TESTLO must be pulled down to  
VSS, or tied directly to VSS. All signals named  
TESTHI or TESTHI3 must be pulled up to VCC with  
a resistor. All signals named TESTHI2 must be  
pulled up to VCCP with a resistor. Each TESTHI and  
TESTHI2 signal must have an individual, 1k pull-  
up resistor. The TESTHI3 signals can share a single  
pull-up of 150 for the 400 MHz processor and  
150 to 1K for 366 MHz and below.  
Vcc  
90%Vcc (nominal)  
10%Vcc (nominal)  
Volts  
TR  
Time  
Figure 3.1 Ramp Rate Requirement  
Test Access Port (TAP) Connection  
Unused Low Power GTL+ inputs, outputs and bi-  
directional signals should be individually connected  
to VCC with 120 pull-up resistors. Unused CMOS  
3.1.2  
active low inputs should be connected to VCMOS  
Unused active high inputs should be connected to  
VSS Unused open-drain outputs should be  
unconnected. If the processor is configured to enter  
the Quick Start state rather than the Stop Grant  
state, then the SLP# signal should be connected to  
VCMOS. When tying any signal to power or ground, a  
resistor will allow for system testability. For unused  
signals, it is suggested that 1k resistors be used  
for pull-ups and for pull-downs.  
.
The TAP interface is an implementation of the  
IEEE 1149.1 (“JTAG”) standard. Due to the voltage  
levels supported by the TAP interface, it is  
recommended that the Mobile Pentium II processor  
and the other 1.5V/2.5V JTAG specification  
compliant devices be last in the JTAG chain after  
any devices with 3.3V or 5V JTAG interfaces within  
the system. A translation buffer should be used to  
reduce the TDO output voltage of the last 3.3/5V  
device down to the VCMOS range that the Mobile  
Pentium II processor can tolerate. Multiple copies of  
TCK, TMS, and TRST# must be provided, one for  
each voltage level.  
.
PICCLK and PICD[1:0] must be tied to VSS with a  
1k resistor. BSEL must be connected to VSS.  
A Debug Port and connector may be placed at the  
start and end of the JTAG chain containing the  
processor, with TDI to the first component coming  
from the Debug Port and TDO from the last  
component going to the Debug Port. There are no  
requirements for placement of the Mobile Pentium II  
processor in the JTAG chain, except for those that  
are dictated by voltage requirements of the TAP  
signals.  
3.1.5  
Signal State in Low Power States  
3.1.5.1 System Bus Signals  
All of the system bus signals have Low Power GTL+  
input, output or input/output drivers. Except when  
servicing snoops, the system bus signals are tri-  
stated and pulled up by the termination resistors.  
Snoops are not permitted in the Sleep and Deep  
Sleep states.  
3.1.3  
Catastrophic Thermal Protection  
3.1.5.2 CMOS and Open-Drain Signals  
The Mobile Pentium II processor does not support  
catastrophic thermal protection or the THERMTRIP#  
signal. An external thermal sensor should use the  
The CMOS input signals are allowed to be in either  
the logic high or low state when the processor is in a  
INTEL CORPORATION  
13  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
low power state. In the Auto Halt and Stop Grant  
states these signals are allowed to toggle. These  
input buffers have no internal pull-up or pull-down  
resistors and system logic can use CMOS or open-  
drain drivers to drive them.  
strong function of the power supply design. Contact  
your Intel Field Sales Representative for tools to  
help determine how much decoupling is required.  
The processor core power plane (VCC) should have  
at least twenty-six 0.1 F high frequency decoupling  
capacitors. The CMOS voltage reference power  
The open-drain output signals have open drain  
drivers and external pull-up resistors are required.  
plane (VCCP) requires 50 to 100 F of bulk  
decoupling and at least eight 0.1 F high frequency  
decoupling capacitors.  
One of the two output signals (IERR#) is  
a
catastrophic error indicator and is tri-stated (and  
pulled-up) when the processor is functioning  
normally. The FERR# output can be either tri-stated  
or driven to VSS when the processor is in a low  
power state, depending on the condition of the  
floating point unit. Since this signal is a DC current  
path when it is driven to VSS, it is recommended that  
the software clears or masks any floating point error  
condition before putting the processor into the Deep  
Sleep state.  
For the Low Power GTL+ pull-up resistors, one  
0.1 F high frequency decoupling capacitor is  
recommended per resistor pack. There should be  
no more than eight pull-up resistors per resistor  
pack. The Low Power GTL+ voltage reference  
power plane (VREF) should have at least three 0.1 F  
high frequency decoupling capacitors.  
3.2.2  
Voltage Planes  
3.1.5.3 Other Signals  
All VCC and VSS balls/pins must be connected to the  
appropriate voltage plane. All VCCP and VREF  
balls/pins must be connected to the appropriate  
traces on the system electronics.  
The system bus clock (BCLK) must be driven in all  
of the low power states except the Deep Sleep  
state.  
In addition to the main VCC, VCCP and VSS power  
supply signals, PLL1 and PLL2 provide isolated  
power to the PLL section. PLL1 and PLL2 should be  
connected according to Figure 3.2. Do not connect  
PLL2 directly to VSS. A separate power supply  
should be used to generate VCCP to isolate the PLL  
from processor core noise. Table 3.3 contains the  
requirements for C1 and L1.  
3.2  
Power Supply Requirements  
3.2.1  
Decoupling Recommendations  
The amount of bulk decoupling required to meet the  
processor voltage tolerance requirements is  
a
L1  
PLL1  
VCCP  
C1  
V0027-00  
PLL2  
Figure 3.2 PLL LC Filter  
INTEL CORPORATION  
14  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.3 LC Filter Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
C1  
LC Filter Capacitance  
47  
F
30% tolerance, 1 max series resistance,  
~2nH series inductance  
L1  
LC Filter Inductance  
20  
47  
H
low-Q type choke, 30% tolerance, 1.5  
max series resistance, 50mA current,  
self-resonant frequency >10 MHz  
3.3  
System Bus Clock and  
Processor Clocking  
The Mobile Pentium® II processor (0.18 m) at 400  
MHz is implemented with the Bus Fraction Locking  
scheme, which allows the processor to operate at  
the marked core frequency only. The bus ratio  
configuration signals are not effective. However, if  
desired, the signals can be set accordingly to Table  
3.4.  
The 2.5V BCLK clock input directly controls the  
operating speed of the system bus interface. All  
system bus timing parameters are specified with  
respect to the rising edge of the BCLK input. The  
Mobile Pentium II processor core frequency is a  
multiple of the BCLK frequency.  
Table 3.4 Core Frequency to System Bus Ratio Configuration  
Processor Core Frequency to  
NMI  
INTR IGNNE# A20M#  
Powerup Configuration  
[25:22]  
System Bus Frequency Ratio  
4/1 (266 MHz)  
L
L
L
L
H
L
H
L
L
L
H
H
H
H
L
0010  
0110  
0000  
0100  
1011  
9/2 (300 MHz)  
5/1 (333 MHz)  
H
H
L
11/2 (366 MHz)  
H
L
6/1 (400 MHz)  
The mobile Pentium II processors at 366 MHz and  
below frequencies are implemented with a Bus  
fraction Limiting scheme. A multiplexer is required  
between the system electronics and the processor  
to drive the bus ratio configuration signals during  
Reset. Figure 3.6 and Table 3.18 describe the  
timing requirements for this operation. The 443BX  
CRESET# signal has suitable timing to control the  
multiplexer. After RESET# and PWRGOOD are  
asserted, the multiplexer logic must guarantee that  
the bus ratio configuration signals encode one of the  
bus ratios in Table 3.4 and that the bus ratio  
INTEL CORPORATION  
15  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
corresponds to a core frequency at or below the  
marked core frequency for the processor. The  
selected bus ratio is visible to software in the Power-  
On configuration register, see Section 7.2 for  
details.  
not be changed during Deep Sleep state (see  
Section 2.2.8).  
3.4  
Maximum Ratings  
Table 3.5 and Table 3.6 contains the Mobile  
Pentium II processor stress ratings. Functional  
operation at the absolute maximum and minimum is  
neither implied nor guaranteed. The processor  
should not receive a clock while subjected to these  
conditions. Functional operating conditions are  
provided in the AC and DC tables. Extended  
exposure to the maximum ratings may affect device  
reliability. Furthermore, although the processor  
contains protective circuitry to resist damage from  
static electric discharge, one should always take  
precautions to avoid high static voltages or electric  
fields.  
Multiplying the bus clock frequency is necessary to  
increase performance while allowing for easier  
distribution of signals within the system. Clock  
multiplication within the processor is provided by the  
internal Phase Lock Loop (PLL), which requires a  
constant frequency BCLK input. During Reset, or on  
exit from the Deep Sleep state, the PLL requires  
some amount of time to acquire the phase of BCLK.  
This time is called the PLL lock latency, which is  
specified in Section 3.6, AC timing parameters T18  
and T47. Except for the 400 MHz processor, the  
system bus frequency ratio can be changed when  
RESET# is active, assuming that all Reset  
specification are met. The BCLK frequency should  
Table 3.5 Absolute Maximum Ratings for Mobile Pentium II Processor at 400 MHz  
Symbol  
TStorage  
Parameter  
Storage Temperature  
Min  
–40  
Max  
85  
Unit  
°C  
V
Notes  
Note1  
VCC(Abs)  
VCCP  
Supply Voltage with respect to VSS  
–0.5  
–0.3  
2.0  
2.0  
CMOS Reference Voltage with respect to VSS  
GTL+ Buffer DC Input Voltage with respect to VSS  
1.5V Buffer DC Input Voltage with respect to VSS  
BLCK Buffer DC Input Voltage with respect to VSS  
V
VIN  
–0.3 VCC + 0.5  
V
Note 2  
Note 3  
VIN15  
–0.3  
–0.3  
2.0  
3.3  
V
VBLCK  
V
NOTES:  
1. The shipping container is only rated for 65°C.  
2. Parameter applies to the Low Power GTL+ signal groups only.  
3. Parameter applies to CMOS, Open-Drain, APIC and TAP bus signal groups only.  
16  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.6 Absolute Maximum Ratings for Mobile Pentium II Processor at 366 MHz and Below  
Symbol  
TStorage  
Parameter  
Storage Temperature  
Min  
–40  
Max  
85  
Unit  
°C  
V
Notes  
Note1  
VCC(Abs)  
VCCP  
Supply Voltage with respect to VSS  
–0.5  
–0.3  
3.0  
3.0  
CMOS Reference Voltage with respect to VSS  
GTL+ Buffer DC Input Voltage with respect to VSS  
2.5V Buffer DC Input Voltage with respect to VSS  
V
VIN  
–0.3 VCC + 0.7  
–0.3 3.3  
V
Note 2  
Note 3  
VBLCK  
V
NOTES:  
1. The shipping container is only rated for 65°C.  
2. Parameter applies to the Low Power GTL+ signal groups only.  
3. Parameter applies to CMOS, Open-Drain, APIC and TAP bus signal groups only.  
INTEL CORPORATION  
17  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
specifications for case temperature, clock frequency  
and input voltages. Care should be taken to read all  
notes associated with each parameter.  
3.5  
DC Specifications  
Table 3.7 through Table 3.12 list the DC  
specifications for the Mobile Pentium II processor .  
Specifications are valid only while meeting  
Table 3.7 Power Specifications for Mobile Pentium® II Processor at 400 MHz  
TCASE = 0 to TCASE,max; VCC = 1.5V ±115mV; VCCP = 1.5V ±90mV  
Symbol  
VCC  
Parameter  
VCC for core logic  
VCC for CMOS voltage references  
Min  
Typ  
Max  
1.615  
1.590  
7.10  
Unit  
V
Notes  
±115 mV  
1.385  
1.410  
1.500  
1.500  
VCCP  
ICC  
V
±90 mV  
Note 3  
ICC for VCC at core  
frequency  
@ 400 MHz  
A
ICCP  
Current for VCCP  
100  
mA  
A
Notes 1, 2, 3  
Note 3  
ICC,SG  
Processor Stop Grant and  
Auto Halt current  
1.29  
ICC,QS  
Processor Quick Start and  
Sleep current  
994  
700  
20  
mA  
mA  
Note 3  
ICC,DSLP Processor Deep Sleep leakage  
current  
Note 3  
dICC/dt  
VCC power supply current slew rate  
A/ s  
Notes 4, 5  
NOTES:  
1. ICCP is the current supply for the CMOS voltage references.  
2. Not 100% tested. Specified by design/characterization.  
3. ICCx,max specifications are specified at VCC,max, VCCP,max and 100°C and under maximum signal loading  
conditions.  
4. Based on simulations and averaged over the duration of any change in current. Use to compute the  
maximum inductance and reaction time of the voltage regulator. This parameter is not tested.  
5. Maximum values specified by design/characterization at nominal VCC and VCCP  
.
18  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.8 Power Specifications for Mobile Pentium® II Processor at 366 MHz and Below  
T
CASE = 0 to TCASE,max; VCC = 1.6V ±135mV; VCCP = 1.8V ±90mV  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
±135 mV  
VCC  
VCC of core logic for regular voltage  
processors  
1.465  
1.600  
1.735  
V
VCC,LP  
VCCP  
ICC  
VCC when ICC < 300 mA  
1.465  
1.710  
1.600  
1.800  
1.805  
1.890  
V
V
+205/-135 mV 1  
1.8V ±90 mV  
Note 4  
VCC for CMOS voltage references  
ICC for VCC at core  
frequency  
@ 366 MHz  
@ 333 MHz  
8.87  
7.95  
7.49  
6.63  
A
A
A
A
@ 300PE MHz  
@ 266PE MHz  
ICCP  
Current for VCCP  
75  
mA  
mA  
Notes 2, 3, 4  
Note 4  
ICC,SG  
Processor Stop Grant and  
Auto Halt current  
1190  
ICC,QS  
Processor Quick Start and  
Sleep current  
880  
650  
20  
mA  
mA  
Note 4  
ICC,DSLP Processor Deep Sleep leakage  
current  
Note 4  
dICC/dt  
VCC power supply current slew rate  
A/ s  
Notes 5, 6  
NOTES:  
1. A higher VCC,MAX is allowed when the processor is in a low power state to enable high efficiency, low  
current modes in the power regulator.  
2. ICCP is the current supply for the CMOS voltage references.  
3. Not 100% tested. Specified by design/characterization.  
4. ICCx,max specifications are specified at VCC,max, VCCP,max and 100°C and under maximum signal loading  
conditions.  
5. Based on simulations and averaged over the duration of any change in current. Use to compute the  
maximum inductance and reaction time of the voltage regulator. This parameter is not tested.  
