NG80960KA16 [INTEL]

RISC Microprocessor, 32-Bit, 16MHz, CMOS, PQFP132, PLASTIC, QFP-132;
NG80960KA16
型号: NG80960KA16
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 32-Bit, 16MHz, CMOS, PQFP132, PLASTIC, QFP-132

时钟 外围集成电路 装置
文件: 总41页 (文件大小:2661K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
80960KA  
EMBEDDED 32-BIT MICROPROCESSOR  
High-Performance Embedded Architecture  
Built-in Interrupt Controller  
— 25 MIPS Burst Execution at 25 MHz  
— 9.4 MIPS* Sustained Execution at 25 MHz  
— 31 Priority Levels, 256 Vectors  
— 3.4 µs Latency @ 25 MHz  
512-Byte On-Chip Instruction Cache  
Easy to Use, High Bandwidth 32-Bit Bus  
— Direct Mapped  
— Parallel Load/Decode for Uncached Instruc-  
tions  
— 66.7 Mbytes/s Burst  
— Up to 16 Bytes Transferred per Burst  
132-Lead Packages:  
Multiple Register Sets  
— Pin Grid Array (PGA)  
— Plastic Quad Flat-Pack (PQFP)  
— Sixteen Global 32-Bit Registers  
— Sixteen Local 32-Bit Registers  
— Four Local Register Sets Stored On-Chip  
— Register Scoreboarding  
4 Gigabyte, Linear Address Space  
Pin Compatible with 80960KB  
The 80960KA is a member of Intel’s i960® 32-bit processor family, which is designed especially for embedded  
applications. It includes a 512-byte instruction cache and a built-in interrupt controller. The 80960KA has a large  
register set, multiple parallel execution units and a high-bandwidth burst bus. Using advanced RISC technology,  
this high performance processor is capable of execution rates in excess of 9.4 million instructions per second*.  
The 80960KA is well-suited for a wide range of applications including non-impact printers, I/O control and  
specialty instrumentation.  
64- BY 32-BIT  
LOCAL  
REGISTER  
CACHE  
SIXTEEN  
32-BIT GLOBAL  
REGISTERS  
32-BIT  
INSTRUCTION  
EXECUTION  
UNIT  
32-BIT  
BUS  
CONTROL  
LOGIC  
MICRO-  
INSTRUCTION  
SEQUENCER  
512-BYTE  
INSTRUCTION  
CACHE  
MICRO-  
INSTRUCTION  
ROM  
32-BIT  
BURST  
BUS  
INSTRUCTION  
FETCH UNIT  
INSTRUCTION  
DECODER  
Figure 1. The 80960KA Processor’s Highly Parallel Architecture  
*
Relative to Digital Equipment Corporation’s VAX-11/780 at 1 MIPS (VAX-11™ is a trademark of Digital Equipment  
Corporation)  
Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent  
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. August 2004  
© INTEL CORPORATION, 2004 Order Number: 270775-006  
80960KA  
EMBEDDED 32-BIT MICROPROCESSOR  
1.0 THE i960® PROCESSOR ................................ 1  
FIGURES  
1.1. Key Performance Features .......................... 2  
1.1.1. Memory Space And Addressing Modes . 4  
1.1.2. Data Types ............................................. 4  
1.1.3. Large Register Set ................................. 4  
1.1.4. Multiple Register Sets ............................ 5  
1.1.5. Instruction Cache ................................... 5  
1.1.6. Register Scoreboarding ......................... 5  
1.1.7. High Bandwidth Local Bus ..................... 6  
1.1.8. Interrupt Handling ................................... 6  
1.1.9. Debug Features ..................................... 6  
1.1.10. Fault Detection ..................................... 7  
1.1.11. Built-in Testability ................................. 7  
1.1.12. CHMOS ................................................ 7  
Figure 1.  
The 80960KA Processor’s Highly  
Parallel Architecture ............................ i  
Figure 2.  
80960KA Programming  
Environment ........................................ 1  
Figure 3.  
Figure 4.  
Instruction Formats ............................. 4  
Multiple Register Sets Are Stored  
On-Chip ............................................... 6  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Connection Recommendations  
for Low Current Drive Network .......... 11  
Connection Recommendations  
for High Current Drive Network ......... 11  
Typical Supply Current vs.  
Case Temperature ............................ 12  
Typical Current vs. Frequency  
(Room Temp) .................................... 12  
2.0 ELECTRICAL SPECIFICATIONS .................. 10  
2.1. Power and Grounding ................................ 10  
2.2. Power Decoupling Recommendations ....... 10  
2.3. Connection Recommendations .................. 11  
2.4. Characteristic Curves ................................. 11  
2.5. Test Load Circuit ........................................ 14  
2.6. Absolute Maximum Ratings ....................... 15  
2.7. DC Characteristics ..................................... 15  
2.8. AC Specifications ....................................... 16  
2.8.1. AC Specification Tables ....................... 17  
Typical Current vs. Frequency  
(Hot Temp) ........................................ 13  
Figure 10. Worst-Case Voltage vs. Output  
Current on Open-Drain Pins .............. 13  
Figure 11. Capacitive Derating Curve ................ 13  
Figure 12. Test Load Circuit for Three-State  
Output Pins ...................................... 14  
Figure 13. Test Load Circuit for Open-Drain  
Output Pins ...................................... 14  
3.0 MECHANICAL DATA ..................................... 21  
3.1. Packaging .................................................. 21  
3.1.1. Pin Assignment .................................... 21  
3.2. Pinout ......................................................... 25  
3.3. Package Thermal Specification ................. 29  
Figure 14. Drive Levels and Timing Relationships  
for 80960KA Signals ......................... 16  
Figure 15. Processor Clock Pulse (CLK2) .......... 20  
Figure 16. RESET Signal Timing ....................... 20  
Figure 17. 32-Lead Pin-Grid Array  
(PGA) Package ................................. 21  
4.0. WAVEFORMS ............................................... 33  
5.0. REVISION HISTORY ..................................... 38  
Figure 18. 80960KA PGA Pinout—View from  
Bottom (Pins Facing Up) ................... 22  
Figure 19. 80960KA PGA Pinout—View from  
Top (Pins Facing Down) .................... 23  
Figure 20. 80960KA 132-Lead Plastic Quad  
Flat-Pack (PQFP) Package ............... 23  
Figure 21. PQFP Pinout - View From Top .......... 24  
Figure 22. HOLD Timing .................................... 30  
Figure 23. 16 MHz Maximum Allowable  
Ambient Temperature ....................... 31  
ii  
CONTENTS  
Figure 24. 20 MHz Maximum Allowable  
Ambient Temperature ....................... 31  
Figure 25. 25 MHz Maximum Allowable  
Ambient Temperature ....................... 32  
TABLES  
Table 1.  
Table 2.  
Table 3.  
80960KA Instruction Set ..................... 3  
Memory Addressing Modes ................ 4  
80960KA Pin Description:  
L-Bus Signals ...................................... 8  
Figure 26. Maximum Allowable Ambient  
Temperature for the Extended  
Temperature 80960KA at  
20 MHz in PGA Package .................. 32  
Figure 27. Non-Burst Read and Write  
Transactions Without Wait States ..... 33  
Table 4.  
80960KA Pin Description:  
Support Signals ................................... 9  
Table 5.  
Table 6.  
DC Characteristics ............................ 15  
80960KA AC Characteristics  
(16 MHz) ........................................... 17  
Figure 28. Burst Read and Write Transaction  
Without Wait States ......................... 34  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
80960KA AC Characteristics  
(20 MHz) ........................................... 18  
Figure 29. Burst Write Transaction with  
2, 1, 1, 1 Wait States ........................ 35  
80960KA AC Characteristics  
(25 MHz) ........................................... 19  
Figure 30. Accesses Generated by Quad Word  
Read Bus Request, Misaligned Two  
80960KA PGA Pinout —  
In Pin Order ....................................... 25  
Bytes from Quad Word Boundary  
(1, 0, 0, 0 Wait States) ...................... 36  
80960KA PGA Pinout —  
In Signal Order .................................. 26  
Figure 31. Interrupt Acknowledge Transaction .. 37  
80960KA PQFP Pinout —  
In Pin Order ....................................... 27  
80960KA PQFP Pinout —  
In Signal Order .................................. 28  
80960KA PGA Package  
Thermal Characteristics .................... 29  
80960KA PQFP Package  
Thermal Characteristics .................... 30  
iii  
80960KA  
All members of the i960 processor family share a  
1.0 THE i960® PROCESSOR  
common core architecture which utilizes RISC  
technology so that, except for special functions, the  
family members are object-code compatible. Each  
new processor in the family adds its own special set  
of functions to the core to satisfy the needs of a  
specific application or range of applications in the  
embedded market.  
The 80960KA is a member of the 32-bit architecture  
from Intel known as the i960 processor family. These  
were especially designed to serve the needs of  
embedded applications. The embedded market  
includes applications as diverse as industrial  
automation, avionics, image processing, graphics and  
networking. These types of applications require high  
integration, low power consumption, quick interrupt  
response times and high performance. Since time to  
market is critical, embedded microprocessors need to  
be easy to use in both hardware and software  
designs.  
Software written for the 80960KA will run without  
modification on any other member of the 80960  
Family. It is also pin-compatible with the 80960KB  
which includes an integrated floating-point unit and  
the 80960MC which is a military-grade version that  
supports multitasking, memory management, multi-  
processing and fault tolerance.  