6. Maximum values specified by design/characterization at nominal VCC and VCCP  
.
INTEL CORPORATION  
19  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.9 Power Specifications for Low Voltage Pentium® II Processor  
TCASE = 0 to TCASE,max; VCC = 1.5V ±135mV; VCCP = 1.8V ±90mV  
Symbol Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC  
Vcc of core logic for 266PE MHz at  
1.365  
1.500  
1.635  
V
±135 mV  
low voltage  
VCC,LP  
VCCP  
ICC  
VCC when ICC < 300 A  
VCC for CMOS voltage references  
1.365  
1.710  
1.500  
1.800  
1.705  
1.890  
5.90  
V
V
A
+205/-135 mV 1  
1.8V ±90 mV  
Note 4  
ICC for VCC at core frequency  
@ 266PE MHz at low voltage  
ICCP  
Current for VCCP  
75  
mA  
mA  
Notes 2, 3, 4  
Note 4  
ICC,SG  
Processor Stop Grant and  
Auto Halt current  
940  
ICC,QS  
Processor Quick Start and  
Sleep current  
630  
400  
20  
mA  
mA  
Note 4  
ICC,DSLP Processor Deep Sleep leakage  
current  
Note 4  
dICC/dt  
VCC power supply current slew rate  
A/ s  
Notes 5, 6  
NOTES:  
1. A higher VCC,MAX is allowed when the processor is in a low power state to enable high efficiency, low  
current modes in the power regulator.  
2. ICCP is the current supply for the CMOS voltage references.  
3. Not 100% tested. Specified by design/characterization.  
4. ICCx,max specifications are specified at VCC,max, VCCP,max and 100°C and under maximum signal loading  
conditions.  
5. Based on simulations and averaged over the duration of any change in current. Use to compute the  
maximum inductance and reaction time of the voltage regulator. This parameter is not tested.  
6. Maximum values specified by design/characterization at nominal VCC and VCCP  
.
The signals on the Mobile Pentium II processor  
system bus are included in the Low Power GTL+  
signal group. These signals are specified to be  
terminated to VCC. The DC specifications for these  
signals are listed in Table 3.10; the termination and  
signals are listed in Table 3.11. The Mobile Pentium  
II processor requires external termination and a  
VREF. Refer to Mobile Pentium® II Processor System  
Bus Layout Guideline (Order Number 243672-001)  
for full details of system VTT and VREF requirements.  
reference  
voltage  
specifications  
for  
these  
20  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.10 Low Power GTL+ Signal Group DC Specifications  
TCASE = 0 to TCASE,max; VCC = 1.5V ± 115mV, VCC = 1.6V ± 135mV, or 1.5V ± 135mV; VCCP = 1.5V ± 90mV,  
or VCCP = 1.8V ± 90mV  
Symbol  
VIL  
Parameter  
Input Low Voltage  
Input High Voltage  
Output High Voltage  
Min  
–0.3  
Max  
5/9VTT – 0.2  
VCC  
Unit  
V
Notes  
Table 3.11 1  
See  
VIH  
5/9VTT + 0.2  
V
Note 1  
VOH  
V
See VTT max in  
Table 3.11  
.
RON  
IL  
Output Low Drive Strength  
Leakage Current for inputs  
35  
ohms  
±100  
±30  
A
A
Note 2  
ILO  
Leakage Current for outputs  
& I/Os  
366 MHz and below 3  
400 MHz 3  
ILO  
Leakage Current for outputs  
and I/Os  
±100  
A
NOTES:  
1. VREF worst case, not nominal. Noise on VREF should be accounted for.  
2. (0 VIN VCC).  
3. (0 Vout VCC).  
Table 3.11. Low Power GTL+ Bus DC Specifications  
TCASE = 0 to TCASE,max; VCC = 1.5V ± 115mV, VCC = 1.6V ± 135mV, or 1.5V ± 135mV; VCCP = 1.5V ± 90mV,  
or VCCP = 1.8V ± 90mV  
Symbol  
VTT  
Parameter  
Min  
Typ  
VCC  
Max  
Unit  
V
Notes  
Bus Termination Voltage  
Input Reference Voltage  
VCC,MIN  
VCC,MAX  
Note 1  
±2% 2  
VREF  
5/9VTT – 2%  
5/9VTT  
5/9VTT + 2%  
V
NOTES:  
1. The intent is to use the same power supply for VCC and VTT  
.
2. VREF for the system logic should be created from VTT by a voltage divider.  
The CMOS, Open-Drain and TAP signals are  
designed to interface at VCMOS to allow connection  
to other devices. BCLK is a 2.5V clock. The DC  
INTEL CORPORATION  
21  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
specifications for these signals are listed in Table  
3.12.  
Table 3.12 Clock, APIC, TAP, CMOS and Open-Drain Signal Group DC Specifications for  
the Mobile Pentium® II Processor at 400 MHz  
TCASE = 0 to TCASE,max; VCC = 1.5V ± 115mV, VCCP = 1.5V ± 90mV  
Symbol  
Parameter  
Input Low Voltage  
Min  
–0.3  
–0.3  
1.135  
1.8  
Max  
0.6  
Unit  
V
Notes  
VIL  
VIL,BCLK Input Low Voltage, BCLK  
VIH Input High Voltage  
VIH,BCLK Input High Voltage, BCLK  
0.7  
V
1.615  
2.625  
0.4  
V
V
VOL  
VOH  
IOL  
IL  
Output Low Voltage  
Output High Voltage  
Output Low Current  
V
Note 1  
N/A  
1.615  
14  
V
All outputs are open-drain  
mA  
A
Leakage Current for inputs,  
outputs, and I/Os  
±100  
Note 2  
NOTES:  
1. Parameter measured at 14 mA.  
2. (0 VIN/OUT 1.615V).  
22  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.13 Clock, APIC, TAP, CMOS and Open-Drain Signal Group DC Specifications for  
the Mobile Pentium® II Processor at 366 MHz and Below  
TCASE = 0 to TCASE,max; VCC = 1.6V ± 135mV, or VCC = 1.5V ± 115mV, VCCP = 1.8V ± 90mV  
Symbol  
Parameter  
Input Low Voltage  
Min  
–0.3  
Max  
0.7  
Unit  
V
Notes  
VIL  
VIL,BCLK Input Low Voltage, BCLK  
VIH Input High Voltage  
VIH,BCLK Input High Voltage, BCLK  
–0.3  
0.7  
V
1.700  
1.800  
2.625  
2.625  
0.4  
V
V
VOL  
VOH  
IOL  
Output Low Voltage  
V
Note 1  
Output High Voltage  
N/A  
2.625  
14  
V
All outputs are open-drain  
Output Low Current  
mA  
A
IL  
Input Leakage Current  
Output and I/O Leakage Current  
±100  
±30  
Note 2  
Note 2  
ILO  
A
NOTES:  
1. Parameter measured at 14 mA.  
2. (0 VIN/OUT 2.625V).  
3.17 contains the CMOS and Open-Drain signal  
groups specifications; Table 3.18 contains timings  
for the reset conditions; Table 3.19 contains the  
TAP specifications; and Table 3.20 and Table 3.21  
3.6  
AC Specifications  
3.6.1  
System Bus, Clock, APIC, TAP, CMOS  
and Open-Drain AC Specifications  
contain  
the  
power  
management  
timing  
specifications.  
Table 3.14 through Table 3.21 provide AC  
specifications associated with the Mobile Pentium II  
processor. The AC specifications are divided into  
the following categories: Table 3.14 contains the  
system bus clock specifications; Table 3.15  
contains the processor core frequencies; Table 3.16  
contains the Low Power GTL+ specifications; Table  
All system bus AC specifications for the Low Power  
GTL+ signal group are relative to the rising edge of  
the BCLK input at 1.25V. All Low Power GTL+  
timings are referenced to VREF for both ‘0’ and ‘1’  
logic levels unless otherwise specified.  
INTEL CORPORATION  
23  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.14 System Bus Clock AC Specifications1  
TCASE = 0 to TCASE,max; VCC = 1.5V ± 115mV, VCC = 1.6V ± 135mV, or 1.5V ± 135mV; VCCP = 1.5V ± 90mV,  
or VCCP = 1.8V ± 90mV  
Symbol  
Parameter  
System Bus Frequency  
BCLK Period  
Min  
Typ  
66.67  
15  
Max  
Unit  
MHz  
ns  
Figure  
Notes  
3.3  
T1  
T2  
Note 2  
BCLK Period Stability  
BCLK High Time  
BCLK Low Time  
±250  
ps  
Notes 3, 4  
@>1.8V  
3.3  
3.3  
3.3  
3.3  
T3  
5.0  
5.0  
ns  
T4  
ns  
@<0.7V  
T5  
BCLK Rise Time  
BCLK Fall Time  
0.175  
0.175  
0.875  
0.875  
ns  
(0.9V – 1.6V) 4  
(1.6V – 0.9V) 4  
T6  
ns  
NOTES:  
1. All AC timings for Low Power GTL+ and CMOS signals are referenced to the BCLK rising edge at 1.25V.  
All CMOS signals are referenced at VTRIP  
.
2. The BCLK period allows a +0.5ns tolerance for clock driver variation.  
3. Not 100% tested. Specified by design/characterization.  
4. Measured on the rising edge of adjacent BCLKs at 1.25V. The jitter present must be accounted for as a  
component of BCLK skew between devices.  
24  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.15 Valid Mobile Pentium II Processor Frequencies  
TCASE = 0 to TCASE,max; VCC = 1.5V ± 115mV, VCC = 1.6V ± 135mV, or 1.5V ± 135mV; VCCP = 1.5V ± 90mV,  
or VCCP = 1.8V ± 90mV  
BCLK Frequency (MHz)  
Frequency Multiplier  
Core Frequency (MHz)  
66.67  
66.67  
66.67  
66.67  
66.67  
4
9/2  
5
266.67  
300.00  
333.33  
366.67  
400.00  
11/2  
6
NOTE: Because of the Bus Fraction Locking scheme implemented in this processor, the frequency  
multiplier is internally set to a fixed value of six (6). The processor operates only at a core  
frequency of 400 MHz.  
Table 3.16 Low Power GTL+ Signal Groups AC Specifications1  
RTT = 120 terminated to VCC; VREF = 5/9 VCC; load = 0pF  
T
CASE = 0 to TCASE,max; VCC = 1.5V ± 115mV, VCC = 1.6V ± 135mV, or 1.5V ± 135mV; VCCP = 1.5V ± 90mV,  
or VCCP = 1.8V ± 90mV  
Symbol  
Parameter  
Min  
0.00  
2.98  
0.90  
1
Max  
Unit  
ns  
Figure  
3.4  
Notes  
T7  
T8  
T9  
Low Power GTL+ Output Valid Delay  
Low Power GTL+ Input Setup Time  
Low Power GTL+ Input Hold Time  
RESET# Pulse Width  
7.78  
3.5  
ns  
Notes 2, 3  
Note 4  
3.5  
ns  
3.6 3.7  
T10  
ms  
Note 5  
NOTES:  
1. All AC timings for Low Power GTL+ signals are referenced to the BCLK rising edge at 1.25V. All Low  
Power GTL+ signals are referenced at VREF  
.
2. RESET# can be asserted (active) asynchronously, but must be de-asserted synchronously.  
3. Specification is for a minimum 0.40V swing.  
4. Specification is for a maximum 1.0V swing.  
5. After VCC, VCCP and BCLK become stable and PWRGOOD is asserted.  
INTEL CORPORATION  
25  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.17 CMOS and Open-Drain Signal Groups AC Specifications1, 2  
TCASE = 0 to TCASE,max; VCC = 1.5V ± 115mV, VCC = 1.6V ± 135mV, or 1.5V ± 135mV; VCCP = 1.5V ± 90mV,  
or VCCP = 1.8V ± 90mV  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure  
Notes  
3.4  
T14  
CMOS Input Pulse Width, except  
PWRGOOD  
2
BCLKs  
Active and  
Inactive  
states  
3.7  
T15  
PWRGOOD Inactive Pulse Width  
10  
BCLKs  
Notes 3, 4  
NOTES:  
1. All AC timings for CMOS and Open-Drain signals are referenced to the BCLK rising edge at 1.25V. All  
CMOS and Open-Drain signals are referenced at VTRIP  
.
2. Minimum output pulse width on CMOS outputs is 2 BCLKs.  
3. When driven inactive, or after VCC, VCCP and BCLK become stable. PWRGOOD must remain below  
V
IL,max from Table 3.12 until all the voltage planes meet the voltage tolerance specifications in Table 3.7,  
and BCLK has met the BCLK AC specifications in Table 3.14 for at least 10 clock cycles. PWRGOOD  
must rise glitch-free and monotonically to VCMOS  
.
4. If the BCLK signal meets its AC specification within 150ns of turning on then the PWRGOOD Inactive  
Pulse Width specification (T15) is waived and BCLK may start after PWRGOOD is asserted. PWRGOOD  
must still remain below VIL,max until all the voltage planes meet the voltage tolerance specifications.  
26  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.18 Reset Configuration AC Specifications  
TCASE = 0 to TCASE,max; VCC = 1.5V ±115mV; VCCP = 1.5V ±90mV  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure  
Notes  
Before  
3.5 3.6  
T16  
Reset Configuration Signals (A[15:5]#,  
BREQ0#, FLUSH#, INIT#, PICD0)  
Setup Time  
4
BCLKs  
deassertion of  
RESET#  
3.5 3.6  
3.7  
T17  
T18  
Reset Configuration Signals (A[15:5]#,  
BREQ0#, FLUSH#, INIT#, PICD0)  
Hold Time  
2
1
20  
BCLKs  
ms  
After clock that  
deasserts  
RESET#  
Reset Configuration Signals (A20M#,  
IGNNE#, INTR, NMI) Setup Time  
Before  
deassertion of  
RESET# 1  
3.7  
T19  
T20  
Reset Configuration Signals (A20M#,  
IGNNE#, INTR, NMI) Delay Time  
5
BCLKs  
BCLKs  
After assertion of  
RESET# 2  
3.5 3.7  
Reset Configuration Signals (A20M#,  
IGNNE#, INTR, NMI) Hold Time  
2
20  
After clock that  
deasserts  
RESET#  
NOTES:  
1. At least 1 ms must pass after PWRGOOD rises above VIH,min from Table 3.12, and BCLK meets its AC  
timing specification, until RESET# may be deasserted.  
2. For a Reset, the clock ratio defined by these signals must be a safe value (their final value or a lower  
multiplier) within this delay after RESET# is asserted unless PWRGOOD is inactive (below VIL,max).  
INTEL CORPORATION  
27  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.19 TAP Signal AC Specifications1  
TCASE = 0 to TCASE,max; VCC = 1.5V ±115mV; VCCP = 1.5V ±90mV  
Symbol  
T30  
Parameter  
TCK Frequency  
Min  
Max  
16.67  
Unit  
MHz  
ns  
Figure  
Notes  
T31  
TCK Period  
60  
3.3  
3.3  
3.3  
3.3  
T32  
T33  
T34  
T35  
TCK High Time  
TCK Low Time  
TCK Rise Time  
TCK Fall Time  
25.0  
25.0  
ns  
ns  
ns  
ns  
1.135V 2  
0.60V 2  
5.0  
5.0  
(0.60V-1.135V) 2,3  
(1.135V-0.60V) 2,3  
3.3  
3.9  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
T36  
T37  
T38  
T39  
T40  
T41  
T42  
T43  
TRST# Pulse Width  
40.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Asynchronous 2  
Note 4  
TDI, TMS Setup Time  
TDI, TMS Hold Time  
14.0  
1.0  
Note 4  
TDO Valid Delay  
10.0  
25.0  
25.0  
25.0  
Notes 5, 6  
TDO Float Delay  
Notes 2, 5, 6  
Notes 5, 7, 8  
Notes 2, 5, 7, 8  
Notes 4, 7, 8  
Notes 4, 7, 8  
All Non-Test Outputs Valid Delay  
All Non-Test Outputs Float Delay  
All Non-Test Inputs Setup Time  
All Non-Test Inputs Hold Time  
2.0  
5.0  
T44  
13.0  
NOTES:  
1. All AC timings for TAP signals are referenced to the TCK rising edge at VTRIP. All CMOS signals are  
referenced at VTRIP  
.
2. Not 100% tested. Specified by design/characterization.  
3. 1 ns can be added to the maximum TCK rise and fall times for every 1 MHz below 16 MHz.  
4. Referenced to TCK rising edge.  
5. Referenced to TCK falling edge.  
6. Valid delay timing for this signal is specified into 150 terminated to VCMOS and 0pF of external load. For  
real system timings these specifications must be derated for external capacitance at 105 ps/pF.  
7. Non-Test Outputs and Inputs are the normal output or input signals (except TCK, TRST#, TDI, TDO and  
TMS). These timings correspond to the response of these signals due to boundary scan operations.  
8. During Debug Port operation use the normal specified timings rather than the TAP signal timings.  
28  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 3.20 Quick Start/Deep Sleep AC Specifications  
TCASE = 0 to TCASE,max; VCC = 1.5V ± 115mV, VCC = 1.6V ± 135mV, or 1.5V ± 135mV; VCCP = 1.5V ± 90mV,  
or VCCP = 1.8V ± 90mV  
Symbol  
T45  
Parameter  
Min  
Max  
Unit  
BCLKs  
ns  
Figure  
3.10  
3.10  
3.10  
3.10  
3.10  
Stop Grant Cycle Completion to Clock Stop  
Stop Grant Cycle Completion to Input Signals Stable  
Deep Sleep PLL Lock Latency  
100  
T46  
0
T47  
30  
s
T48  
STPCLK# Hold Time from PLL Lock  
0
8
ns  
T49  
Input Signal Hold Time from STPCLK# Deassertion  
BCLKs  
NOTE: Input signals other than RESET# and BPRI# must be held constant in the Quick Start state.  
Table 3.21 Stop Grant/Sleep/Deep Sleep AC Specifications  
T
CASE = 0 to TCASE,max; VCC = 1.5V ± 115mV, VCC = 1.6V ± 135mV, or 1.5V ± 135mV; VCCP = 1.5V ± 90mV,  
or VCCP = 1.8V ± 90mV  
Symbol  
Parameter  
Min  
Max  
Unit  
BCLKs  
ns  
Figure  
3.11  
3.11  
3.11  
3.11  
3.11  
3.11  
T50  
T51  
T52  
T54  
T55  
T56  
SLP# Signal Hold Time from Stop Grant Cycle Completion  
SLP# Assertion to Input Signals Stable  
SLP# Assertion to Clock Stop  
100  
0
10  
0
BCLKs  
ns  
SLP# Hold Time from PLL Lock  
STPCLK# Hold Time from SLP# Deassertion  
Input Signal Hold Time from SLP# Deassertion  
10  
10  
BCLKs  
BCLKs  
NOTE: Input signals other than RESET# must be held constant in the Sleep state.  
INTEL CORPORATION  
29  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Figure 3.3 through Figure 3.11 are to be used in conjunction with Table 3.14 through Table 3.21.  
T
r2  
T
h
T
r1  
VIH  
1.6V  
0.9V  
CLK  
VTRIP  
VIL  
T
f1  
T
f2  
T
l
T
p
D0003-02  
NOTES:  
Tr1  
Tf1  
Th  
Tl  
=
=
=
=
=
T5, Tr2 = T34 (Rise Time)  
T6, Tf2 = T35 (Fall Time)  
T3, T32 (High Time)  
T4, T33 (Low Time)  
T1, T31 (Period)  
Tp  
Figure 3.3 Generic Clock Waveform  
30  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
CLK  
T
x
T
x
Signal  
V
Valid  
Valid  
T
pw  
D0004-00  
NOTES:  
Tx  
Tpw  
V
=
=
=
T7, T11 (Valid Delay)  
T14 (Pulse Width)  
VREF for Low Power GTL+ signals; VTRIP for CMOS, Open-Drain, and TAP signal groups  
Figure 3.4 Valid Delay Timings  
CLK  
T
s
T
h
Signal  
V Valid  
D0005-00  
NOTES:  
Ts  
Th  
V
=
=
=
T8, T12 (Setup Time)  
T9, T13 (Hold Time)  
VREF for Low Power GTL+ signals; VTRIP for CMOS, Open-Drain, and TAP signal groups  
Figure 3.5 Setup and Hold Timings  
INTEL CORPORATION  
31  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
BCLK  
T
u
T
t
RESET#  
T
v
T
T
T
x
y
z
Configuration  
(A20M#, IGNNE#,  
INTR, NMI)  
Valid  
Valid  
Safe  
T
w
Configuration  
(A[15:5], BREQ0#,  
FLUSH#, INIT#,  
PICD0)  
D0006-01  
NOTES:  
Tt  
=
T9 (Low Power GTL+ Input Hold Time)  
T8 (Low Power GTL+ Input Setup Time)  
T10 (RESET# Pulse Width)  
T16 (Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0)  
Setup Time)  
Tu  
Tv  
Tw  
=
=
=
Tx  
=
T17 (Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0)  
Hold Time)  
T20 (Reset Configuration Signals (A20M#, IGNNE#, INTR, NMI) Hold Time)  
T19 (Reset Configuration Signals (A20M#, IGNNE#, INTR, NMI) Delay Time)  
T18 (Reset Configuration Signals (A20M#, IGNNE#, INTR, NMI) Setup Time)  
Ty  
Tz  
=
=
Figure 3.6 Reset and Configuration Timings  
32  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
BCLK  
V
,
CCP,  
V
,
CC  
REF  
V
VIH,min  
PWRGOOD  
VIL,max  
T
a
T
b
RESET#  
T
c
Configuration  
(A20M#, IGNNE#,  
INTR, NMI)  
Valid Ratio  
D0007-01  
NOTES:  
Ta  
Tb  
Tc  
=
=
=
T15 (PWRGOOD Inactive Pulse Width)  
T10 (RESET# Pulse Width)  
T20 (Reset Configuration Signals (A20M#, IGNNE#, INTR, NMI) Hold Time)  
Figure 3.7 Power-On Reset Timings  
INTEL CORPORATION  
33  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
TCK  
T
T
w
v
TDI, TMS  
VTRIP  
T
T
s
r
Input  
Signals  
T
T
u
x
TDO  
T
T
z
y
Output  
Signals  
D0008-02  
NOTES:  
Tr  
=
=
=
=
=
=
=
=
T43 (All Non-Test Inputs Setup Time)  
T44 (All Non-Test Inputs Hold Time)  
T40 (TDO Float Delay)  
T37 (TDI, TMS Setup Time)  
T38 (TDI, TMS Hold Time)  
T39 (TDO Valid Delay)  
T41 (All Non-Test Outputs Valid Delay)  
T42 (All Non-Test Outputs Float Delay)  
Ts  
Tu  
Tv  
Tw  
Tx  
Ty  
Tz  
Figure 3.8 Test Timings (Boundary Scan)  
VTRIP  
TRST#  
T
q
D0009-02  
NOTE:  
Tq  
=
T36 (TRST# Pulse Width)  
Figure 3.9 Test Reset Timings  
34  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Normal  
Quick Start  
Running  
Deep Sleep  
Normal  
Quick Start  
Running  
BCLK  
Tv  
STPCLK#  
Ty  
Tx  
CPU bus  
SLP#  
stpgnt  
Tz  
Tw  
Changing  
Compatibility  
Signals  
Frozen  
V0010-00  
NOTES:  
Tv  
Tw  
Tx  
Ty  
Tz  
=
=
=
=
=
T45 (Stop Grant Acknowledge Bus Cycle Completion to Clock Shut Off Delay)  
T46 (Setup Time to Input Signal Hold Requirement)  
T47 (Deep Sleep PLL Lock Latency)  
T48 (PLL lock to STPCLK# Hold Time)  
T49 (Input Signal Hold Time)  
Figure 3.10 Quick Start/Deep Sleep Timing  
INTEL CORPORATION  
35  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Stop  
Grant  
Stop  
Grant  
Normal  
Running  
Sleep  
Tv  
Deep Sleep  
Sleep  
Normal  
BCLK  
Running  
STPCLK#  
Ty  
CPU bus  
SLP#  
stpgnt  
Tw  
Tx  
Tt  
Tu  
Tz  
Compatibility  
Signals  
Changing  
Changing  
Frozen  
V0011-00  
NOTES:  
Tt  
=
=
=
=
=
=
=
T50 (Stop Grant Acknowledge Bus Cycle Completion to SLP# Assertion Delay)  
T51 (Setup Time to Input Signal Hold Requirement)  
T52 (SLP# assertion to clock shut off delay)  
T47 (Deep Sleep PLL lock latency)  
T54 (SLP# Hold Time)  
T55 (STPCLK# Hold Time)  
Tu  
Tv  
Tw  
Tx  
Ty  
Tz  
T56 (Input Signal Hold Time)  
Figure 3.11 Stop Grant/Sleep/Deep Sleep Timing  
36  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
4. SYSTEM SIGNAL SIMULATIONS  
4.1  
System Bus Clock (BCLK)  
Signal Quality Specifications  
Many scenarios have been simulated to generate  
a set of Low Power GTL+ processor system bus  
layout guidelines which are available in the  
Mobile Pentium® II Processor System Bus Layout  
Guideline (Order Number 243672-001). Systems  
must be simulated using the IBIS models to  
determine if they are compliant with this  
specification. There are different IBIS models for  
the 400 MHz and for the 366 MHz and below  
Table 4.1 and Figure 4.1 show the signal quality  
for the system bus clock (BCLK) signal as  
measured at the processor. The timings  
illustrated in Figure 4.1 are taken from Table  
3.14. BCLK is a 2.5V clock.  
Table 4.1 BCLK Signal Quality Specifications  
Symbol  
V1  
Parameter  
Min  
Max  
Unit  
V
Figure  
4.1  
Notes  
VIL,BCLK  
VIH,BCLK  
0.7  
Note 1  
Note 1  
4.1  
V2  
1.8  
–0.7  
–0.8  
1.8  
V
V3  
VIN Absolute Voltage Range  
VIN Absolute Voltage Range  
Rising Edge Ringback  
3.5  
3.5  
V
Undershoot, Overshoot 2  
Undershoot, Overshoot 3  
Absolute Value 4  
4.1  
4.1  
V3  
V
4.1  
V4  
V
Absolute Value 4  
4.1  
V5  
Falling Edge Ringback  
0.7  
4
V
4.1  
BCLK rising/falling slew rate  
0.8  
V/ns  
NOTES:  
1. BCLK must rise/fall monotonically between VIL,BCLK and VIH,BCLK  
.
2. 400 MHz processor only.  
3. 366 MHz and below.  
4. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling)  
absolute voltage the BCLK signal can dip back to after passing the VIH,BCLK (rising) or VIL,BCLK (falling)  
voltage limits.  
INTEL CORPORATION  
37  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
T3  
V3  
V4  
V2  
V1  
V5  
T6  
V3  
T5  
T4  
V0012-00  
Figure 4.1 BCLK Generic Clock Waveform  
has additional specifications on maximum allowable  
overshoot and undershoot for a given duration of  
time, as listed in Table 4.3. Contact your Intel Field  
4.2  
Low Power GTL+ Signal Quality  
Specifications  
Sales representative for  
OVERSHOOT_CHECKER  
OVERSHOOT_CHECKER determines if a specific  
waveform meets the overshoot/undershoot  
specification. Figure 4.3 shows the overshoot/  
undershoot waveform.  
a
copy of the  
tool.  
Table 4.2 and Figure 4.2 illustrate the GTL+ signal  
quality specifications for the Mobile Pentium II  
processor. Refer to the Pentium® II Processor  
Developer’s Manual for the GTL+ buffer  
specification.  
The Mobile Pentium® II processor at 400 MHz also  
38  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 4.2 Low Power GTL+ Signal Group Ringback Specification for  
the Mobile Pentium® II Processor  
Symbol  
Parameter  
Min  
100  
1
Unit  
mV  
ns  
Figure  
4.2  
Notes  
Notes 1, 2  
Overshoot  
4.2  
Minimum Time at High  
Amplitude of Ringback  
Final Settling Voltage  
Notes 1, 2  
Notes 1, 2, 3  
Notes 1, 2  
Notes 1, 2  
4.2  
-100  
100  
N/A  
mV  
mV  
ns  
4.2  
4.2  
Duration of Sequential Ringback  
NOTES:  
1. Specified for the edge rate of 0.3 – 0.8 V/ns. See Figure 4.2 for the generic waveform.  
2. All values determined by design/characterization.  
3. Ringback below VREF +100 mV is not authorized during low to high transitions. Ringback above VREF  
100mV is not authorized during high to low transitions.  
-
VIH,BCLK  
VREF +0.2V  
VREF  
VREF -0.2V  
VIL,BCLK  
Vstart  
Clock  
V0014-00  
Time  
NOTE: High-to-low case is analogous.  
Figure 4.2 GTL+ Receiver Ringback Tolerance  
INTEL CORPORATION  
39  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 4.3. GTL+ Signal Group Overshoot/Undershoot Tolerance at the Processor Core 1, 4, 5 for  
the Mobile Pentium® II Processor at 400 MHz  
Pulse Duration  
0.1 ns  
Allowed Overshoot 2  
Allowed Undershoot 3  
2.0V  
1.9V  
1.8V  
-0.35V  
-0.25V  
-0.15V  
0.3 ns  
1.0 ns  
NOTES:  
1. Under no circumstances should the GTL+ signal voltage ever exceed 2.0V maximum with respect to  
ground or -2.0V minimum with respect to VCCT (i.e., VCCT - 2.0V) under operating conditions.  
2. Ring-backs below VCCT cannot be subtracted from overshoots. Lesser undershoot does not allocate  
longer or larger overshoot.  
3. Ring-backs above ground cannot be subtracted from undershoots. Lesser overshoot does not allocate  
longer or larger undershoot.  
4. System designers are encouraged to follow Intel provided GTL+ layout guidelines.  
5. All values are specified by design characterization, and are not tested.  
40  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Time Dependent Overshoot  
.1ns  
.3ns  
1ns  
2.0v Max  
1.9v  
Vtt  
1.8v  
Vss  
-.15v  
-.25v  
-.35v Min  
.1ns  
.3ns  
1ns  
Time Dependent Undershoot  
NOTE:  
The total overshoot/undershoot budget for one clock cycle is fully consumed by the  
,
or waveforms.  
Figure 4.3 Maximum Acceptable GTL+ Overshoot/Undershoot Waveform for  
the Mobile Pentium® II Processor at 400 MHz  
reliability of the processor. There are three signal  
4.3  
Non-Low Power GTL+ Signal  
Quality Specifications  
quality parameters defined: overshoot/ undershoot,  
ringback and settling limit. The ringback and settling  
limit signal quality parameters are shown in Figure  
4.4 for non-GTL+ signal groups. The overshoot and  
undershoot specifications for non-GTL+ signals are  
the same as for GTL+ signals; see Section 4.2.  
Signals driven to the Mobile Pentium II processor  
should meet signal quality specifications to ensure  
that the processor reads data properly and that  
incoming signals do not affect the long-term  
INTEL CORPORATION  
41  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Settling Limit  
Overshoot  
VCMOS  
Rising-Edge  
Ringback  
Falling-Edge  
Ringback  
Settling Limit  
VLO  
VSS  
Undershoot  
V0015-01  
Time  
Figure 4.4 Non-GTL+ Signal Ringback and Settling Limit  
However, excessive ringback is the dominant  
detrimental system timing effect resulting from  
4.3.1  
Overshoot and Undershoot Guidelines  
overshoot/undershoot  
(i.e.,  
violating  
the  
Overshoot (or undershoot) is the absolute value of  
the maximum voltage above the nominal high  
voltage or below VSS. The overshoot/undershoot  
guideline limits transitions beyond VCC or VSS due to  
the fast signal edge rates. The processor can be  
damaged by repeated overshoot events on VCMOS  
tolerant buffers if the charge is large enough (i.e., if  
the overshoot is great enough).  
overshoot/undershoot guideline will make it difficult  
to satisfy the ringback specification). The  
overshoot/undershoot guideline is 0.7V for the 400  
MHz, 0.8V for the 366 MHz and below and assumes  
the absence of diodes on the input. These  
guidelines should be verified in simulations without  
the on-chip ESD protection diodes present because  
the diodes will begin clamping the VCMOS tolerant  
signals beginning at approximately 1.25V above VCC  
and 0.5V below VSS. If the signals do not reach the  
clamping voltage, then this will not be an issue. A  
42  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
system should not rely on the diodes for  
overshoot/undershoot protection as this will  
negatively affect the life of the components and  
make meeting the ringback specification very  
difficult.  
4.3.2  
Settling Limit Guideline  
4.3.1  
Ringback Specification  
Settling limit defines the maximum amount of  
ringing at the receiving signal that a signal may  
reach before its next transition. The amount allowed  
is 10% of the total signal swing (VHI – VLO) above  
and below its final value. A signal should be within  
the settling limits of its final value, when either in its  
high state or low state, before its next transition.  
Ringback refers to the amount of reflection seen  
after signal has switched. The ringback  
a
specification is the voltage to which the signal rings  
back after achieving its maximum absolute value.  
Excessive ringback can cause false signal detection  
or extend the propagation delay. The ringback  
specification applies to the input signal of each  
receiving agent. Violations of the signal ringback  
specification are not allowed under any  
circumstances for the non-GTL+ signals.  
Signals that are not within their settling limit before  
transitioning are at risk of unwanted oscillations that  
could jeopardize signal integrity. Simulations to  
verify settling limit may be done either with or  
without the input protection diodes present. Violation  
of the settling limit guideline is acceptable if  
simulations of 5 to 10 successive transitions do not  
show the amplitude of the ringing increasing in the  
subsequent transitions.  
Ringback can be simulated with or without the input  
protection diodes that can be added to the input  
buffer model. However, signals that reach the  