0000 0000H  
FFFF FFFFH  
ADDRESS SPACE  
ARCHITECTURALLY  
DEFINED  
DATA STRUCTURES  
FETCH  
LOAD  
STORE  
INSTRUCTION CACHE  
INSTRUCTION  
STREAM  
INSTRUCTION  
EXECUTION  
g0  
g15  
SIXTEEN 32-BIT GLOBAL REGISTERS  
PROCESSOR STATE  
REGISTERS  
REGISTER CACHE  
INSTRUCTION  
POINTER  
r0  
r15  
SIXTEEN 32-BIT LOCAL REGISTERS  
ARITHMETIC  
CONTROLS  
CONTROL REGISTERS  
PROCESS  
CONTROLS  
TRACE  
CONTROLS  
Figure 2. 80960KA Programming Environment  
1
80960KA  
5. Overlapped Instruction Execution. Load  
1.1. Key Performance Features  
operations allow execution of subsequent instructions  
to continue before the data has been returned from  
memory, so that these instructions can overlap the  
load. The 80960KA manages this process transpar-  
ently to software through the use of a register score-  
board. Conditional instructions also make use of a  
scoreboard so that subsequent unrelated instructions  
may be executed while the conditional instruction is  
pending.  
The 80960 architecture is based on the most recent  
advances in microprocessor technology and is  
grounded in Intel’s long experience in the design and  
manufacture of embedded microprocessors. Many  
features contribute to the 80960KA’s exceptional  
performance:  
1. Large Register Set. Having a large number of  
registers reduces the number of times that  
a
processor needs to access memory. Modern  
compilers can take advantage of this feature to  
optimize execution speed. For maximum flexibility, the  
80960KA provides thirty-two 32-bit registers. (See  
Figure 2.)  
6. Integer Execution Optimization. When the  
result of an arithmetic execution is used as an  
operand in a subsequent calculation, the value is sent  
immediately to its destination register. Yet at the same  
time, the value is put on a bypass path to the ALU,  
thereby saving the time that otherwise would be  
required to retrieve the value for the next operation.  
2. Fast Instruction Execution. Simple functions  
make up the bulk of instructions in most programs so  
that execution speed can be improved by ensuring  
that these core instructions are executed as quickly  
as possible. The most frequently executed instruc-  
tions such as register-register moves, add/subtract,  
logical operations and shifts execute in one to two  
cycles. (Table 1 contains a list of instructions.)  
7. Bandwidth Optimizations. The 80960KA gets  
optimal use of its memory bus bandwidth because the  
bus is tuned for use with the on-chip instruction  
cache: instruction cache line size matches the  
maximum burst size for instruction fetches. The  
80960KB automatically fetches four words in a burst  
and stores them directly in the cache. Due to the size  
of the cache and the fact that it is continually filled in  
anticipation of needed instructions in the program  
flow, the 80960KA is relatively insensitive to memory  
wait states. The benefit is that the 80960KA delivers  
3. Load/Store Architecture. One way to improve  
execution speed is to reduce the number of times that  
the processor must access memory to perform an  
operation. As with other processors based on RISC  
technology, the 80960KA has a Load/Store archi-  
tecture. As such, only the LOAD and STORE instruc-  
tions reference memory; all other instructions operate  
on registers. This type of architecture simplifies  
instruction decoding and is used in combination with  
other techniques to increase parallelism.  
outstanding performance even with  
memory system.  
a low cost  
8. Cache Bypass. If a cache miss occurs, the  
processor fetches the needed instruction then sends  
it on to the instruction decoder at the same time it  
updates the cache. Thus, no extra time is spent to  
load and read the cache.  
4. Simple Instruction Formats. All instructions in  
the 80960KA are 32 bits long and must be aligned on  
word boundaries. This alignment makes it possible to  
eliminate the instruction alignment stage in the  
pipeline. To simplify the instruction decoder, there are  
only five instruction formats; each instruction uses  
only one format. (See Figure 3.)  
2
80960KA  
Table 1. 80960KA Instruction Set  
Data Movement  
Load  
Arithmetic  
Logical  
Bit and Bit Field  
Set Bit  
Add  
And  
Store  
Move  
Load Address  
Subtract  
Multiply  
Divide  
Remainder  
Modulo  
Shift  
Not And  
And Not  
Or  
Exclusive Or  
Not Or  
Clear Bit  
Not Bit  
Check Bit  
Alter Bit  
Scan For Bit  
Scan Over Bit  
Extract  
Or Not  
Exclusive Nor  
Not  
Modify  
Nand  
Rotate  
Comparison  
Branch  
Call/Return  
Fault  
Compare  
Unconditional Branch  
Conditional Branch  
Compare and Branch  
Call  
Conditional Fault  
Synchronize Faults  
Conditional Compare  
Compare and Increment  
Compare and Decre-  
ment  
Call Extended  
Call System  
Return  
Branch and Link  
Debug  
Miscellaneous  
Decimal  
Modify Trace Controls  
Mark  
Force Mark  
Atomic Add  
Atomic Modify  
Flush Local Registers  
Modify Arithmetic Con-  
trols  
Decimal Move  
Decimal Add with Carry  
Decimal Subtract with  
Carry  
Scan Byte for Equal  
Test Condition Code  
Modify Process Controls  
Synchronous  
Synchronous Load  
Synchronous Move  
3
80960KA  
Opcode  
Opcode  
Opcode  
Displacement  
Control  
Compare and  
Branch  
Reg/Lit  
Reg  
Reg  
M
Displacement  
Register to  
Register  
Reg/Lit  
Modes  
Ext’d Op  
Reg/Lit  
Memory Access—  
Short  
Opcode  
Opcode  
Reg  
Reg  
Base  
Base  
M
X
Offset  
Memory Access—  
Long  
Mode  
Scale  
xx  
Offset  
Displacement  
Figure 3. Instruction Formats  
1.1.1. Memory Space And Addressing Modes  
1.1.2. Data Types  
The 80960KA offers a linear programming environ-  
ment so that all programs running on the processor  
are contained in a single address space. Maximum  
address space size is 4 Gigabytes (232 bytes).  
The 80960KA recognizes the following data types:  
Numeric:  
8-, 16-, 32- and 64-bit ordinals  
8-, 16-, 32- and 64-bit integers  
For ease of use the 80960KA has a small number of  
addressing modes, but includes all those necessary  
to ensure efficient execution of high-level languages  
such as C. Table 2 lists the modes.  
Non-Numeric:  
Bit  
Bit Field  
Table 2. Memory Addressing Modes  
Triple Word (96 bits)  
Quad-Word (128 bits)  
12-Bit Offset  
32-Bit Offset  
1.1.3. Large Register Set  
Register-Indirect  
The 80960KA programming environment includes a  
large number of registers. In fact, 32 registers are  
available at any time. The availability of this many  
registers greatly reduces the number of memory  
accesses required to perform algorithms, which leads  
to greater instruction processing speed.  
Register + 12-Bit Offset  
Register + 32-Bit Offset  
Register + (Index-Register x Scale-Factor)  
Register x Scale Factor + 32-Bit Displacement  
Register + (Index-Register x Scale-Factor) +  
32-Bit Displacement  
There are two types of general-purpose registers:  
local and global. The global registers consist of  
sixteen 32-bit registers (G0 though G15). These  
registers perform the same function as the general-  
Scale-Factor is 1, 2, 4, 8 or 16  
4
80960KA  
purpose registers provided in other popular micropro-  
cessors. The term global refers to the fact that these  
registers retain their contents across procedure calls.  
To load the instruction cache, instructions are fetched  
in 16-byte blocks; up to four instructions can be  
fetched at one time. An efficient prefetch algorithm  
increases the probability that an instruction will  
already be in the cache when it is needed.  
The local registers, on the other hand, are procedure  
specific. For each procedure call, the 80960KA  
allocates 16 local registers (R0 through R15). Each  
local register is 32 bits wide.  
Code for small loops often fits entirely within the  
cache, leading to a great increase in processing  
speed since further memory references might not be  
necessary until the program exits the loop. Similarly,  
when calling short procedures, the code for the  
calling procedure is likely to remain in the cache so it  
will be there on the procedure’s return.  
1.1.4. Multiple Register Sets  
To further increase the efficiency of the register set,  
multiple sets of local registers are stored on-chip (See  
Figure 4). This cache holds up to four local register  
frames, which means that up to three procedure calls  
can be made without having to access the procedure  
stack resident in memory.  
1.1.6. Register Scoreboarding  
The instruction decoder is optimized in several ways.  
One optimization method is the ability to overlap  
instructions by using register scoreboarding.  
Although programs may have procedure calls nested  
many calls deep, a program typically oscillates back  
and forth between only two to three levels. As a  
result, with four stack frames in the cache, the proba-  
bility of having a free frame available on the cache  
when a call is made is very high. In fact, runs of repre-  
sentative C-language programs show that 80% of the  
calls are handled without needing to access memory.  