clamping voltage should be evaluated further. See  
Table 4.4 for the signal ringback specifications for  
non-GTL+ signals.  
Table 4.4 Signal Ringback Specifications for Non-GTL+ Signals for  
the Mobile Pentium® II Processor at 400 MHz  
Input Signal Group  
Transition  
Maximum Ringback  
Figure  
(with Input Diodes Present)  
4.4  
4.4  
Non-GTL+ Signals  
Non-GTL+ Signals  
0
1
1
0
1.135 V  
0.600 V  
Table 4.5 Signal Ringback Specifications for Non-GTL+ Signals for  
the Mobile Pentium® II Processor at 366 MHz and Below  
Input Signal Group  
Transition  
Maximum Ringback  
Figure  
(with Input Diodes Present)  
4.4  
4.4  
Non-GTL+ Signals  
Non-GTL+ Signals  
0
1
1
0
1.700 V  
0.700 V  
INTEL CORPORATION  
43  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
5. MECHANICAL SPECIFICATIONS  
5.1  
Dimensions of the Micro-PGA  
Package  
The Mobile Pentium® II processor are available in a  
PPGA-B615 package (also known as Micro-PGA) or  
in a PBGA-B615 package (also known as BGA).  
The back of the processor die exposed on top of  
both packages. This section contains information  
describing the packages and the signal pin  
assignments.  
The Micro-PGA dimensions are given in Table 5.1,  
and shown in Figure 5.1 and Figure 5.2. For  
component handling, the substrate may only be  
contacted within the region between the keepout  
outline and the edge of the substrate.  
Table 5.1 Micro-PGA Package Mechanical Specifications  
Parameter Min  
op of die to seating plane of the  
Symbol  
Max  
Unit  
Overall Height, t  
interposer  
A
3.23  
3.83  
mm  
A1  
A2  
B
Pin length  
1.25 REF  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
Die Height  
Pin Diameter  
0.854 REF  
0.30 REF  
D
Die Substrate Width  
30.85  
31.15  
D1  
D2  
E
Die Width  
10.36 REF  
32.60 REF  
Package Width  
Die Substrate Length  
Die Length  
34.85  
35.15  
E1  
E2  
e
17.36 REF  
36.80 REF  
1.27  
Package Length  
Pin pitch  
Pin Tip Radial True Position  
Pin Count  
<=1.27  
N
615  
each  
mm  
Pin row A to short edge of interposer  
Pin column 1 to long edge of interposer  
Allowable Pressure on the Die for Thermal Solution  
Package Weight  
S1  
S2  
PDIE  
W
2.220 REF  
1.415 REF  
mm  
689  
kPa  
7.5 REF  
grams  
44  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
NOTE: Dimensions in parentheses are for reference only. All dimensions are in millimeters.  
Figure 5.1 Micro-PGA Package-Top and Side View  
INTEL CORPORATION  
45  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
NOTE: Dimensions in parentheses are for reference only. All dimensions are in millimeters.  
Figure 5.2 Micro-PGA Package - Bottom View  
5.2  
Dimensions of the BGA  
Package  
package and, and Figure 5.4 shows the bottom view  
of the surface-mount package. For component  
handling, the substrate may only be contacted within  
the shaded region between the keepout outline and  
the edge of the substrate.  
The mechanical specifications for the surface-mount  
package are provided in Table 5.2. Figure 5.3  
shows the top and side views of the surface-mount  
46  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.2 Surface-Mount BGA Package Specifications  
Symbol  
Parameter  
Overall Height, as delivered (USE THIS FOR 5.2)  
Substrate Height, as delivered  
Die Height  
Min  
Max  
Unit  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
each  
mm  
mm  
kPa  
grams  
A
2.29  
2.79  
A1  
A2  
b
1.50 REF  
0.854 REF  
0.78 REF  
Ball Diameter  
D
Package Width  
30.85  
10.36 REF  
34.85 35.15  
31.15  
D1  
E
Die Width  
Package Length  
e
Ball Pitch  
1.27  
E1  
N
Die Length  
17.36 REF  
615  
Ball Count  
S1  
S2  
PDIE  
W
Outer Ball Center to Short Edge of Substrate  
Outer Ball Center to Long Edge of Substrate  
Allowable Pressure on the Die for Thermal Solution  
Package Weight  
1.625 REF  
0.895 REF  
689  
3.71  
4.52  
INTEL CORPORATION  
47  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
A1  
die  
(7.0 TYP)  
(Ø 0.65)  
(5.0 TYP)  
A2  
D
ink swatch  
ink swatch  
E
E1  
(2x 1.50)  
(2x 2.032)  
(2x 0.57)  
(Ø 1.15)  
D1  
A
substrate  
keepout  
outline  
(2x 1.800)  
0.20 REF  
V0026-00  
NOTE: Dimensions in parentheses are for reference only. All dimensions are in millimeters.  
Figure 5.3 Surface-Mount BGA Package - Top and Side View  
48  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Øb  
e
S2  
S1  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
e
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
V0025-01  
NOTE: Dimensions in parentheses are for reference only. All dimensions are in millimeters.  
Figure 5.4 Surface-Mount BGA Package - Bottom View  
pins/balls called out. Table 5.3 lists the signals in  
pin/ball number order. Table 5.4 and Table 5.5 list  
5.3  
Signal Listings  
the signals in signal name order.  
Figure 5.5 is a topside view of the ball/pin map of  
the Mobile Pentium® II processor with the voltage  
INTEL CORPORATION  
49  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
A
B
VSS  
VSS  
A35#  
NC  
A29#  
A19#  
A25#  
VSS  
A22#  
A17#  
A26#  
A30#  
A31#  
A23#  
NC  
A34#  
VSS  
VSS  
NC  
NC  
VSS  
NC  
NC  
NC  
NC  
NC  
VSS  
NC  
D0#  
D6#  
D4#  
VREF  
D12#  
NC  
VSS  
D15#  
D1#  
D9#  
D11#  
NC  
VSS  
D17#  
D10#  
VSS  
D30#  
NC  
D5#  
D2#  
D14#  
D20#  
D23#  
NC  
D3#  
D7#  
D19#  
D22#  
D25#  
NC  
VSS  
D13#  
D21#  
VSS  
D18#  
D26#  
D24#  
D32#  
VREF  
D36#  
VSS  
D16#  
D31#  
D27#  
D28#  
D34#  
D43#  
D44#  
D51#  
D41#  
VSS  
VSS  
VSS  
D29#  
VSS  
D39#  
NC  
NC  
VSS  
D35#  
D33#  
NC  
EDG  
CTRLN  
VSS  
VSS  
A24# TESTHI NC  
C
NC  
A33# RESET# BERR#  
NC  
NC  
NC  
NC  
NC  
D
A28#  
A16#  
A11#  
VSS TESTLO TESTLO VSS  
A20#  
A21#  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VREF  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A27#  
A18#  
NC  
VREF  
A32#  
NC  
VSS  
NC  
NC  
NC  
VSS  
D8#  
NC  
E
A12#  
A3#  
A8#  
A7#  
A13# TESTLO VSS  
NC  
NC  
VSS  
F
A15#  
A6#  
A5#  
VSS  
A9#  
A10#  
A14#  
AP0#  
VREF  
NC  
NC  
NC  
NC  
D37  
VCCP  
G
NC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
NC  
NC  
NC  
D38  
NC  
H
A4#  
NC  
NC  
NC  
NC  
D45#  
D48#  
D59#  
D54#  
D61#  
DEP7#  
D42#  
D47#  
VSS  
D49#  
D52#  
D57#  
D46#  
D58#  
D62#  
J
TESTHI3 BNR#  
RSP#  
AP1#  
NC  
NC  
NC  
NC  
D40#  
VSS  
D53#  
D60#  
VSS  
VSS  
K
VSS TESTHI3 VSS  
VSS TESTHI3 NC  
NC  
NC  
NC  
L
REQ1# BPRI# REQ4# REQ0# TESTHI NC  
NC  
NC  
NC  
VREF  
D56#  
VSS  
D55#  
D50#  
D63#  
M
N
DEFER# REQ2# TESTHI3 LOCK# TRDY#  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
REQ3# HITM#  
VSS  
VREF  
HIT#  
NC  
NC  
NC  
P
DBSY#  
RP#  
DRDY#  
NC  
NC  
NC  
DEP0# DEP3# DEP5# DEP6#  
R
BREQ0# RS0#  
RS2# RS1# PW RGOOD NC  
NC  
NC  
NC  
BPM1# VREF DEP1# DEP2# DEP4#  
T
VSS  
ADS# THERMDA VSS  
SLP#  
TDI  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
BP3#  
VSS  
PRDY# BINIT#  
VSS  
U
AERR# VCCP THERMDC NC  
NC  
NC  
NC  
PICD1 PICCLK TESTHI3 BP2# BPM0#  
V
BSEL  
TRST#  
TCK  
NC  
TMS  
VSS  
VCCP  
VCCP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
INTR PREQ# TESTHI  
W
Y
VSS  
NC  
NC  
NC  
VSS  
NC  
VSS  
PICD0  
VSS  
SMI# FERR# TESTLO NC  
NC  
NC  
NC  
VCCP VCCP  
VSS  
NMI  
NC  
AA  
AB  
AC  
AD  
AE  
AF  
STPCLK# A20M# INIT#  
IERR#  
VCCP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
TDO IGNNE#  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
FLUSH# TESTHI2 NC  
VSS TESTLO  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VTOL  
NC  
VSS  
NC  
VSS  
NC  
VSS  
VSS  
NC  
VCCP  
VSS  
VCC TESTHI2 NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
PLL1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
BCLK  
PLL2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V0024-04  
VCC  
VCCP  
VSS  
Other  
Analog  
Decoupling  
Figure 5.5 Pin/Ball Map - Top View  
INTEL CORPORATION  
50  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
No.  
A2  
Signal Name  
VSS  
No.  
B8  
Signal Name  
No.  
C14  
Signal Name  
NC  
No.  
D20  
Signal Name  
VSS  
TESTHI  
NC  
A3  
VSS  
A29#  
VSS  
A26#  
A34#  
VSS  
VSS  
NC  
B9  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
D1  
D4#  
D21  
D22  
D23  
D24  
E1  
D32#  
D28#  
VSS  
A4  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
C1  
NC  
D1#  
A5  
NC  
D10#  
D14#  
D19#  
D21#  
D24#  
D27#  
D29#  
D35#  
A28#  
VSS  
A6  
NC  
D33#  
A16#  
A12#  
A13#  
TESTLO  
VSS  
A7  
NC  
A8  
NC  
E2  
A9  
D6#  
E3  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
B1  
D15#  
D17#  
D2#  
E4  
VSS  
NC  
E5  
E6  
NC  
NC  
D7#  
E7  
A21#  
VREF  
A18#  
A32#  
NC  
VSS  
D0#  
D13#  
D26#  
D31#  
VSS  
VSS  
VSS  
NC  
D2  
E8  
D3  
TESTLO  
TESTLO  
VSS  
E9  
VSS  
VSS  
D5#  
D4  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
F1  
D5  
D6  
A23#  
A20#  
VSS  
NC  
D3#  
D7  
NC  
VSS  
D18#  
D16#  
VSS  
NC  
C2  
D8  
D8#  
C3  
NC  
D9  
A27#  
VREF  
VSS  
D12#  
D11#  
D30#  
D23#  
D25#  
VSS  
C4  
A25#  
A17#  
A31#  
A33#  
RESET#  
BERR#  
NC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
C5  
C6  
NC  
VSS  
EDGCTRLN  
A35#  
A19#  
A22#  
A30#  
A24#  
C7  
NC  
B2  
C8  
VSS  
B3  
C9  
VREF  
D9#  
VREF  
D34#  
D39#  
NC  
B4  
C10  
C11  
C12  
C13  
B5  
NC  
VSS  
B6  
NC  
D20#  
D22#  
B7  
NC  
A11#  
INTEL CORPORATION  
51  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
No.  
F2  
Signal Name  
A3#  
No.  
G8  
Signal Name  
NC  
No.  
H15  
Signal Name  
VCC  
No.  
J21  
Signal Name  
D47#  
D41#  
D52#  
D40#  
VSS  
TESTHI3  
VSS  
VSS  
TESTHI3  
NC  
F3  
A15#  
A5#  
A10#  
NC  
G9  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
J1  
VSS  
NC  
J22  
J23  
J24  
K1  
F4  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
H2  
F5  
NC  
F6  
NC  
F7  
NC  
D45#  
D42#  
D51#  
D49#  
TESTHI3  
BNR#  
RSP#  
AP1#  
VREF  
NC  
K2  
F8  
NC  
K3  
F9  
NC  
K4  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
G2  
NC  
K5  
NC  
K6  
NC  
NC  
J2  
K7  
NC  
NC  
NC  
J3  
K8  
NC  
NC  
D38#  
VSS  
D44#  
NC  
J4  
K9  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
NC  
J5  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
L1  
NC  
J6  
NC  
J7  
NC  
NC  
A7#  
A4#  
A9#  
AP0#  
NC  
J8  
NC  
NC  
H3  
J9  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
D37#  
D36#  
D43#  
NC  
H4  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
H5  
H6  
H7  
NC  
NC  
VCCP  
A8#  
A6#  
VSS  
A14#  
NC  
H8  
NC  
NC  
H9  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
D59#  
VSS  
VSS  
D57#  
VSS  
REQ1#  
G3  
H10  
H11  
H12  
H13  
H14  
G4  
G5  
NC  
G6  
NC  
G7  
NC  
D48#  
52  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
No.  
L2  
Signal Name  
No.  
M8  
Signal Name  
NC  
No.  
N14  
Signal Name  
VCC  
No.  
P20  
Signal Name  
BPRI#  
REQ4#  
REQ0#  
TESTHI  
NC  
DEP0#  
DEP3#  
DEP5#  
DEP6#  
VSS  
L3  
M9  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
P1  
VSS  
VCC  
NC  
P21  
P22  
P23  
P24  
R1  
L4  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
N1  
L5  
L6  
NC  
L7  
NC  
NC  
BREQ0#  
RS0#  
RS2#  
RS1#  
PWRGOOD  
NC  
L8  
NC  
DEP7#  
VSS  
D63#  
D62#  
VSS  
VSS  
DBSY#  
RP#  
DRDY#  
HIT#  
NC  
R2  
L9  
VSS  
R3  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
VCC  
R4  
VSS  
R5  
VCC  
NC  
R6  
VSS  
NC  
R7  
NC  
VCC  
D61#  
D56#  
D50#  
D58#  
D60#  
VSS  
REQ3#  
HITM#  
VSS  
VREF  
NC  
P2  
R8  
NC  
VSS  
P3  
R9  
VSS  
VCC  
P4  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
T1  
VCC  
NC  
P5  
VSS  
NC  
P6  
VCC  
NC  
P7  
NC  
VSS  
D54#  
VREF  
D55#  
D46#  
D53#  
DEFER#  
REQ2#  
TESTHI3  
LOCK#  
TRDY#  
NC  
N2  
P8  
NC  
VCC  
N3  
P9  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
VSS  
N4  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
VCC  
N5  
NC  
N6  
NC  
N7  
NC  
NC  
N8  
NC  
BPM1#  
VREF  
DEP1#  
DEP2#  
DEP4#  
VSS  
N9  
VSS  
VCC  
VSS  
VCC  
VSS  
N10  
N11  
N12  
N13  
NC  
NC  
NC  
INTEL CORPORATION  
53  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
No.  
T2  
Signal Name  
No.  
U8  
Signal Name  
NC  
No.  
V15  
Signal Name  
VCC  
No.  
W23  
Signal Name  
ADS#  
THERMDA  
VSS  
PICD0  
VSS  
T3  
U9  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
W2  
VSS  
NC  
Y1  
T4  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
V2  
Y2  
TCK  
T5  
SLP#  
NC  
NC  
Y3  
SMI#  
FERR#  
TESTLO  
NC  
T6  
NC  
Y4  
T7  
NC  
NC  
Y5  
T8  
NC  
INTR  
PREQ#  
TESTHI  
TRST#  
VSS  
VSS  
VCCP  
NC  
Y6  
T9  
VCC  
VSS  
Y7  
NC  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
U1  
Y8  
NC  
VCC  
VSS  
Y9  
VCC  
VSS  
NC  
W3  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
AA1  
AA2  
AA3  
AA4  
AA5  
VCC  
VSS  
NC  
W4  
VCC  
VSS  
PICD1  
PICCLK  
TESTHI3  
BP2#  
BPM0#  
BSEL  
NC  
W5  
VCC  
VSS  
W6  
VCC  
VSS  
W7  
NC  
NC  
W8  
NC  
VCC  
VSS  
NC  
W9  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
NC  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
NC  
BP3#  
VSS  
V3  
NC  
V4  
TMS  
VCCP  
NC  
NC  
PRDY#  
BINIT#  
VSS  
V5  
NC  
V6  
NC  
V7  
NC  
VCCP  
VCCP  
VSS  
AERR#  
VCCP  
THERMDC  
NC  
V8  
NC  
U2  
V9  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
U3  
V10  
V11  
V12  
V13  
V14  
NC  
STPCLK#  
A20M#  
INIT#  
IERR#  
NC  
U4  
NC  
U5  
TDI  
NC  
U6  
NC  
VSS  
VSS  
U7  
NC  
54  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
No.  
AA6  
Signal Name  
NC  
No.  
Signal Name  
NC  
No.  
Signal Name  
NC  
No.  
Signal Name  
NC  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AC1  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AD1  
AD24  
AE1  
AA7  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
AA8  
NC  
NC  
NC  
AE2  
AA9  
NC  
NC  
VTOL  
NC  
AE3  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AB1  
NC  
NC  
AE4  
NC  
NC  
VSS  
VSS  
VSS  
VCCP  
VCC  
TESTHI2  
NC  
AE5  
NC  
NC  
AE6  
NC  
NC  
AE7  
NC  
NC  
AD2  
AE8  
NC  
NC  
AD3  
AE9  
NC  
NC  
NC  