Register scoreboarding occurs when a LOAD moves  
a variable from memory into a register. When the  
instruction initiates, a scoreboard bit on the target  
register is set. Once the register is loaded, the bit is  
reset. In between, any reference to the register  
contents is accompanied by a test of the scoreboard  
bit to ensure that the load has completed before  
processing continues. Since the processor does not  
need to wait for the LOAD to complete, it can execute  
additional instructions placed between the LOAD and  
the instruction that uses the register contents, as  
shown in the following example:  
If four or more procedures are active and a new  
procedure is called, the 80960KA moves the oldest  
local register set in the stack-frame cache to a  
procedure stack in memory to make room for a new  
set of registers. Global register G15 is the frame  
pointer (FP) to the procedure stack.  
ld data_2, r4  
Global registers are not exchanged on a procedure  
call, but retain their contents, making them available  
to all procedures for fast parameter passing.  
ld data_2, r5  
Unrelated instruction  
Unrelated instruction  
add R4, R5, R6  
1.1.5. Instruction Cache  
In essence, the two unrelated instructions between  
LOAD and ADD are executed “for free” (i.e., take no  
apparent time to execute) because they are executed  
while the register is being loaded. Up to three load  
instructions can be pending at one time with three  
corresponding scoreboard bits set. By exploiting this  
feature, system programmers and compiler writers  
have a useful tool for optimizing execution speed.  
To further reduce memory accesses, the 80960KA  
includes a 512-byte on-chip instruction cache. The  
instruction cache is based on the concept of locality  
of reference; most programs are not usually executed  
in a steady stream but consist of many branches,  
loops and procedure calls that lead to jumping back  
and forth in the same small section of code. Thus, by  
maintaining a block of instructions in cache, the  
number of memory references required to read  
instructions into the processor is greatly reduced.  
5
80960KA  
REGISTER  
CACHE  
LOCAL REGISTER SET  
ONE OF FOUR  
LOCAL  
REGISTER SETS  
R0  
R15  
0
31  
Figure 4. Multiple Register Sets Are Stored On-Chip  
interrupt controller. Two of the interrupt pins can be  
configured to provide 8259A-style handshaking for  
expansion beyond four interrupt lines.  
1.1.7. High Bandwidth Local Bus  
The 80960KA CPU resides on a high-bandwidth  
address/data bus known as the local bus (L-Bus). The  
L-Bus provides a direct communication path between  
the processor and the memory and I/O subsystem  
interfaces. The processor uses the L-Bus to fetch  
instructions, manipulate memory and respond to  
interrupts. L-Bus features include:  
1.1.9. Debug Features  
The 80960KA has built-in debug capabilities. There  
are two types of breakpoints and six trace modes.  
Debug features are controlled by two internal 32-bit  
registers: the Process-Controls Word and the Trace-  
Controls Word. By setting bits in these control words,  
a software debug monitor can closely control how the  
processor responds during program execution.  
32-bit multiplexed address/data path  
Four-word burst capability which allows transfers  
from 1 to 16 bytes at a time  
High bandwidth reads and writes with  
66.7 MBytes/s burst (at 25 MHz)  
The 80960KA provides two hardware breakpoint  
registers on-chip which, by using a special command,  
can be set to any value. When the instruction pointer  
matches either breakpoint register value, the  
breakpoint handling routine is automatically called.  
Table 3 defines L-bus signal names and functions;  
Table 4 defines other component-support signals  
such as interrupt lines.  
The 80960KA also provides software breakpoints  
through the use of two instructions: MARK and  
FMARK. These can be placed at any point in a  
program and cause the processor to halt execution at  
that point and call the breakpoint handling routine.  
The breakpoint mechanism is easy to use and  
provides a powerful debugging tool.  
1.1.8. Interrupt Handling  
The 80960KA can be interrupted in two ways: by the  
activation of one of four interrupt pins or by sending a  
message on the processor’s data bus.  
The 80960KA is unusual in that it automatically  
handles interrupts on a priority basis and can keep  
track of pending interrupts through its on-chip  
Tracing is available for instructions (single step  
execution), calls and returns and branching. Each  
trace type may be enabled separately by a special  
6
80960KA  
debug instruction. In each case, the 80960KA  
1.1.11. Built-in Testability  
executes the instruction first and then calls a trace  
handling routine (usually part of a software debug  
monitor). Further program execution is halted until the  
routine completes, at which time execution resumes  
at the next instruction. The 80960KA’s tracing  
mechanisms, implemented completely in hardware,  
greatly simplify the task of software test and debug.  
Upon reset, the 80960KA automatically conducts an  
exhaustive internal test of its major blocks of logic.  
Then, before executing its first instruction, it does a  
zero check sum on the first eight words in memory to  
ensure that the memory image was programmed  
correctly. If a problem is discovered at any point  
during the self-test, the 80960KA asserts its FAILURE  
pin and will not begin program execution. Self test  
takes approximately 47,000 cycles to complete.  
1.1.10. Fault Detection  
The 80960KA has an automatic mechanism to handle  
faults. Fault types include trace and arithmetic faults.  
When the processor detects a fault, it automatically  
calls the appropriate fault handling routine and saves  
the current instruction pointer and necessary state  
information to make efficient recovery possible. Like  
interrupt handling routines, fault handling routines are  
usually written to meet the needs of specific applica-  
tions and are often included as part of the operating  
system or kernel.  
System manufacturers can use the 80960KA’s self-  
test feature during incoming parts inspection. No  
special diagnostic programs need to be written. The  
test is both thorough and fast. The self-test capability  
helps ensure that defective parts are discovered  
before systems are shipped and, once in the field, the  
self-test makes it easier to distinguish between  
problems caused by processor failure and problems  
resulting from other causes.  
For each of the fault types, there are numerous  
subtypes that provide specific information about a  
fault. The fault handler can use this specific infor-  
mation to respond correctly to the fault.  
1.1.12. CHMOS  
The 80960KA is fabricated using Intel’s CHMOS IV  
(Complementary High Speed Metal Oxide Semicon-  
ductor) process. The 80960KA is currently available  
in 16, 20 and 25 MHz versions.  
7
80960KA  
Table 3. 80960KA Pin Description: L-Bus Signals (Sheet 1 of 2)  
NAME  
CLK2  
TYPE  
DESCRIPTION  
I
SYSTEM CLOCK provides the fundamental timing for 80960KA systems. It is divided  
by two inside the 80960KA to generate the internal processor clock.  
LAD31:0  
I/O  
LOCAL ADDRESS / DATA BUS carries 32-bit physical addresses and data to and  
from memory. During an address (Ta) cycle, bits 2-31 contain a physical word  
T.S.  
address (bits 0-1 indicate SIZE; see below). During a data (Td) cycle, bits 0-31  
contain read or write data. These pins float to a high impedance state when not  
active.  
Bits 0-1 comprise SIZE during a Ta cycle. SIZE specifies burst transfer size in words.  
LAD1  
LAD0  
0
0
1
1
0
1
0
1
1 Word  
2 Words  
3 Words  
4 Words  
ALE  
ADS  
O
T.S.  
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is  
asserted during a Ta cycle and deasserted before the beginning of the Td state. It is  
active LOW and floats to a high impedance state during a hold cycle (Th).  
O
O.D.  
ADDRESS/DATA STATUS indicates an address state. ADS is asserted every Ta  
state and deasserted during the following Td state. For a burst transaction, ADS is  
asserted again every Td state where READY was asserted in the previous cycle.  
W/R  
O
WRITE/READ specifies, during a Ta cycle, whether the operation is a write or read. It  
O.D.  
is latched on-chip and remains valid during Td cycles.  
DT/R  
O
DATA TRANSMIT / RECEIVE indicates the direction of data transfer to and from the  
L-Bus. It is low during Ta and Td cycles for a read or interrupt acknowledgment; it is  
O.D.  
high during Ta and Td cycles for a write. DT/R never changes state when DEN is  
asserted.  
READY  
LOCK  
I
READY indicates that data on LAD lines can be sampled or removed. If READY is not  
asserted during a Td cycle, the Td cycle is extended to the next cycle by inserting a  
wait state (Tw) and ADS is not asserted in the next cycle.  
I/O  
O.D.  
BUS LOCK prevents bus masters from gaining control of the L-Bus during  
Read/Modify/Write (RMW) cycles. The processor or any bus agent may assert  
LOCK.  
At the start of a RMW operation, the processor examines the LOCK pin. If the pin is  
already asserted, the processor waits until it is not asserted. If the pin is not asserted,  
the processor asserts LOCK during the Ta cycle of the read transaction. The  
processor deasserts LOCK in the Ta cycle of the write transaction. During the time  
LOCK is asserted, a bus agent can perform a normal read or write but not a RMW  
operation.  
The processor also asserts LOCK during interrupt-acknowledge transactions.  
Do not leave LOCK unconnected. It must be pulled high for the processor to function  
properly.  
I/O = Input/Output, O = Output, I = Input, O.D. = Open Drain, T.S. = Three-state  
8
80960KA  
Table 3. 80960KA Pin Description: L-Bus Signals (Sheet 2 of 2)  
NAME  
BE3:0  
TYPE  
DESCRIPTION  
O
BYTE ENABLE LINES specify the data bytes (up to four) on the bus which are used  
in the current bus cycle. BE3 corresponds to LAD31:24; BE0 corresponds to LAD7:0.  
O.D.  
The byte enables are provided in advance of data:  
Byte enables asserted during Ta specify the bytes of the first data word.  
Byte enables asserted during Td specify the bytes of the next data word, if any (the  
word to be transmitted following the next assertion of READY).  
Byte enables that occur during Td cycles that precede the last assertion of READY  
are undefined. Byte enables are latched on-chip and remain constant from one Td  
cycle to the next when READY is not asserted.  
For reads, byte enables specify the byte(s) that the processor will actually use. L-Bus  
agents are required to assert only adjacent byte enables (e.g., asserting just BE0 and  
BE2 is not permitted) and are required to assert at least one byte enable. Address  
bits A0 and A1 can be decoded externally from the byte enables.  