AD4  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AF1  
NC  
NC  
NC  
AD5  
NC  
NC  
NC  
AD6  
NC  
NC  
NC  
FLUSH#  
TESTHI2  
NC  
AD7  
NC  
NC  
NC  
AC2  
AD8  
NC  
NC  
NC  
AC3  
AD9  
NC  
NC  
NC  
AC4  
VSS  
TESTLO  
NC  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
NC  
NC  
NC  
AC5  
NC  
NC  
NMI  
TDO  
IGNNE#  
NC  
AC6  
NC  
NC  
AC7  
NC  
NC  
NC  
AB2  
AC8  
NC  
NC  
NC  
AB3  
AC9  
NC  
NC  
NC  
AB4  
VCCP  
NC  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
NC  
NC  
NC  
AB5  
NC  
NC  
NC  
AB6  
NC  
NC  
NC  
NC  
AB7  
NC  
NC  
NC  
NC  
AB8  
NC  
NC  
NC  
AF2  
VSS  
BCLK  
VSS  
PLL2  
AB9  
NC  
NC  
NC  
AF3  
AB10  
AB11  
NC  
NC  
NC  
AF4  
NC  
NC  
NC  
AF5  
INTEL CORPORATION  
55  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
No.  
AF6  
Signal Name  
No.  
Signal Name  
NC  
No.  
Signal Name  
NC  
No.  
Signal Name  
NC  
PLL1  
VSS  
NC  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF7  
AF8  
AF9  
AF10  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
56  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.4 Signal Listing in Order by Signal Name  
No.  
Signal  
Name  
Signal Buffer Type  
No.  
Signal  
Name  
Signal Buffer Type  
F2  
A3#  
A4#  
A5#  
A6#  
A7#  
A8#  
A9#  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
C7  
A33#  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
CMOS Input  
H3  
F4  
G3  
H2  
G2  
H4  
F5  
F1  
E2  
E3  
G5  
F3  
E1  
C5  
E9  
B4  
D7  
E7  
B5  
D6  
B7  
C4  
A6  
D9  
D1  
A4  
B6  
C6  
E10  
A7  
A34#  
A35#  
A20M#  
ADS#  
AERR#  
AP0#  
AP1#  
BCLK  
BERR#  
BINIT#  
BNR#  
BP2#  
BP3#  
BPM0#  
BPM1#  
BPRI#  
BREQ0#  
BSEL  
D0#  
B3  
AA2  
T2  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Processor Clock Input  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ Input  
Low Power GTL+ I/O  
CMOS Input  
U1  
H5  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
J4  
AF3  
C9  
T23  
J2  
U23  
T20  
U24  
R20  
L2  
R1  
V2  
A15  
C16  
B18  
A19  
C15  
A18  
B15  
B19  
E14  
D16  
C17  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
D1#  
D2#  
D3#  
D4#  
D5#  
D6#  
D7#  
D8#  
D9#  
D10#  
INTEL CORPORATION  
57  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.4 Signal Listing in Order by Signal Name  
No.  
Signal  
Name  
Signal Buffer Type  
No.  
Signal  
Name  
Signal Buffer Type  
E16  
D11#  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
J22  
D41#  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ Input  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
E15  
B20  
C18  
B16  
A22  
B17  
A21  
C19  
D18  
C20  
D19  
E18  
C21  
E19  
B21  
C22  
D22  
C23  
E17  
B22  
D21  
D24  
E22  
C24  
F21  
F20  
G20  
E23  
J24  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
H21  
F22  
G22  
H20  
L23  
J21  
J20  
H23  
M22  
H22  
J23  
L24  
L20  
L22  
M21  
K23  
M23  
K20  
M24  
M20  
N23  
N22  
P2  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D61#  
D62#  
D63#  
DBSY#  
DEFER#  
DEP0#  
DEP1#  
DEP2#  
DEP3#  
DEP4#  
M1  
P20  
R22  
R23  
P21  
R24  
58  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.4 Signal Listing in Order by Signal Name  
No.  
Signal  
Name  
Signal Buffer Type  
No.  
Signal  
Name  
Signal Buffer Type  
P22  
DEP5#  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ Control  
Open Drain Output  
CMOS Input  
R2  
RS0#  
Low Power GTL+ Input  
Low Power GTL+ Input  
Low Power GTL+ Input  
Low Power GTL+ Input  
CMOS Input  
P23  
N20  
P4  
DEP6#  
DEP7#  
DRDY#  
EDGCTRLN  
FERR#  
FLUSH#  
HIT#  
R4  
R3  
J3  
RS1#  
RS2#  
RSP#  
B2  
T5  
SLP#  
Y4  
Y3  
SMI#  
CMOS Input  
AC1  
P5  
AA1  
Y2  
STPCLK#  
TCK  
CMOS Input  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Open Drain Output  
CMOS Input  
JTAG Clock Input  
JTAG Input  
N3  
HITM#  
IERR#  
U5  
AB1  
B8  
TDI  
AA4  
AB2  
AA3  
V21  
M4  
TDO  
JTAG Output  
IGNNE#  
INIT#  
TESTHI  
TESTHI  
TESTHI  
TESTHI2  
TESTHI2  
TESTHI3  
TESTHI3  
TESTHI3  
TESTHI3  
TESTHI3  
TESTLO  
TESTLO  
TESTLO  
TESTLO  
TESTLO  
THERMDA  
THERMDC  
TMS  
GTL+ Test Input  
GTL+ Test Input  
GTL+ Test Input  
CMOS Test Input  
CMOS Test Input  
GTL+ Test Input  
GTL+ Test Input  
GTL+ Test Input  
GTL+ Test Input  
GTL+ Test Input  
Test Input  
CMOS Input  
L5  
INTR  
CMOS Input  
V23  
AC2  
AD4  
J1  
LOCK#  
Low Power GTL+ I/O  
CMOS Input  
AA24 NMI  
U21  
W23  
U20  
AF6  
AF5  
T22  
V22  
R5  
PICCLK  
APIC Clock Input  
Open Drain I/O  
PICD0  
PICD1  
PLL1  
K2  
Open Drain I/O  
K5  
PLL Analog Voltage  
PLL Analog Voltage  
Low Power GTL+ Output  
CMOS Input  
M3  
U22  
D3  
D4  
E4  
PLL2  
PRDY#  
PREQ#  
PWRGOOD  
REQ0#  
REQ1#  
REQ2#  
REQ3#  
REQ4#  
RESET#  
RP#  
Test Input  
CMOS Input  
Test Input  
L4  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ Input  
Low Power GTL+ I/O  
Y5  
Test Input  
L1  
AC5  
T3  
Test Input  
M2  
N2  
Thermal Diode Anode  
Thermal Diode Cathode  
JTAG Input  
U3  
V4  
L3  
C8  
M5  
J5  
TRDY#  
VREF  
Low Power GTL+ Input  
GTL+ Reference Voltage  
P3  
INTEL CORPORATION  
59  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.4 Signal Listing in Order by Signal Name  
No.  
Signal  
Name  
Signal Buffer Type  
No.  
Signal  
Name  
Signal Buffer Type  
D10  
VREF  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
JTAG Input  
L21  
VREF  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
Voltage Tolerance  
D15  
E8  
VREF  
VREF  
VREF  
TRST#  
N5  
VREF  
VREF  
R21  
E21  
W2  
AC21 VTOL  
NOTE: Except for BCLK, the CMOS signals are 1.5V tolerant for 400 MHz; and 2.5V tolerant for 366 MHz  
and below.  
60  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 5.5 Voltage and No-Connect Ball/Pin Locations  
Ball Numbers  
Signal  
Name  
NC  
A10, A12, A13, A24, B9, B10, B11, B12, B13, B14, C2, C3, C10, C11, C12, C13, C14, D12, D13,  
E6, E11, E12, E13, E24, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F23,  
G6, G7, G8, G17, G18, G19, G23, H6, H7, H8, H17, H18, H19, J6, J7, J8, J17, J18, J19, K6, K7,  
K8, K17, K18, K19, L6, L7, L8, L17, L18, L19, M6, M7, M8, M17, M18, M19, N6, N7, N8, N17, N18,  
N19, P6, P7, P8, P17, P18, P19, R6, R7, R8, R17, R18, R19, T6, T7, T8, T17, T18, T19, U4, U6,  
U7, U8, U17, U18, U19, V3, V6, V7, V8, V17, V18, V19, V20, W6, W7, W8, W17, W18, W19,  
W20, Y6, Y7, Y8, Y17, Y18, Y19, Y20, Y21, AA5, AA6, AA7, AA8, AA9, AA10, AA11, AA12, AA13,  
AA14, AA15, AA16, AA17, AA18, AA19, AA20, AA21, AA22, AA23, AB3, AB5, AB6, AB7, AB8,  
AB9, AB10, AB11, AB12, AB13, AB14, AB15, AB16, AB17, AB18, AB19, AB20, AB21, AB22,  
AB23, AB24, AC3, AC6, AC7, AC8, AC9, AC10, AC11, AC12, AC13, AC14, AC15, AC16, AC17,  
AC18, AC19, AC20, AC22, AD5, AD6, AD7, AD8, AD9, AD10, AD11, AD12, AD13, AD14, AD15,  
AD16, AD17, AD18, AD19, AD20, AD21, AD22, AD23, AD24, AE8, AE9, AE10, AE11, AE12,  
AE13, AE14, AE15, AE16, AE17, AE18, AE19, AE20, AE21, AE22, AE23, AE24, AF1, AF8, AF9,  
AF10, AF11, AF12, AF13, AF14, AF15, AF16, AF17, AF18, AF19, AF20, AF21, AF22, AF23, AF24  
VCC  
G10, G12, G14, G16, H9, H11, H13, H15, J10, J12, J14, J16, K9, K11, K13, K15, L10, L12, L14,  
L16, M9, M11, M13, M15, N10, N12, N14, N16, P9, P11, P13, P15, R10, R12, R14, R16, T9, T11,  
T13, T15, U10, U12, U14, U16, V9, V11, V13, V15, W10, W12, W14, W16, Y9, Y11, Y13, Y15,  
AD3  
VCCP  
VSS  
F24, U2, V5, W5, Y22, Y23, AB4, AD2  
A2, A3, A5, A8, A9, A11, A14, A16, A17, A20, A23, B1, B23, B24, C1, D2, D5, D8, D11, D14, D17,  
D20, D23, E5, E20, G4, G9, G11, G13, G15, G21, H10, H12, H14, H16, J9, J11, J13, J15, K1, K3,  
K4, K10, K12, K14, K16, K21, K22, K24, L9, L11, L13, L15, M10, M12, M14, M16, N1, N4, N9,  
N11, N13, N15, N21, N24, P1, P10, P12, P14, P16, P24, R9, R11, R13, R15, T1, T4, T10, T12,  
T14, T16, T21, T24, U9, U11, U13, U15, V10, V12, V14, V16, W3, W4, W9, W11, W13, W15,  
W21, W22, Y1, Y10, Y12, Y14, Y16, Y24, AC4, AC23, AC24, AD1, AE1, AE2, AE3, AE4, AE5,  
AE6, AE7, AF2, AF4, AF7  
INTEL CORPORATION  
61  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
During all operating environments, the processor  
case temperature, TCASE must be within the  
6. THERMAL SPECIFICATIONS  
,
specified range of 0°C to 100°C. An A/D converter  
attached to the thermal diode can be used to  
measure the processor core temperature to ensure  
compliance with this specification. The designer is  
responsible for insuring that the thermal diode and  
A/D converter accurately track the processor  
temperature. The designer should verify this by  
In order to achieve proper cooling of the processor,  
a thermal solution (e.g., heat spreader, heat pipe, or  
other heat transfer system) must make firm contact  
to the exposed processor die. The processor die  
must be clean before the thermal solution is  
attached or the processor may be damaged.  
correlating “sensor” output temperature with  
a
thermocouple placed directly on the die surface.  
Refer to Section 6.2 for more details.  
Table 6.1 Mobile Pentium II Processor (0.18 m) Power Specifications  
Symbol  
Parameter  
Thermal Design Power  
Min  
Typ1  
Max  
Unit  
Notes  
TDP  
@ 400 MHz  
@ 366 MHz  
@ 333 MHz  
9.80  
W
at 100 °C 2, 3  
13.10  
11.80  
11.10  
9.80  
W
W
W
W
W
@ 300PE MHz  
@ 266PE MHz  
@ 266PE MHz Low Voltage  
7.90  
PSGNT  
PQS  
Stop Grant and Auto Halt power  
1.25  
500  
150  
100  
W
at 50°C 3  
at 50°C 3  
at 50°C 3  
Quick Start and Sleep power  
Deep Sleep power  
mW  
mW  
°C  
PDSLP  
TCASE  
Case Temperature  
0
NOTES:  
1. TDPTYP is a recommendation based on the power dissipation of the processor while executing publicly  
available software under normal operating conditions at nominal voltages. Contact your Intel Field Sales  
Representative for further information.  
2. TDPMAX is a specification of the total power dissipation of the processor while executing a worst-case  
instruction mix under normal operating conditions at nominal voltages. It includes the power dissipated by  
all of the components within the processor. Specified by design/characterization.  
3. Not 100% tested or guaranteed. The power specifications are composed of the current of the processor  
on the various voltage planes. These currents are measured and specified at high temperature in Table  
3.10. These 50°C power specifications are determined by characterization of the processor currents at  
higher temperatures.  
62  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
system electronics may use the diode to monitor the  
die temperature of the processor for thermal  
6.1  
Thermal Diode  
management purposes. Table 6.2 and Table 6.3  
provide the diode interface and specifications.  
The Mobile Pentium II processor has an on-die  
diode that can be used to monitor the die  
temperature.  
A thermal sensor located on the  
Table 6.2 Thermal Diode Interface  
Signal Name  
Ball/Pin Number  
Signal Description  
Thermal diode anode  
Thermal diode cathode  
THERMDA  
THERMDC  
T3  
U3  
Table 6.3. Thermal Diode Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Note 1  
IFW  
n
Forward Bias Current  
Diode Ideality Factor  
Diode Ideality Factor  
5
500  
A
1.0057 1.0080 1.0125  
1.0000 1.0065 1.0173  
Notes 2, 4, 5  
Notes 3, 4, 5  
n
NOTES:  
1. Intel does not support or recommend operation of the thermal diode under reverse bias. Intel does not  
support or recommend operation of the thermal diode when the processor power supplies are not within  
their specified tolerance range.  
2. For the 400 MHz processor. Characterized at 100°C.  
3. For the 366 MHz processor and below. Characterized at 35°C.  
4. Not 100% tested. Specified by design/characterization.  
5. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode I/V  
equation:  
qVD  
I
IO  
1
nkT  
e
INTEL CORPORATION  
63  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Attach the thermocouple bead or junction to  
the center of the die on the top package  
surface using highly thermally conductive  
cements. Intel’s laboratory testing was done  
using Omega Bond (part number: OB100).  
6.2  
Case Temperature  
To verify that the proper TCASE (case temperature) is  
maintained for the processor, it should be measured  
at the center of the die on the package top surface.  
To minimize any measurement errors, the following  
techniques are recommended:  
Thermal  
grease  
provides  
equivalent  
temperature measurement results when used  
correctly but is not as mechanically resilient as  
cement.  
Use 36 gauge or finer diameter K, T or J type  
thermocouples. Intel’s laboratory testing was  
done using a thermocouple made by Omega  
(part number: 5TC-TTK-36-36).  
The thermocouple should be attached at a 90°  
angle as shown in Figure 6.1. A horizontal  
thermocouple mount is acceptable.  
V0028-00  
Figure 6.1 Technique for Measuring Case Temperature  
64  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
7. PROCESSOR INITIALIZATION  
AND CONFIGURATION  
7.1.2  
System Bus Frequency  
7.1  
Description  
The current generation Mobile Pentium II  
processor will only function with a system bus  
frequency of 66 MHz, but future generations may  
operate at 100 MHz. Bit position 19 of the Power-  
On Configuration register indicates at which  
speed a processor will run. A ‘0’ in bit 19  
indicates a 66-MHz bus frequency and a ‘1’  
indicates a 100-MHz bus frequency.  
The Mobile Pentium® II processor has some  
configuration options that are determined by  
hardware and some that are determined by  
software. The processor samples its hardware  
configuration at reset, on the active-to-inactive  
transition of RESET#. Most of the configuration  
options for the Mobile Pentium II processor are  
identical to those of the Pentium II processor. The  
Pentium® II Processor Developer’s Manual (order  
number 243502) describes these configuration  
options. New configuration options for the Mobile  
Pentium II processor are described in the  
remainder of this section.  
7.1.3  
APIC Disable  
The APIC has been removed as a feature of the  
Mobile Pentium II processor. The PICCLK and  