HOLD  
I
HOLD: A request from an external bus master to acquire the bus. When the  
processor receives HOLD and grants bus control to another master, it floats its three-  
state bus lines and open-drain control lines, asserts HLDA and enters the Th state.  
When HOLD deasserts, the processor deasserts HLDA and enters the Ti or Ta state.  
HLDA  
O
HOLD ACKNOWLEDGE: Notifies an external bus master that the processor has  
relinquished control of the bus.  
T.S.  
CACHE  
O
CACHE indicates when an access is cacheable during a Ta cycle. It is not asserted  
T.S.  
during any synchronous access, such as a synchronous load or move instruction  
used for sending an IAC message. The CACHE signal floats to a high impedance  
state when the processor is idle.  
I/O = Input/Output, O = Output, I = Input, O.D. = Open Drain, T.S. = Three-state  
Table 4. 80960KA Pin Description: Support Signals (Sheet 1 of 2)  
NAME  
TYPE  
DESCRIPTION  
BADAC  
I
BAD ACCESS, if asserted in the cycle following the one in which the last READY of a  
transaction is asserted, indicates an unrecoverable error occurred on the current bus  
transaction or a synchronous load/store instruction has not been acknowledged.  
During system reset the BADAC signal is interpreted differently. If the signal is high, it  
indicates that this processor will perform system initialization. If it is low, another  
processor in the system will perform system initialization instead.  
RESET  
I
RESET clears the processor’s internal logic and causes it to reinitialize.  
During RESET assertion, the input pins are ignored (except for BADAC and  
IAC/INT0), the three-state output pins are placed in a high impedance state and other  
output pins are placed in their non-asserted states.  
RESET must be asserted for at least 41 CLK2 cycles for a predictable RESET. The  
HIGH to LOW transition of RESET should occur after the rising edge of both CLK2  
and the external bus clock and before the next rising edge of CLK2.  
I/O = Input/Output, O = Output, I = Input, O.D. = Open Drain, T.S. = Three-state  
9
80960KA  
Table 4. 80960KA Pin Description: Support Signals (Sheet 2 of 2)  
NAME  
TYPE  
DESCRIPTION  
FAILURE  
O
O.D.  
INITIALIZATION FAILURE indicates that the processor did not initialize correctly.  
After RESET deasserts and before the first bus transaction begins, FAILURE asserts  
while the processor performs a self-test. If the self-test completes successfully, then  
FAILURE deasserts. The processor then performs a zero checksum on the first eight  
words of memory. If it fails, FAILURE asserts for a second time and remains  
asserted. If it passes, system initialization continues and FAILURE remains  
deasserted.  
IAC/INT0  
I
INTERAGENT COMMUNICATION REQUEST/INTERRUPT 0 indicates an IAC  
message or an interrupt is pending. The bus interrupt control register determines how  
the signal is interpreted. To signal an interrupt or IAC request in a synchronous  
system, this pin — as well as the other interrupt pins — must be enabled by being  
deasserted for at least one bus cycle and then asserted for at least one additional  
bus cycle. In an asynchronous system the pin must remain deasserted for at least  
two bus cycles and then asserted for at least two more bus cycles.  
During system reset, this signal must be in the logic high condition to enable normal  
processor operation. The logic low condition is reserved.  
INT1  
I
I
INTERRUPT 1, like INT0, provides direct interrupt signaling.  
INT2/INTR  
INTERRUPT2/INTERRUPT REQUEST: The interrupt control register determines  
how this pin is interpreted. If INT2, it has the same interpretation as the INT0 and INT1  
pins. If INTR, it is used to receive an interrupt request from an external interrupt  
controller.  
INT3/INTA  
I/O  
INTERRUPT3/INTERRUPT ACKNOWLEDGE: The bus interrupt control register  
determines how this pin is interpreted. If INT3, it has the same interpretation as the  
O.D.  
INT0, INT1 and INT2 pins. If INTA, it is used as an output to control interrupt-  
acknowledge transactions. The INTA output is latched on-chip and remains valid  
during Td cycles; as an output, it is open-drain.  
N.C.  
N/A  
NOT CONNECTED indicates pins should not be connected. Never connect any pin  
marked N.C. as these pins may be reserved for factory use.  
I/O = Input/Output, O = Output, I = Input, O.D. = Open Drain, T.S. = Three-state  
2.0 ELECTRICAL SPECIFICATIONS  
2.1. Power and Grounding  
2.2. Power Decoupling  
Recommendations  
Place a liberal amount of decoupling capacitance  
near the 80960KA. When driving the L-bus the  
processor can cause transient power surges, particu-  
larly when connected to a large capacitive load.  
The 80960KA is implemented in CHMOS IV  
technology and therefore has modest power require-  
ments. Its high clock frequency and numerous output  
buffers (address/data, control, error and arbitration  
signals) can cause power surges as multiple output  
buffers simultaneously drive new signal levels. For  
clean on-chip power distribution, VCC and VSS pins  
separately feed the device’s functional units. Power  
and ground connections must be made to all  
80960KA power and ground pins. On the circuit  
board, all Vcc pins must be strapped closely together,  
preferably on a power plane; all Vss pins should be  
strapped together, preferably on a ground plane.  
Low inductance capacitors and interconnects are  
recommended for best high frequency electrical  
performance. Inductance is reduced by shortening  
board traces between the processor and decoupling  
capacitors as much as possible.  
10  
80960KA  
2.3. Connection Recommendations  
V
CC  
For reliable operation, always connect unused inputs  
to an appropriate signal level. In particular, if one or  
more interrupt lines are not used, they should be  
pulled up. No inputs should ever be left floating.  
OPEN-DRAIN OUTPUT  
180 Ω  
390 Ω  
All open-drain outputs require a pullup device. While  
in most cases a simple pullup resistor is adequate, a  
network of pullup and pulldown resistors biased to a  
valid VIH (>3.0 V) and terminated in the characteristic  
impedance of the circuit board is recommended to  
limit noise and AC power consumption. Figure 5 and  
Figure 6 show recommended values for the resistor  
network for low and high current drive, assuming a  
characteristic impedance of 100 Ω. Terminating  
output signals in this fashion limits signal swing and  
reduces AC power consumption.  
High Drive Network:  
= 3.4 V  
V
OH  
= 25.3 mA  
I
OL  
Figure 6. Connection Recommendations  
for High Current Drive Network  
2.4. Characteristic Curves  
Figure 7 shows typical supply current requirements  
over the operating temperature range of the  
processor at supply voltage (VCC) of 5 V. Figure 8 and  
NOTE:  
Do not connect external logic to pins marked N.C.  
Figure 9 show the typical power supply current (ICC  
)
V
CC  
that the 80960KA requires at various operating  
frequencies when measured at three input voltage  
(VCC) levels and two temperatures.  
OPEN-DRAIN OUTPUT  
220 Ω  
330 Ω  
For a given output current (IOL) the curve in Figure 10  
shows the worst case output low voltage (VOL). Figure  
11 shows the typical capacitive derating curve for the  
80960KA measured from 1.5V on the system clock  
(CLK) to 1.5V on the falling edge and 1.5V on the  
rising edge of the L-Bus address/data (LAD) signals.  
Low Drive Network:  
V
= 3.0 V  
= 20.7 mA  
OH  
I
OL  
Figure 5. Connection Recommendations  
for Low Current Drive Network  
11  
80960KA  
380  
360  
340  
320  
300  
280  
VCC = 5.0 V  
25 MHz  
20 MHz  
16 MHz  
260  
240  
220  
200  
-60 -40 -20  
0
20 40 60 80 100 120 140  
CASE TEMPERATURE (°C)  
Figure 7. Typical Supply Current vs. Case Temperature  
400  
TEMP = +22°C  
380  
360  
340  
320  
300  
280  
260  
240  
220  
@5.5V  
@5.0V  
@4.5V  
200  
180  
16  
20  
25  
OPERATING FREQUENCY (MHz)  
Figure 8. Typical Current vs. Frequency (Room Temp)  
12  
80960KA  
380  
360  
340  
320  
300  
280  
260  
240  
220  
TEMP = +22°C  
@5.5V  
@5.0V  
@4.5V  
200  
180  
160  
16  
20  
25  
OPERATING FREQUENCY (MHz)  
Figure 9. Typical Current vs. Frequency (Hot Temp)  
(TEMP = +85°C, VCC = 4.5V)  
(TEMP = +85°C, VCC = 4.5V)  
30  
FALLING  
25  
20  
15  
10  
0.8  
0.6  
0.4  
0.2  
0.0  
RISING  
5
0
0
10 20 30 40 50  
0
20 40 60 80 100  
OUTPUT LOW CURRENT(mA)  
CAPACITIVE LOAD(pF)  
Figure 10. Worst-Case Voltage vs. Output Current  
on Open-Drain Pins  
Figure 11. Capacitive Derating Curve  
13  
80960KA  
2.5. Test Load Circuit  
Figure 12 illustrates the load circuit used to test the  
80960KA’s three-state pins; Figure 13 shows the load  
circuit used to test the open drain outputs. The open  
drain test uses an active load circuit in the form of a  
matched diode bridge. Since the open-drain outputs  
sink current, only the IOL legs of the bridge are  
necessary and the IOH legs are not used. When the  
80960KA driver under test is turned off, the output pin  
is pulled up to VREF (i.e., VOH). Diode D1 is turned off  
and the IOL current source flows through diode D2.  