PICD[1:0] signals must be tied to VSS with a 1K  
resistor to disable the APIC. Driving PICD0 low at  
reset has the effect of clearing the APIC Global  
Enable bit in the APIC Base MSR. This bit is  
normally set when the processor is reset, but  
when it is cleared the APIC is completely disabled  
until the next reset.  
7.1.1  
Quick Start Enable  
The processor normally enters the Stop Grant  
state when the STPCLK# signal is asserted, but it  
will enter the Quick Start state instead if A15# is  
sampled active on the RESET# signal’s active-to-  
inactive transition. The Quick Start state supports  
snoops from the bus priority device like the Stop  
Grant state, but it does not support symmetric  
master snoops, nor is the latching of interrupts  
supported. A ‘1’ in bit position 5 of the Power-On  
Configuration register indicates that the Quick  
Start state has been enabled.  
7.2  
Clock Frequencies and  
Ratios  
The Mobile Pentium II processor uses a clock  
design in which the bus clock is multiplied by a  
ratio to produce the processor’s internal (or  
“core”) clock. The Bus Fraction Locking scheme  
implemented in the processor permanently sets  
the clock ratio multiplier to the corresponding  
processor marked frequency. Section 3.3  
describes how this is done. The bus ratio  
programmed into the processor is visible in bit  
positions 22 to 25 of the Power-On Configuration  
register. Table 3.4 shows the 4-bit codes in the  
Power-On Configuration register and their  
corresponding bus ratios.  
INTEL CORPORATION  
65  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
to the appropriate balls/pins on both agents on the  
system bus.  
8. PROCESSOR INTERFACE  
8.1  
Alphabetical Signal Reference  
AERR# (I/O - Low Power GTL+)  
Except for BCLK, the 1.5V Tolerant signals are for  
the 400 MHz; the 2.5V tolerant signals are for the  
366 MHz and below.  
The AERR# (Address Parity Error) signal is  
observed and driven by both system bus agents,  
and if used, must be connected to the appropriate  
balls of both agents on the system bus. AERR#  
observation is optionally enabled during power-on  
configuration; if enabled, a valid assertion of AERR#  
aborts the current transaction.  
A[35:3]# (I/O - Low Power GTL+)  
The A[35:3]# (Address) signals define a 236-byte  
physical memory address space. When ADS# is  
active, these signals transmit the address of a  
transaction; when ADS# is inactive, these signals  
transmit transaction information. These signals must  
be connected to the appropriate balls/pins of both  
agents on the system bus. The A[35:24]# signals  
are protected with the AP1# parity signal, and the  
A[23:3]# signals are protected with the AP0# parity  
signal.  
If AERR# observation is disabled during power-on  
configuration,  
a central agent may handle an  
assertion of AERR# as appropriate to the error  
handling architecture of the system.  
The AERR# processor bus pin is removed as a  
processor feature for mobile Pentium® II processor  
at 400 MHz. The pin must still be terminated to Vcc  
through a 120 pull-up resistor. But the processor  
must not be configured to drive or observe the pin.  
On the active-to-inactive transition of RESET#, each  
processor bus agent samples A[35:3]# signals to  
determine its power-on configuration. See Section 7  
of this document and the Pentium® II Processor  
Developer’s Manual for details.  
AP[1:0]# (I/O - Low Power GTL+)  
The AP[1:0]# (Address Parity) signals are driven by  
the request initiator along with ADS#, A[35:3]#,  
REQ[4:0]# and RP#. AP1# covers A[35:24]#. AP0#  
covers A[23:3]#. A correct parity signal is high if an  
even number of covered signals are low and low if  
an odd number of covered signals are low. This  
allows parity to be high when all the covered signals  
are high. AP[1:0]# should be connected to the  
appropriate balls/pins on both agents on the system  
bus.  
A20M# (I - 1.5V/2.5V tolerant)  
If the A20M# (Address-20 Mask) input signal is  
asserted, the processor masks physical address bit  
20 (A20#) before looking up a line in any internal  
cache and before driving a read/write transaction on  
the bus. Asserting A20M# emulates the 8086  
processor's address wrap-around at the 1-Mbyte  
boundary. Assertion of A20M# is only supported in  
real mode.  
BCLK (I - 2.5V tolerant)  
ADS# (I/O - Low Power GTL+)  
The BCLK (Bus Clock) signal determines the  
system bus frequency. Both system bus agents  
must receive this signal to drive their outputs and  
latch their inputs on the BCLK rising edge. All  
external timing parameters are specified with  
respect to the BCLK signal.  
The ADS# (Address Strobe) signal is asserted to  
indicate the validity of a transaction address on the  
A[35:3]# signals. Both bus agents observe the  
ADS# activation to begin parity checking, protocol  
checking, address decode, internal snoop or  
deferred reply ID match operations associated with  
the new transaction. This signal must be connected  
66  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
accept new bus transactions. During a bus stall, the  
current bus owner cannot issue any new  
transactions.  
BERR# (I/O - Low Power GTL+)  
The BERR# (Bus Error) signal is asserted to  
indicate an unrecoverable error without  
a bus  
Since multiple agents may need to request a bus  
stall simultaneously, BNR# is a wired-OR signal  
which must be connected to the appropriate  
balls/pins of both agents on the system bus. In order  
to avoid wire-OR glitches associated with  
simultaneous edge transitions driven by multiple  
drivers, BNR# is activated on specific clock edges  
and sampled on specific clock edges.  
protocol violation. It may be driven by either system  
bus agent, and must be connected to the  
appropriate balls/pins of both agents, if used.  
However, the Mobile Pentium® II processor does  
not observe assertions of the BERR# signal.  
BERR# assertion conditions are defined by the  
system configuration. Configuration options enable  
the BERR# driver as follows:  
BP[3:2]# (I/O - Low Power GTL+)  
Enabled or disabled  
Asserted optionally for internal errors along with  
IERR#  
The BP[3:2]# (Breakpoint) signals are the System  
Support group Breakpoint signals. They are outputs  
from the processor that indicate the status of  
breakpoints.  
Asserted optionally by the request initiator of a  
bus transaction after it observes an error  
Asserted by any bus agent when it observes an  
error in a bus transaction  
BPM[1:0]# (I/O - Low Power GTL+)  
BINIT# (I/O - Low Power GTL+)  
The BPM[1:0]# (Breakpoint Monitor) signals are  
breakpoint and performance monitor signals. They  
are outputs from the processor that indicate the  
status of breakpoints and programmable counters  
used for monitoring processor performance.  
The BINIT# (Bus Initialization) signal may be  
observed and driven by both system bus agents,  
and must be connected to the appropriate balls/pins  
of both agents, if used. If the BINIT# driver is  
enabled during the power-on configuration, BINIT#  
is asserted to signal any bus condition that prevents  
reliable future information.  
BPRI# (I - Low Power GTL+)  
The BPRI# (Bus Priority Request) signal is used to  
arbitrate for ownership of the system bus. It must be  
connected to the appropriate balls/pins on both  
agents on the system bus. Observing BPRI# active  
(as asserted by the priority agent) causes the  
processor to stop issuing new requests, unless such  
requests are part of an ongoing locked operation.  
The priority agent keeps BPRI# asserted until all of  
its requests are completed, and then releases the  
bus by deasserting BPRI#.  
If BINIT# is enabled during power-on configuration,  
and BINIT# is sampled asserted, all bus state  
machines are reset and any data which was in  
transit is lost. All agents reset their rotating ID for  
bus arbitration to the state after reset, and internal  
count information is lost. The L1 and L2 caches are  
not affected.  
If BINIT# is disabled during power-on configuration,  
a central agent may handle an assertion of BINIT#  
as appropriate to the Machine Check Architecture  
(MCA) of the system.  
BREQ0# (I/O - Low Power GTL+)  
The BREQ0# (Bus Request) signal is a processor  
Arbitration Bus signal. The processor indicates that  
it wants ownership of the system bus by asserting  
the BREQ0# signal.  
BNR# (I/O - Low Power GTL+)  
The BNR# (Block Next Request) signal is used to  
assert a bus stall by any bus agent that is unable to  
INTEL CORPORATION  
67  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
During power-up configuration, the central agent  
must assert the BREQ0# bus signal. The processor  
samples BREQ0# on the active-to-inactive transition  
of RESET#.  
balls/pins on both agents on the system bus if they  
are used. During power-on configuration, DEP[7:0]#  
signals can be enabled for ECC checking or  
disabled for no checking.  
BSEL (I - 1.5V/2.5V tolerant)  
DRDY# (I/O - Low Power GTL+)  
The BSEL (System Bus Speed Select) signal is  
used to configure the processor for the system bus  
The DRDY# (Data Ready) signal is asserted by the  
data driver on each data transfer, indicating valid  
data on the data bus. In a multi-cycle data transfer,  
DRDY# can be deasserted to insert idle clocks. This  
signal must be connected to the appropriate  
balls/pins on both agents on the system bus.  
frequency.  
processor for 100 MHz operation and  
configures it for 66 MHz operation. This signal must  
be connected to VSS  
A
‘1’ on this signal configures the  
a
‘0’  
.
D[63:0]# (I/O - Low Power GTL+)  
EDGCTRLN (analog)  
The D[63:0]# (Data) signals are the data signals.  
These signals provide a 64-bit data path between  
both system bus agents, and must be connected to  
the appropriate balls/pins on both agents. The data  
driver asserts DRDY# to indicate a valid data  
transfer.  
This signal is used to configure the edge rate of the  
Low Power GTL+ output buffers. Connect the  
EDGCTRLN (Edge Rate Control N-FET) signal to  
VCC with a 51 , 1% resistor.  
FERR# (O - 1.5V/2.5V tolerant open-drain)  
DBSY# (I/O - Low Power GTL+)  
The FERR# (Floating-point Error) signal is asserted  
when the processor detects an unmasked floating-  
point error. FERR# is similar to the ERROR# signal  
on the Intel387 coprocessor, and is included for  
compatibility with systems using DOS-type floating-  
point error reporting.  
The DBSY# (Data Bus Busy) signal is asserted by  
the agent responsible for driving data on the system  
bus to indicate that the data bus is in use. The data  
bus is released after DBSY# is deasserted. This  
signal must be connected to the appropriate  
balls/pins on both agents on the system bus.  
FLUSH# (I - 1.5V/2.5V tolerant)  
DEFER# (I - Low Power GTL+)  
When the FLUSH# (Flush) input signal is asserted,  
the processor writes back all internal cache lines in  
the Modified state and invalidates all internal cache  
lines. At the completion of a flush operation, the  
processor issues a Flush Acknowledge transaction.  
The processor stops caching any new data while the  
FLUSH# signal remains asserted.  
The DEFER# (Defer) signal is asserted by an agent  
to indicate that the transaction cannot be  
guaranteed in-order completion. Assertion of  
DEFER# is normally the responsibility of the  
addressed memory agent or I/O agent. This signal  
must be connected to the appropriate balls/pins on  
both agents on the system bus.  
On the active-to-inactive transition of RESET#, each  
processor bus agent samples FLUSH# to determine  
its power-on configuration.  
DEP[7:0]# (I/O - Low Power GTL+)  
The DEP[7:0]# (Data Bus ECC Protection) signals  
provide optional ECC protection for the data bus.  
They are driven by the agent responsible for driving  
D[63:0]#, and must be connected to the appropriate  
68  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
floating-point registers. The processor begins  
execution at the power-on reset vector configured  
during power-on configuration. The processor  
continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous input.  
HIT# (I/O - Low Power GTL+), HITM#  
(I/O - Low Power GTL+)  
The HIT# (Snoop Hit) and HITM# (Hit Modified)  
signals convey transaction snoop operation results,  
and must be connected to the appropriate balls/pins  
on both agents on the system bus. Either bus agent  
can assert both HIT# and HITM# together to  
indicate that it requires a snoop stall, which can be  
continued by reasserting HIT# and HITM# together.  
If INIT# is sampled active on RESET#'s active-to-  
inactive transition, then the processor executes its  
built-in self test (BIST).  
INTR (I - 1.5V/2.5V tolerant)  
IERR# (O - 1.5V/2.5V tolerant open-drain)  
The INTR (Interrupt) signal indicates that an  
external interrupt has been generated. The interrupt  
is maskable using the IF bit in the EFLAGS register.  
If the IF bit is set, the processor vectors to the  
interrupt handler after completing the current  
instruction execution. Upon recognizing the interrupt  
request, the processor issues a single Interrupt  
Acknowledge (INTA) bus transaction. INTR must  
remain active until the INTA bus transaction to  
guarantee its recognition. INTR must be deasserted  
for a minimum of two clocks to guarantee its  
inactive recognition.  
The IERR# (Internal Error) signal is asserted by the  
processor as the result of an internal error.  
Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the system bus. This  
transaction may optionally be converted to an  
external error signal (e.g., NMI) by system logic. The  
processor will keep IERR# asserted until it is  
handled in software or with the assertion of  
RESET#, BINIT or INIT#.  
IGNNE# (I - 1.5V/2.5V tolerant)  
LOCK# (I/O - Low Power GTL+)  
The IGNNE# (Ignore Numeric Error) signal is  
asserted to force the processor to ignore a numeric  
error and continue to execute non-control floating-  
point instructions. If IGNNE# is deasserted, the  
processor freezes on a non-control floating-point  
instruction if a previous instruction caused an error.  
IGNNE# has no effect when the NE bit in control  
register 0 (CR0) is set.  
The LOCK# (Lock) signal indicates to the system  
that  
a sequence of transactions must occur  
atomically. This signal must be connected to the  
appropriate balls/pins on both agents on the system  
bus. For a locked sequence of transactions, LOCK#  
is asserted from the beginning of the first  
transaction through the end of the last transaction.  
During active RESET#, the processor begins  
sampling the A20M#, IGNNE#, INTR and NMI  
values to determine the ratio of core-clock  
frequency to bus-clock frequency (see Table 3.4).  
On the active-to-inactive transition of RESET#, the  
processor latches these signals and freezes the  
frequency ratio internally. System logic must then  
release these signals for normal operation.  
When the priority agent asserts BPRI# to arbitrate  
for bus ownership, it waits until it observes LOCK#  
deasserted. This enables the processor to retain  
bus ownership throughout the bus locked operation  
and guarantee the atomicity of lock.  
NMI (I - 1.5V/2.5V tolerant)  
The NMI (Non-Maskable Interrupt) indicates that an  
external interrupt has been generated. Asserting  
NMI causes an interrupt with an internally supplied  
vector value of 2. An external interrupt-acknowledge  
transaction is not generated. If NMI is asserted  
during the execution of an NMI service routine, it  
INIT# (I - 1.5V/2.5V tolerant)  
The INIT# (Initialization) signal is asserted to reset  
integer registers inside the processor without  
affecting the internal (L1 or L2) caches or the  
INTEL CORPORATION  
69  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
remains pending and is recognized after the IRET is  
executed by the NMI service routine. At most, one  
assertion of NMI is held pending. NMI is rising-edge  
sensitive. Active and inactive pulse widths must be  
a minimum of two clocks.  
PREQ# (I - 1.5V/2.5V tolerant)  
The PREQ# (Probe Request) signal is used by  
debug tools to request debug operation of the  
processor.  
PICCLK (I - 1.5V/2.5V tolerant)  
PWRGOOD (I - 2.5V/2.5V tolerant)  
The PICCLK (APIC Clock) signal is an input clock to  
the processor and system logic or I/O APIC that is  
required for operation of the processor, system logic  
and I/O APIC components on the APIC bus.  
PWRGOOD (Power Good) is a 1.5V tolerant input  
for the 400 MHz, and 2.5V tolerant for the 366 MHz  
and below. The processor requires this signal to be  
a
clean indication that clocks and the power  
supplies (VCC, VCCP, etc.) are stable and within their  
specifications. Clean implies that the signal will  
remain low, (capable of sinking leakage current) and  
without glitches, from the time that the power  
supplies are turned on, until they come within  
specification. The signal will then transition  
monotonically to a high (1.5V or 2.5V) state. Figure  
8.1 illustrates the relationship of PWRGOOD to  
other system signals. PWRGOOD can be driven  
inactive at any time, but clocks and power must  
again be stable before the rising edge of  
PWRGOOD. It must also meet the minimum pulse  
width specified in Table 3.16 (Section 3.5), and be  
followed by a 1 ms RESET# pulse.  
PICD[1:0] (I/O - 1.5V/2.5V tolerant open-drain)  
The PICD[1:0] (APIC Data) signals are used for  
bidirectional serial message passing on the APIC  
bus. They must be connected to the appropriate  
balls/pins of all APIC bus agents, including the  
processor and the system logic or I/O APIC  
components. If the PICD0 signal is sampled low on  
the active-to-inactive transition of the RESET#  
signal, then the APIC is hardware disabled.  
PRDY# (O - Low Power GTL+)  
The PRDY# (Probe Ready) signal is a processor  
output used by debug tools to determine processor  
debug readiness.  
BCLK  
VCC  
,
VCCP  
,
VREF  
VIH,min  
PWRGOOD  
1 msec  
RESET#  
D0026-00  
Figure 8.1 PWRGOOD Relationship at Power-On  
70  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
The PWRGOOD signal, which must be supplied to  
A correct parity signal is high if an even number of  
covered signals are low, and low if an odd number  
of covered signals are low. This definition allows  
parity to be high when all covered signals are high.  
the processor, is used to protect internal circuits  
against voltage sequencing issues. The PWRGOOD  
signal should be driven high throughout boundary  
scan operation.  
RS[2:0]# (I - Low Power GTL+)  
REQ[4:0]# (I/O - Low Power GTL+)  
The RS[2:0]# (Response Status) signals are driven  
by the response agent (the agent responsible for  
completion of the current transaction), and must be  
connected to the appropriate balls/pins on both  
agents on the system bus.  
The REQ[4:0]# (Request Command) signals must  
be connected to the appropriate balls/pins on both  
agents on the system bus. They are asserted by the  
current bus owner when it drives A[35:3]# to define  
the currently active transaction type.  
RSP# (I - Low Power GTL+)  
RESET# (I - Low Power GTL+)  
The RSP# (Response Parity) signal is driven by the  
response agent (the agent responsible for  
completion of the current transaction) during  
assertion of RS[2:0]#. RSP# provides parity  
protection for RS[2:0]#. RSP# should be connected  
to the appropriate balls/pins on both agents on the  
system bus.  
Asserting the RESET# signal resets the processor  
to a known state and invalidates the L1 and L2  
caches without writing back Modified (M state) lines.  
For a power-on type reset, RESET# must stay  
active for at least 1 msec after VCC and BCLK have  
reached their proper DC and AC specifications and  
after PWRGOOD has been asserted. When  
observing active RESET#, all bus agents will  
deassert their outputs within two clocks.  
A correct parity signal is high if an even number of  
covered signals are low, and low if an odd number  
of covered signals are low. During Idle state of  
RS[2:0]# (RS[2:0]#=000), RSP# is also high since it  
is not driven by any agent guaranteeing correct  
parity.  
A number of bus signals are sampled at the active-  
to-inactive transition of RESET# for the power-on  
configuration. The configuration options are  
described in Section 7 and in the Pentium® II  
Processor Developer’s Manual.  
SLP# (I - 1.5V/2.5V tolerant)  
Unless its outputs are tri-stated during power-on  
configuration, after an active-to-inactive transition of  
RESET#, the processor optionally executes its built-  
in self-test (BIST) and begins program execution at  
reset-vector 000FFFF0H or FFFFFFF0H. RESET#  
must be connected to the appropriate balls/pins on  
both agents on the system bus.  
The SLP# (Sleep) signal, when asserted in the Stop  
Grant state, causes the processor to enter the Sleep  
state. During the Sleep state, the processor stops  
providing internal clock signals to all units, leaving  
only the Phase-Locked Loop (PLL) still running. The  
processor will not recognize snoop and interrupts in  
the Sleep state. The processor will only recognize  
changes in the SLP#, STPCLK# and RESET#  
signals while in the Sleep state. If SLP# is  
deasserted, the processor exits Sleep state and  
returns to the Stop Grant state in which it restarts its  
internal clock to the bus and APIC processor units.  
RP# (I/O - Low Power GTL+)  
The RP# (Request Parity) signal is driven by the  
request initiator, and provides parity protection on  
ADS# and REQ[4:0]#. RP# should be connected to  
the appropriate balls/pins on both agents on the  
system bus.  
INTEL CORPORATION  
71  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
SMI# (I - 1.5V/2.5V tolerant)  
THERMDA, THERMDC (analog)  
The SMI# (System Management Interrupt) is  
asserted asynchronously by system logic. On  
accepting a System Management Interrupt, the  
processor saves the current state and enters  
System Management Mode (SMM). An SMI  
Acknowledge transaction is issued, and the  
processor begins program execution from the SMM  
handler.  
The THERMDA (Thermal Diode Anode) and  
THERMDC (Thermal Diode Cathode) signals  
connect to the anode and cathode of the on-die  
thermal diode.  
TMS (I - 1.5V/2.5V tolerant)  
The TMS (Test Mode Select) signal is a JTAG  
support signal used by debug tools.  
STPCLK# (I - 1.5V/2.5V tolerant)  
TRDY# (I - Low Power GTL+)  
The STPCLK# (Stop Clock) signal, when asserted,  
causes the processor to enter a low-power Stop  
Grant state. The processor issues a Stop Grant  
Acknowledge special transaction, and stops  
providing internal clock signals to all units except  
the bus and APIC units. The processor continues to  
snoop bus transactions and service interrupts while  
in the Stop Grant state. When STPCLK# is  
deasserted, the processor restarts its internal clock  
to all units and resumes execution. The assertion of  
STPCLK# has no effect on the bus clock.  
The TRDY# (Target Ready) signal is asserted by  
the target to indicate that the target is ready to  
receive write or implicit writeback data transfer.  
TRDY# must be connected to the appropriate  
balls/pins on both agents on the system bus.  
TRST# (I - 1.5V/2.5V tolerant)  
The TRST# (Test Port Reset) signal resets the Test  
Access Port (TAP) logic. The Mobile Pentium® II  
processor does not self-reset during power-on;  
therefore, it is necessary to drive this signal low  
during power-on reset.  
TCK (I - 1.5V/2.5V tolerant)  
The TCK (Test Clock) signal provides the clock  
input for the test bus (also known as the test access  
port).  
VTOL (O – 1.6V tolerant open-drain)  
The VTOL (Voltage Tolerance) signal indicates  
whether the processor has 2.5V tolerant CMOS  
signals or 1.5V tolerant CMOS signals. This signal  
is a high impedance pin on the 2.5V tolerant Mobile  
Pentium® II processor at 366 MHz and below, and  
is shorted to VSS on the 1.5V tolerant Mobile  
Pentium® II processor at 400 MHz. It is safe to  
connect this signal to 1.6V with a pull-up resistor..  
TDI (I - 1.5V/2.5V tolerant)  
The TDI (Test Data In) signal transfers serial test  
data to the processor. TDI provides the serial input  
needed for JTAG support.  
TDO (O - 1.5V/2.5V tolerant open-drain)  
The TDO (Test Data Out) signal transfers serial test  
data from the processor. TDO provides the serial  
output needed for JTAG support.  
8.2  
Signal Summaries  
Table 8.1 through Table 8.4 list the attributes of the  
processor input, output, and I/O signals.  
72  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 8.1 Input Signals  
Name  
A20M#  
Active Level  
Low  
Clock  
Asynch  
Signal Group  
CMOS  
Qualified  
Always  
Always  
Always  
Always  
Always  
Always  
Always  
Always  
BCLK  
High  
Low  
System Bus  
System Bus  
Implementation  
System Bus  
CMOS  
BPRI#  
BSEL  
BCLK  
Asynch  
BCLK  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
High  
Low  
DEFER#  
FLUSH#  
IGNNE#  
INIT#  
Low  
Low  
CMOS  
Low  
System Bus  
CMOS  
INTR  
High  
High  
High  
Low  
APIC disabled mode  
APIC disabled mode  
Always  
NMI  
CMOS  
PICCLK  
PREQ#  
PWRGOOD  
RESET#  
RS[2:0]#  
RSP#  
APIC  
Asynch  
Asynch  
BCLK  
BCLK  
BCLK  
Asynch  
Asynch  
Asynch  
Implementation  
Implementation  
System Bus  
System Bus  
System Bus  
Implementation  
CMOS  
Always  
High  
Low  
Always  
Always  
Low  
Always  
Low  
Always  
SLP#  
Low  
Stop Grant state  
Always  
SMI#  
Low  
STPCLK#  
TCK  
Low  
Implementation  
JTAG  
Always  
High  
TDI  
TCK  
JTAG  
TMS  
TCK  
JTAG  
TRDY#  
TRST#  
Low  
Low  
BCLK  
Asynch  
System Bus  
JTAG  
Response phase  
INTEL CORPORATION  
73  
MOBILE PENTIUM® II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHz, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 8.2 Output Signals  
Name  
Active Level  
Low  
Clock  
Asynch  
Asynch  
BCLK  
Signal Group  
Open-Drain  
FERR#  
IERR#  
PRDY#  
TDO  
Low  
Open-Drain  
Implementation  
JTAG  
Low  
High  
TCK  
VTOL  
High  
Asynch  
Implementation  
Table 8.3 Input/Output Signals (Single Driver)  
Name  
Active Level  
Low  
Clock  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
Signal Group  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
Qualified  
A[35:3]#  
ADS#  
ADS#, ADS#+1  
Always  
Low  
AP[1:0]#  
BREQ0#  
BP[3:2]#  
Low  
ADS#, ADS#+1  
Always  
Low  
Low  
Always  
BPM[1:0]#  
D[63:0]#  
DBSY#  
Low  
Always  
Low  
DRDY#  
Low  
Always  
DEP[7:0]#  
DRDY#  
LOCK#  
Low  
DRDY#  
Low  
Always  
Low  
Always  
REQ[4:0]#  
RP#  
Low  
ADS#, ADS#+1  
ADS#, ADS#+1  
Low  
74  
INTEL CORPORATION  
MOBILE PENTIUM II PROCESSOR IN MICRO-PGA AND BGA PACKAGES  
AT 400 MHZ, 366 MHZ, 333 MHZ, 300PE MHZ, AND 266PE MHZ  
Table 8.4 Input/Output Signals (Multiple Driver)  
Name  
AERR#  
Active Level  
Low  
Clock  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
PICCLK  
Signal Group  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
APIC  
Qualified  
ADS#+3  
Always  
Always  
Always  
Always  
Always  
Always  
BERR#  
BINIT#  
BNR#  
Low  
Low  
Low  
HIT#  
Low  
HITM#  
PICD[1:0]  
Low  
High  
INTEL CORPORATION  
75  
UNITED STATES, Intel Corporation  
2200 Mission College Blvd., P.O. Box 58119, Santa Clara, CA 95052-8119  
Tel: +1 408 765-8080  
JAPAN, Intel Japan K.K.  
5-6 Tokodai, Tsukuba-shi, Ibaraki-ken 300-26  
Tel: + 81-29847-8522  
FRANCE, Intel Corporation S.A.R.L.  
1, Quai de Grenelle, 75015 Paris  
Tel: +33 1-45717171  
UNITED KINGDOM, Intel Corporation (U.K.) Ltd.  
Pipers Way, Swindon, Wiltshire, England SN3 1RJ  
Tel: +44 1-793-641440  
GERMANY, Intel GmbH  
Dornacher Strasse 1  
85622 Feldkirchen/ Muenchen  
Tel: +49 89/99143-0  
HONG KONG, Intel Semiconductor Ltd.  
32/F Two Pacific Place, 88 Queensway, Central  
Tel: +852 2844-4555  
CANADA, Intel Semiconductor of Canada, Ltd.  
190 Attwell Drive, Suite 500  
Rexdale, Ontario M9W 6H8  
Tel: +416 675-2438  
BRAZIL, Intel Semicondutores do Brasil  
Centro Empresarial Nações Unidas - Edifício Torre Oeste  
Av. das Nações Unidas, 12.901 - 18o. andar - Brooklin Novo  
04578.000 São Paulo - S.P. – Brasil  
Tel: +55-11-5505-2296  