THREE-STATE OUTPUT  
C
L
C
= 50 pF for all signals  
L
Figure 12. Test Load Circuit for Three-State Output Pins  
I
OL  
When the 80960KA open-drain driver under test is  
on, diode D1 is also on and the voltage on the pin  
being tested drops to VOL. Diode D2 turns off and IOL  
flows through diode D1.  
OPEN-DRAIN OUTPUT  
D
D
2
1
C
L
I
Tested at 25 mA  
OL  
V
= V  
REF  
D1 and D are matched  
CC  
2
C
= 50 pF for all signals  
L
Figure 13. Test Load Circuit for Open-Drain Output Pins  
14  
80960KA  
NOTICE: This is a production data sheet. The specifi-  
cations are subject to change without notice.  
2.6. Absolute Maximum Ratings  
Operating Temperature (PGA).............. 0°C to +85°C Case  
(PQFP) ......... 0°C to +100°C Case  
Storage Temperature ................................. –65°C to +150°C  
*WARNING: Stressing the device beyond the “Absolute Maxi-  
mum Ratings” may cause permanent damage. These are  
stress ratings only. Operation beyond the “Operating Condi-  
tions” is not recommended and extended exposure beyond the  
“Operating Conditions” may affect device reliability.  
Voltage on Any Pin................................. –0.5V to V  
+0.5V  
CC  
Power Dissipation .......................................... 2.5W (25 MHz)  
2.7. DC Characteristics  
PGA:  
80960KA (16 MHz) TCASE = 0°C to +85°C, VCC = 5V ± 10%  
80960KA (20 and 25 MHz) TCASE = 0°C to +85°C, VCC = 5V ± 5%  
80960KA (16 MHz) TCASE = 0°C to +100°C, VCC = 5V ± 10%  
80960KA (20 and 25 MHz) TCASE = 0°C to +100°C, VCC = 5V ± 5%  
PQFP:  
Table 5. DC Characteristics  
Symbol  
VIL  
Parameter  
Input Low Voltage  
Min  
–0.3  
Max  
+0.8  
Units  
Notes  
V
V
V
V
V
V
VIH  
Input High Voltage  
2.0  
VCC + 0.3  
+0.8  
VCL  
CLK2 Input Low Voltage  
CLK2 Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.3  
VCH  
VOL  
0.55 VCC  
VCC + 0.3  
0.45  
(1,2)  
(3,4)  
VOH  
ICC  
2.4  
Power Supply Current:  
16 MHz  
315  
360  
420  
mA  
mA  
mA  
(5)  
(5)  
(5)  
20 MHz  
25 MHz  
ILI  
Input Leakage Current  
Output Leakage Current  
Input Capacitance  
±15  
±15  
10  
µA  
µA  
pF  
pF  
pF  
0 VIN VCC  
0.45 VO VCC  
fC = 1 MHz (6)  
fC = 1 MHz (6)  
fC = 1 MHz (6)  
ILO  
CIN  
CO  
Output Capacitance  
Clock Capacitance  
12  
CCLK  
10  
NOTES:  
1. For three-state outputs, this parameter is measured at:  
Address/Data............................................................................................................................................................................................. 4.0 mA  
Controls ...................................................................................................................................................................................................... 5.0 mA  
2. For open-drain outputs ................................................................................................................................................................................ 25 mA  
3. This parameter is measured at:  
Address/Data ........................................................................................................................................................................................... -1.0 mA  
Controls .................................................................................................................................................................................................... -0.9 mA  
ALE .......................................................................................................................................................................................................... -5.0 mA  
4. Not measured on open-drain outputs.  
5. Measured at worst case frequency, VCC and temperature, with device operating and outputs loaded to the test conditions in Figures 12 and 13.  
Figure 7, Figure 8 and Figure 9 indicate typical values.  
6. Input, output and clock capacitance are not tested.  
15  
80960KA  
For input timings the specifications refer to the time at  
2.8. AC Specifications  
which the signal reaches (for input setup) or leaves  
(for hold time) the TTL levels of LOW (0.8 V) or HIGH  
(2.0 V). All AC testing should be done with input  
voltages of 0.4 V and 2.4 V, except for the clock  
(CLK2), which should be tested with input voltages of  
This section describes the AC specifications for the  
80960KA pins. All input and output timings are  
specified relative to the 1.5 V level of the rising edge  
of CLK2. For output timings the specifications refer to  
the time it takes the signal to reach 1.5 V.  
0.45 V and 0.55 VCC  
.
D
A
A
B
C
B
C
EDGE  
CLK2  
1.5V  
1.5V  
1.5V  
9
1.5V  
0.8V  
T
T
6
OUTPUTS:  
LAD 31:0  
ADS  
1.5V  
1.5V  
VALID OUTPUT  
W/R, DEN  
BE3:0  
HLDA  
CACHE  
LOCK, INTA  
T
8
T
T
T
14  
8
13  
1.5V  
1.5V  
ALE  
T
7
T
T
6
9
VALID OUTPUT  
1.5V  
1.5V  
DT/R  
T
T
10  
11  
INPUTS:  
LAD31:0  
BADAC  
2.0V 2.0V  
0.8V 0.8V  
IAC/INT0, INT1  
INT2/INTR, INT3  
T
T
VALID INPUT  
12  
11  
HOLD  
LOCK  
READY  
2.0V 2.0V  
0.8V 0.8V  
Figure 14. Drive Levels and Timing Relationships for 80960KA Signals  
16  
80960KA  
2.8.1. AC Specification Tables  
Table 6. 80960KA AC Characteristics (16 MHz)  
Symbol  
Input Clock  
T1  
Parameter  
Min  
Max  
Units  
Notes  
Processor Clock Period (CLK2)  
31.25  
125  
ns  
ns  
ns  
VIN = 1.5V  
T2  
T3  
Processor Clock Low Time (CLK2)  
8
8
VIL = 10% Point = 1.2V  
Processor Clock High Time  
(CLK2)  
VIH = 90% Point = 0.1V + 0.5 VCC  
T4  
T5  
Processor Clock Fall Time (CLK2)  
Processor Clock Rise Time (CLK2)  
10  
10  
ns  
ns  
VIN = 90% Point to 10% Point (1)  
VIN = 10% Point to 90% Point (1)  
Synchronous Outputs  
T6  
Output Valid Delay  
2
4
25  
28  
ns  
ns  
ns  
ns  
ns  
ns  
T6H  
T7  
HLDA Output Valid Delay  
ALE Width  
15  
2
T8  
ALE Output Valid Delay  
Output Float Delay  
18  
20  
20  
T9  
2
(2)  
(2)  
T9H  
HLDA Output Float Delay  
4
Synchronous Inputs  
T10  
T11  
T11H  
T12  
T13  
T14  
T15  
T16  
Input Setup 1  
3
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(3)  
(3)  
(3)  
(3)  
Input Hold  
HOLD Input Hold  
Input Setup 2  
4
8
Setup to ALE Inactive  
Hold after ALE Inactive  
Reset Hold  
10  
8
3
(3)  
Reset Setup  
5
(3)  
T17  
Reset Width  
1281  
41 CLK2 Periods Minimum  
NOTES:  
1. Clock rise and fall times are not tested.  
2. A float condition occurs when the maximum output current becomes less than ILO. Float delay is not tested; however, it should not be longer than  
the valid delay.  
3. LAD31:0, BADAC, HOLD, LOCK and READY are synchronous inputs. IAC/INT0, INT1, INT2/INTR and INT3 may be synchronous or asynchronous.  
17  
80960KA  
Table 7. 80960KA AC Characteristics (20 MHz)  
Symbol  
Input Clock  
T1  
Parameter  
Min  
Max  
Units  
Notes  
Processor Clock Period (CLK2)  
25  
6
125  
ns  
ns  
ns  
VIN = 1.5V  
T2  
T3  
Processor Clock Low Time (CLK2)  
VIL = 10% Point = 1.2V  
Processor Clock High Time  
(CLK2)  
6
VIH = 90% Point = 0.1V + 0.5 VCC  
T4  
T5  
Processor Clock Fall Time (CLK2)  
Processor Clock Rise Time (CLK2)  
10  
10  
ns  
ns  
VIN = 90% Point to 10% Point (1)  
VIN = 10% Point to 90% Point (1)  
Synchronous Outputs  
T6  
Output Valid Delay  
2
4
20  
23  
ns  
ns  
ns  
ns  
ns  
ns  
T6H  
T7  
HLDA Output Valid Delay  
ALE Width  
12  
2
T8  
ALE Output Valid Delay  
Output Float Delay  
18  
20  
20  
T9  
2
(2)  
(2)  
T9H  
HLDA Output Float Delay  
4
Synchronous Inputs  
T10  
T11  
T11H  
T12  
T13  
T14  
T15  
T16  
Input Setup 1  
3
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(3)  
(3)  
(3)  
(3)  
Input Hold  
HOLD Input Hold  
Input Setup 2  
4
7
Setup to ALE Inactive  
Hold after ALE Inactive  
Reset Hold  
10  
8
3
Reset Setup  
5
T17  
Reset Width  
1025  
41 CLK2 Periods Minimum  
NOTES:  
1. Clock rise and fall times are not tested.  
2. A float condition occurs when the maximum output current becomes less than ILO. Float delay is not tested; however, it should not be longer than  
the valid delay.  
3. LAD31:0, BADAC, HOLD, LOCK and READY are synchronous inputs. IAC/INT0, INT1, INT2/INTR and INT3 may be synchronous or asynchronous.  
18  
80960KA  
Table 8. 80960KA AC Characteristics (25 MHz)  
Symbol  
Input Clock  
T1  
Parameter  
Min  
Max  
Units  
Notes  
Processor Clock Period (CLK2)  
20  
5
125  
ns  
ns  
ns  
VIN = 1.5V  
T2  
T3  
Processor Clock Low Time (CLK2)  
VIL = 10% Point = 1.2V  
Processor Clock High Time  
(CLK2)  
5
VIH = 90% Point = 0.1V + 0.5 VCC  
T4  
T5  
Processor Clock Fall Time (CLK2)  
Processor Clock Rise Time (CLK2)  
10  
10  
ns  
ns  
VIN = 90% Point to 10% Point (1)  
VIN = 10% Point to 90% Point (1)  
Synchronous Outputs  
T6  
Output Valid Delay  
2
4
18  
23  
ns  
ns  
ns  
ns  
ns  
ns  
T6H  
T7  
HLDA Output Valid Delay  
ALE Width  
12  
2
T8  
ALE Output Valid Delay  
Output Float Delay  
18  
18  
20  
T9  
2
(2)  
(2)  
T9H  
HLDA Output Float Delay  
4
Synchronous Inputs  
T10  
T11  
T11H  
T12  
T13  
T14  
T15  
T16  
Input Setup 1  
3
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(3)  
(3)  
Input Hold  
HOLD Input Hold  
Input Setup 2  
4
7
Setup to ALE Inactive  
Hold after ALE Inactive  
Reset Hold  
8
8
3
Reset Setup  
5
T17  
Reset Width  
820  
41 CLK2 Periods Minimum  
NOTES:  
1. Clock rise and fall times are not tested.  
2. A float condition occurs when the maximum output current becomes less than ILO. Float delay is not tested; however, it should not be longer than  
the valid delay.  
3. LAD31:0, BADAC, HOLD, LOCK and READY are synchronous inputs. IAC/INT0, INT1, INT2/INTR and INT3 may be synchronous or asynchronous.  
19  
80960KA  
T
1
T
3
HIGH LEVEL (MIN) 0.55V  
CC  
90%  
1.5 V  
LOW LEVEL (MAX) 0.8V  
10%  
T
2
T
T
5
4
Figure 15. Processor Clock Pulse (CLK2)  
FIRST  
A
B
C
D
A
...  
...  
CLK2  
CLK  
T
T
16  
15  
...  
RESET  
T
17  
...  
OUTPUTS  
INIT PARAMETERS (BADAC,  
T
T
T
= RESET HOLD  
= RESET SETUP  
= RESET WIDTH  
15  
16  
17  
INT /IAC) MUST BE SET UP 8 CLOCKS  
0
PRIOR TO THIS CLK2 EDGE  
INIT PARAMETERS MUST BE HELD  
BEYOND THIS CLK2 EDGE  
Figure 16. RESET Signal Timing  
20  
80960KA  
3.0 MECHANICAL DATA  
3.1.1. Pin Assignment  
The PGA and PQFP have different pin assignments.  
Figure 18 shows the view from the PGA bottom (pins  
facing up) and Figure 19 shows a view from the PGA  
top (pins facing down). Figure 20 shows the PQFP  
package; Figure 21 shows the PQFP pinout with  
signal names. Notice that the pins are numbered in  
order from 1 to 132 around the package perimeter.  
Table 9 and Table 10 list the function of each PGA  
pin; Table 11 and Table 12 list the function of each  
PQFP pin.  
3.1. Packaging  
The 80960KA is available in two package types:  
132-lead ceramic pin-grid array (PGA). Pins are  
arranged 0.100 inch (2.54 mm) center-to-center, in  
a 14 by 14 matrix, three rows around (see Figure  
17).  
132-lead plastic quad flat pack (PQFP). This  
package uses fine-pitch gull wing leads arranged in  
a single row along the package perimeter with  
0.025 inch (0.64 mm) spacing (see Figure 20).  
Dimensions for both package types are given in the  
Intel Packaging handbook (Order #240800).  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
D
E
F
G
H
J
K
L M N P  
Figure 17. 132-Lead Pin-Grid Array (PGA) Package  
21  
80960KA  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
P
P
VCC N.C. N.C. N.C. N.C. N.C.  
N.C. N.C. N.C. N.C. N.C. N.C. VSS VCC  
N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.  
N
N
VSS  
N.C. N.C. N.C. N.C. N.C.  
M
M
VSS  
VSS VCC  
VSS  
VCC  
N.C.  
N.C. N.C. N.C.  
N.C. VCC N.C.  
VSS N.C. N.C.  
VCC N.C. N.C.  
N.C. N.C.  
L
K
J
L
K
J
DEN N.C. VCC  
BE3 FAIL VSS  
N.C. N.C. N.C.  
N.C. N.C. N.C.  
N.C. N.C. N.C.  
DT/R BE2 VSS  
W/R BE0 LOCK  
H
G
F
H
G
F
LAD30 READY BE1  
CACHE  
LAD29 LAD31  
N.C. N.C. N.C.  
N.C. VSS N.C.  
VCC N.C. N.C.  
E
D
E
D
LAD28  
LAD26 LAD27  
ALE ADS HLDA  
C
B
A
C
B
A
HOLD LAD25 BADAC VCC VSS LAD20  
LAD8 LAD3 VCC  
VSS INT3 INT1 INT0  
LAD13  
VSS  
LAD23 LAD24 LAD22 LAD21 LAD18 LAD15 LAD12 LAD10 LAD6 LAD2 CLK2 LAD0 RESET  
LAD17  
LAD19  
LAD11  
LAD9 LAD7 LAD5 LAD4 LAD1 INT2 VCC  
VCC  
VSS  
LAD16 LAD14  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Figure 18. 80960KA PGA Pinout—View from Bottom (Pins Facing Up)  
22  
80960KA  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
P
P
VCC VSS N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. VCC  
N
N
VSS  
N.C. N.C.  
N.C.  
VCC VSS  
N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C.  
M
M
VCC VSS  
N.C. N.C. N.C.  
N.C. N.C. VSS  
N.C. N.C. VCC  
N.C. N.C. N.C.  
N.C. N.C. N.C.  
N.C. N.C. N.C.  
N.C. N.C. N.C.  
N.C. N.C. N.C. N.C.  
VSS  
VCC  
VSS  
VSS  
VCC N.C.  
N.C. DEN  
FAIL BE3  
BE2 DT/R  
L
L
K
J
K
J
H
G
F
E
D
H
G
F
E
D
LOCK BE0 W/R  
BE1 READY LAD30  
CACHE LAD31 LAD29  
LAD27 LAD26 LAD28  
VSS  
N.C.  
N.C.  
VCC  
N.C. N.C.  
HLDA ADS ALE  
C
B
A
C
B
A
INT0 INT1 INT3 VSS VCC LAD3 LAD8 LAD13 LAD20 VSS VCC BADAC LAD25 HOLD  
VSS RESET LAD0 CLK2 LAD2 LAD6 LAD10 LAD12 LAD15 LAD18 LAD21 LAD22 LAD24 LAD23  
VCC INT2 LAD1 LAD4 LAD5 LAD7 LAD9 LAD11 LAD14 LAD16 LAD17 LAD19 VSS VCC  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Figure 19. 80960KA PGA Pinout—View from Top (Pins Facing Down)  
Figure 20. 80960KA 132-Lead Plastic Quad Flat-Pack (PQFP) Package  
23  
NOTE: To address the fact that many of the package prefix variables have changed,  
all package prefix variables in this document are now indicated with an "x".  
80960KA  
99 98 97  
100  
96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68  
6766  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
NC  
NC  
LAD0  
LAD1  
LAD2  
VSS  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
1
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VCC  
VCC  
LAD3  
LAD4  
LAD5  
LAD6  
LAD7  
LAD8  
LAD9  
LAD10  
LAD11  
LAD12  
VSS  
NC  
VSS  
VSS  
NC  
LAD13  
LAD14  
LAD15  
LAD16  
LAD17  
LAD18  
LAD19  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VCC  
LAD20  
LAD21  
LAD22  
VSS  
LAD23  
LAD24  
NC  
NC  
NC  
NC  
VCC  
VCC  
LAD25  
BADAC  
HOLD  
NC  
NC  
ADS  
2
3
4
5
6
7
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33  
Figure 21. PQFP Pinout - View From Top  
NOTE: To address the fact that many of the package prefix variables have changed,  
all package prefix variables in this document are now indicated with an "x".  
24  
80960KA  
3.2. Pinout  
Table 9. 80960KA PGA Pinout — In Pin Order  
Pin  
A1  
Signal  
Pin  
C6  
Signal  
LAD20  
Pin  
H1  
Signal  
W/R  
Pin  
Signal  
VCC  
M10  
VSS  
VCC  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
VSS  
C7  
LAD13  
LAD8  
H2  
H3  
H12  
H13  
H14  
J1  
BE0  
M11  
M12  
M13  
M14  
N1  
LAD19  
LAD17  
LAD16  
LAD14  
LAD11  
LAD9  
LAD7  
C8  
LOCK  
N.C.  
N.C.  
N.C.  
DT/R  
BE2  
N.C.  
N.C.  
N.C.  
VSS  
C9  
LAD3  
C10  
C11  
C12  
C13  
C14  
VCC  
VSS  
INT3/INTA  
INT1  
N2  
N.C.  