相关型号:

KC80526GL600256

Microprocessor, 32-Bit, 600MHz, CMOS, PBGA495, BGA2-495
INTEL

KC80526GY650256

Microprocessor, 64-Bit, 650MHz, CMOS, PBGA495, PLASTIC, BGA-495
INTEL

KC80526GY800256SL4AK

RISC Microprocessor, 32-Bit, 800MHz, CMOS, PBGA486
INTEL

KC80526GY800256SL548

RISC Microprocessor, 32-Bit, 800MHz, CMOS, PBGA486
INTEL

KC80526GY850256

Microprocessor, 32-Bit, 850MHz, CMOS, PBGA495, BGA2-495
INTEL

KC80526GY850256SL547

RISC Microprocessor, 32-Bit, 850MHz, CMOS, PBGA486
INTEL

KC80526LL500128SL4ZR

RISC Microprocessor, 32-Bit, 500MHz, CMOS, PBGA495
INTEL

KC80526LY400128

Microprocessor, 32-Bit, 400MHz, CMOS, PBGA495, BGA2-495
INTEL

KC80526LY500128

Microprocessor, 32-Bit, 500MHz, CMOS, PBGA495, BGA2-495
INTEL

KC80526LY500256

Microprocessor, 32-Bit, 500MHz, CMOS, PBGA495, BGA2-495
INTEL

KC80526NY500128

Microprocessor, 32-Bit, 500MHz, CMOS, PBGA495, BGA2-495
INTEL

KC80526NY500128/SL3PC

RISC Microprocessor, 32-Bit, 500MHz, CMOS, PBGA495
INTEL