N.C.  
N.C.  
J2  
N3  
IAC/INT0  
J3  
VSS  
N4  
A10  
A11  
A12  
A13  
LAD5  
LAD4  
D1  
ALE  
J12  
J13  
J14  
K1  
N.C.  
N.C.  
N.C.  
BE3  
N5  
N6  
N7  
N8  
N.C.  
N.C.  
N.C.  
N.C.  
D2  
ADS  
HLDA  
VCC  
LAD1  
D3  
INT2/INTR  
D12  
A14  
B1  
VCC  
D13  
D14  
N.C.  
N.C.  
K2  
K3  
FAILURE  
VSS  
N9  
N.C.  
N.C.  
LAD23  
N10  
B2  
B3  
B4  
LAD24  
LAD22  
LAD21  
E1  
E2  
E3  
LAD28  
LAD26  
LAD27  
K12  
K13  
K14  
VCC  
N.C.  
N.C.  
N11  
N12  
N13  
N.C.  
N.C.  
N.C.  
B5  
B6  
LAD18  
LAD15  
E12  
E13  
N.C.  
VSS  
L1  
L2  
DEN  
N.C.  
N14  
P1  
N.C.  
VCC  
B7  
B8  
B9  
LAD12  
LAD10  
LAD6  
E14  
F1  
N.C.  
L3  
VCC  
VSS  
N.C.  
P2  
P3  
P4  
N.C.  
N.C.  
N.C.  
LAD29  
LAD31  
L12  
L13  
F2  
B10  
B11  
B12  
LAD2  
CLK2  
LAD0  
F3  
CACHE  
N.C.  
L14  
M1  
M2  
N.C.  
N.C.  
VCC  
P5  
P6  
P7  
N.C.  
N.C.  
N.C.  
F12  
F13  
N.C.  
B13  
B14  
C1  
RESET  
VSS  
F14  
G1  
G2  
G3  
N.C.  
M3  
M4  
M5  
M6  
VSS  
VSS  
VCC  
N.C.  
P8  
N.C.  
N.C.  
N.C.  
N.C.  
LAD30  
READY  
BE1  
P9  
HOLD  
LAD25  
P10  
P11  
C2  
C3  
C4  
BADAC  
VCC  
G12  
G13  
N.C.  
N.C.  
M7  
M8  
N.C.  
N.C.  
P12  
P13  
N.C.  
VSS  
C5  
VSS  
G14  
N.C.  
M9  
N.C.  
P14  
VCC  
NOTE: Do not connect any external logic to any pins marked N.C.  
25  
80960KA  
Table 10. 80960KA PGA Pinout — In Signal Order  
Signal  
ADS  
Pin  
D2  
D1  
C3  
H2  
G3  
J2  
Signal  
LAD15  
Pin  
B6  
A5  
A4  
B5  
A3  
C6  
B4  
B3  
Signal  
N.C.  
Pin  
J14  
K13  
K14  
L13  
L14  
M1  
Signal  
N.C.  
Pin  
P9  
ALE  
LAD16  
LAD17  
LAD18  
LAD19  
LAD20  
LAD21  
LAD22  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
P10  
P11  
P12  
L2  
BADAC  
BE0  
N.C.  
N.C.  
BE1  
N.C.  
BE2  
READY  
RESET  
VCC  
G2  
BE3  
K1  
F3  
M6  
B13  
A1  
CACHE  
M7  
CLK2  
B11  
L1  
LAD23  
LAD24  
LAD25  
LAD26  
LAD27  
LAD28  
LAD29  
LAD30  
LAD31  
LOCK  
N.C.  
B1  
B2  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
M8  
M9  
M12  
M13  
M14  
N2  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
W/R  
A14  
C4  
DEN  
DT/R  
J1  
C2  
C10  
D12  
K12  
L3  
FAILURE  
HLDA  
HOLD  
IAC/INT0  
INT1  
K2  
E2  
D3  
E3  
C1  
E1  
C14  
C13  
A13  
C12  
B12  
A12  
B10  
C9  
F1  
N3  
M2  
M5  
M11  
P1  
G1  
N4  
INT2/INTR  
INT3/INTA  
LAD0  
F2  
N5  
H3  
N6  
D13  
D14  
E12  
E14  
F12  
F13  
F14  
G12  
G13  
G14  
H12  
H13  
H14  
J12  
J13  
N7  
P14  
A2  
LAD1  
N.C.  
N8  
LAD2  
N.C.  
N9  
B14  
C5  
LAD3  
N.C.  
N10  
N11  
N12  
N13  
N14  
P2  
LAD4  
A11  
A10  
B9  
N.C.  
C11  
E11  
J3  
LAD5  
N.C.  
LAD6  
N.C.  
LAD7  
A9  
N.C.  
K3  
LAD8  
C8  
N.C.  
L12  
M3  
M4  
M10  
N1  
LAD9  
A8  
N.C.  
P3  
LAD10  
LAD11  
LAD12  
LAD13  
LAD14  
B8  
N.C.  
P4  
A7  
N.C.  
P5  
B7  
N.C.  
P6  
C7  
N.C.  
P7  
P13  
H1  
A6  
N.C.  
P8  
NOTE: Do not connect any external logic to any pins marked N.C.  
26  
80960KA  
Table 11. 80960KA PQFP Pinout — In Pin Order  
Pin  
1
Signal  
HLDA  
ALE  
Pin  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
Signal  
N.C.  
VCC  
Pin  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
Signal  
VSS  
Pin  
Signal  
LAD0  
LAD1  
LAD2  
VSS  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
2
VSS  
3
LAD26  
LAD27  
LAD28  
LAD29  
LAD30  
LAD31  
VSS  
VCC  
N.C.  
VCC  
4
N.C.  
N.C.  
N.C.  
N.C.  
VCC  
5
VCC  
LAD3  
LAD4  
LAD5  
LAD6  
LAD7  
LAD8  
LAD9  
LAD10  
LAD11  
LAD12  
VSS  
6
N.C.  
VSS  
7
8
VCC  
9
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
CACHE  
W/R  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
READY  
DT/R  
BE0  
VSS  
BE1  
N.C.  
VCC  
BE2  
LAD13  
LAD14  
LAD15  
LAD16  
LAD17  
LAD18  
LAD19  
LAD20  
LAD21  
LAD22  
VSS  
BE3  
VCC  
FAILURE  
VSS  
VSS  
IAC/INT0  
INT1  
INT2/INTR  
INT3/INTA  
N.C.  
VSS  
LOCK  
DEN  
VSS  
VSS  
N.C.  
VCC  
VSS  
VCC  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
CLK2  
VCC  
VSS  
VSS  
RESET  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
LAD23  
LAD24  
LAD25  
BADAC  
HOLD  
N.C.  
N.C.  
VCC  
VCC  
N.C.  
VSS  
VSS  
ADS  
NOTE: Do not connect any external logic to any pins marked N.C.  
27  
80960KA  
Table 12. 80960KA PQFP Pinout — In Signal Order  
Signal  
ADS  
Pin  
Signal  
LAD15  
Pin  
Signal  
N.C.  
Pin  
Signal  
Pin  
132  
117  
49  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
41  
ALE  
2
LAD16  
LAD17  
LAD18  
LAD19  
LAD20  
LAD21  
LAD22  
LAD23  
LAD24  
LAD25  
LAD26  
LAD27  
LAD28  
LAD29  
LAD30  
LAD31  
LOCK  
N.C.  
118  
119  
120  
121  
122  
123  
124  
126  
127  
128  
3
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
READY  
RESET  
VCC  
50  
51  
54  
58  
59  
60  
61  
62  
63  
64  
65  
66  
69  
72  
75  
76  
77  
78  
81  
89  
94  
95  
96  
97  
98  
131  
12  
93  
29  
30  
35  
36  
55  
56  
70  
71  
74  
82  
83  
92  
9
BADAC  
BE0  
129  
14  
BE1  
15  
BE2  
16  
BE3  
17  
CACHE  
CLK2  
DEN  
10  
91  
21  
DT/R  
13  
19  
22  
23  
26  
27  
32  
33  
42  
52  
53  
57  
67  
68  
73  
79  
80  
84  
90  
99  
103  
114  
125  
11  
FAILURE  
HLDA  
HOLD  
IAC/INT0  
INT1  
18  
1
4
130  
85  
5
6
86  
7
INT2/INTR  
INT3/INTA  
LAD0  
87  
8
88  
20  
24  
25  
28  
31  
34  
37  
38  
39  
40  
43  
44  
45  
46  
47  
48  
100  
101  
102  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
115  
116  
LAD1  
N.C.  
LAD2  
N.C.  
LAD3  
N.C.  
LAD4  
N.C.  
LAD5  
N.C.  
LAD6  
N.C.  
LAD7  
N.C.  
LAD8  
N.C.  
LAD9  
N.C.  
LAD10  
LAD11  
LAD12  
LAD13  
LAD14  
N.C.  
N.C.  
N.C.  
VCC  
N.C.  
VCC  
N.C.  
VCC  
W/R  
NOTE: Do not connect any external logic to any pins marked N.C.  
28  
80960KA  
Maximum allowable ambient temperature (TA)  
permitted without exceeding TC is shown by the  
graphs in Figures 23, 24, 25 and 26. The curves  
3.3. Package Thermal Specification  
The 80960KA is specified for operation when case  
temperature is within the range 0°C to 85°C (PGA) or  
0°C to 100°C (PQFP). Measure case temperature at  
the top center of the package. Ambient temperature  
can be calculated from:  
assume the maximum permitted supply current (ICC  
)
at each speed, VCC of +5.0 V and a TCASE of +85°C  
(PGA) or +100°C (PQFP).  
If the 80960KA is to be used in a harsh environment  
where the ambient temperature may exceed the limits  
for the normal commercial part, consider using an  
extended temperature device. These components are  
TJ = TC + P*θjc  
TA = TJ + P*θja  
MHz in the ceramic  
PGA package. Extended operating temperature  
range is –40° .C to +125°C (case)  
20 and 25  
available at 16,  
TC = TA + P*ja−θjc]  
Values for θja and θjc for various airflows are given in  
Table 13 for the PGA package and in Table 14 for the  
PQFP package. The PGA’s θja can be reduced by  
adding a heatsink. For the PQFP, however, a heatsink  
is not generally used since the device is intended to  
be surface mounted.  
Figure 26 shows the maximum allowable ambient  
temperature for the 20 MHz extended temperature  
TA80960KA at various airflows. The curve assumes  
an ICC of 420 mA, VCC of 5.0 V and a TCASE of  
+125°C.  
Table 13. 80960KA PGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
50  
100  
200  
400  
600  
800  
(0)  
(0.25)  
(0.50)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
θ Junction-to-Case  
2
2
2
2
2
2
2
9
θ Case-to-Ambient  
(No Heatsink)  
19  
18  
17  
15  
12  
10  
θJA  
θJ-PIN  
θJC  
θ Case-to-Ambient  
(Omnidirectional  
Heatsink)  
16  
15  
15  
14  
14  
13  
12  
11  
9
8
7
6
6
5
θJ-CAP  
θ Case-to-Ambient  
(Unidirectional  
Heatsink)  
NOTES:  
3.  
θ
θ
θ
J-CAP = 4°C/W (approx.)  
J-PIN = 4°C/W (inner pins) (approx.)  
J-PIN = 8°C/W (outer pins) (approx.)  
1. This table applies to 80960KA PGA plugged into  
socket or soldered directly to board.  
2.  
θJA = θJC + θCA  
29  
80960KA  
Table 14. 80960KA PQFP Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
50  
100  
200  
400  
600  
800  
(0)  
(0.25)  
(0.50)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
θ Junction-to-Case  
9
9
9
9
9
9
9
9
8
θ Case-to-Ambient  
(No Heatsink)  
22  
19  
18  
16  
11  
NOTES:  
3.  
θ
θ
JL = 18°C/W (approx.)  
JB = 18°C/W (approx.)  
1. This table applies to 80960KA PQFP soldered  
directly to board.  
2.  
θJA = θJC + θCA  
θJC  
θJL  
θJB  
T
T
T
h
h
h
CLK2  
CLK  
T
T
12  
11  
HOLD  
HLDA  
T
T
6H  
9H  
Figure 22. HOLD Timing  
30  
80960KA  
90  
85  
80  
75  
70  
65  
60  
55  
0
200  
400  
600  
800  
AIRFLOW (ft/min)  
PQFP  
PGA with no  
heatsink  
PGA with omni-  
directional heatsink  
PGA with uni-  
directional heatsink  
Figure 23. 16 MHz Maximum Allowable Ambient Temperature  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0
200  
400  
600  
800  
AIRFLOW (ft/min)  
PQFP  
PGA with no  
heatsink  
PGA with omni-  
directional heatsink  
PGA with uni-  
directional heatsink  
Figure 24. 20 MHz Maximum Allowable Ambient Temperature  
31  
80960KA  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0
100  
200  
300  
400  
500  
600  
700  
800  
AIRFLOW (ft/min)  
PQFP  
PGA with no  
heatsink  
PGA with omni-  
directional heatsink  
PGA with uni-  
directional heatsink  
Figure 25. 25 MHz Maximum Allowable Ambient Temperature  
120  
115  
110  
105  
100  
95  
90  
0
100  
200  
300  
400  
500  
600  
700  
800  
AIRFLOW (ft/min)  
PGA with no  
heatsink  
PGA with omni-  
directional heatsink  
PGA with uni-  
directional heatsink  
Figure 26. Maximum Allowable Ambient Temperature  
for the Extended Temperature TA-80960KA at 20 MHz in PGA Package  
32  
80960KA  
4.0 WAVEFORMS  
Figures 27, 28, 29 and 30 show the waveforms for various transactions on the 80960KA’s local bus.  
T
T
T
T
T
T
r
a
d
r
a
d
CLK2  
CLK  
LAD31:0  
ALE  
ADS  
BE3:0  
W/R  
DT/R  
DEN  
READY  
Figure 27. Non-Burst Read and Write Transactions Without Wait States  
33  
80960KA  
T
T
T
T
T
a
T
T
T
T
r
T
a
d
d
r
d
d
d
d
CLK2  
CLK  
LAD31:0  
ALE  
ADS  
BE3:0  
W/R  
DT/R  
DEN  
READY  
Figure 28. Burst Read and Write Transaction Without Wait States  
34  
80960KA  
T
T
T
T
T
T
T
T
T
T
T
r
a
w
w
d
w
d
w
d
w
d
CLK2  
CLK  
LAD31:0  
ALE  
ADS  
BE3:0  
W/R  
DT/R  
DEN  
READY  
Figure 29. Burst Write Transaction with 2, 1, 1, 1 Wait States  
35  
80960KA  
T
T
T
T
T
T
T
T
T
T
T
r
a
w
d
d
d
d
r
a
w
d
CLK2  
CLK  
LAD31:0  
ALE  
ADS  
BE3:2  
BE1:0  
W/R  
DT/R  
DEN  
READY  
Figure 30. Accesses Generated by Quad Word Read Bus Request,  
Misaligned Two Bytes from Quad Word Boundary (1, 0, 0, 0 Wait States)  
36  
80960KA  
PREVIOUS  
CYCLE  
INTERRUPT  
ACKNOWLEDGEMENT  
INTERRUPT  
ACKNOWLEDGEMENT  
IDLE  
(5 BUS STATES)  
CYCLE 1  
CYCLE 2  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
r
X
X
a
d
r
I
I
I
I
I
a
w
d
CLK2  
CLK  
INTR  
VECTOR  
ADDR  
ADDR  
LAD31:0  
ALE  
ADS  
INTA  
DT/R  
DEN  
LOCK  
READY  
NOTE:  
INTR can go low no sooner than the input hold time following the beginning of interrupt acknowledgment cycle 1.  
For a second interrupt to be acknowledged, INTR must be low for at least three cycles before it can be reasserted.  
Figure 31. Interrupt Acknowledge Transaction  
37  
80960KA  
5.0 REVISION HISTORY  
Revision -006  
To address the fact that many of the package prefix variables have changed,  
all package prefix variables in this document are now indicated with an "x".  
No revision history was maintained in earlier revisions of this data sheet. All errata that has been identified to  
date is incorporated into this revision. The sections significantly changed since the previous revision are:  
Last  
Rev.  
Section  
Description  
Table 3. 80960KA Pin Description:  
L-Bus Signals (pg. 8)  
-004  
LOCK pin description rewritten for clarity.  
2.3. Connection Recommenda-  
tions (pg. 11)  
-004  
Changed suggested open-drain termination networks to  
reflect more realistic operating conditions with reduction in  
DC power consumption.  
Figure 9. Typical Current vs. Fre-  
quency (Hot Temp) (pg. 13)  
-004  
-004  
Added figure for typical power supply current at hot tempera-  
ture to aid thermal analysis.  
Figure 12. Test Load Circuit for  
Three-State Output Pins (pg. 14)  
All outputs now specified with standard 50 pF test loads to  
agree with actual test methodology.  
Figure 13. Test Load Circuit for  
Open-Drain Output Pins (pg. 14)  
2.7. DC Characteristics (pg. 15)  
-004  
ICC max specification reduced:  
WAS:  
IS:  
AT:  
375 mA  
420 mA  
480 mA  
315 mA  
360 mA  
420 mA  
16 MHz  
20 MHz  
25 MHz  
Figures 7, 8, 9, 23, 24, 25 and 26 have also been changed  
accordingly.  
2.8. AC Specifications (pg. 16)  
-004  
25 MHz operation extended to product in PQFP package. T8  
min. improved at all frequencies from 0 ns to 2 ns and T8  
max. improved from 20 ns to 18 ns.  
T8H max improvement:  
WAS:  
31ns  
26ns  
24ns  
IS:  
AT:  
28ns  
23ns  
23ns  
16 MHz  
20 MHz  
25 MHz  
Functional Waveforms  
Various  
-004  
-004  
Redrawn for clarity. CLK signal drawn with more likely phase  
relationship to CLK2. Open-drain output signals drawn to  
show correct inactive states.  
Deleted all references to 10 MHz. Intel no longer offers a  
10 MHz 80960KA device.  
38  

相关型号:

NG80960KA20

RISC Microprocessor, 32-Bit, 20MHz, CMOS, PQFP132, PLASTIC, QFP-132
INTEL

NG80960KB

RISC Microprocessor, 32-Bit, 25MHz, CMOS, PQFP132, PLASTIC, QFP-132
INTEL

NG80960KB-16

MICROPROCESSOR|32-BIT|CMOS|QFP|132PIN|PLASTIC
ETC

NG80960KB-20

MICROPROCESSOR|32-BIT|CMOS|QFP|132PIN|PLASTIC
ETC

NG80960KB-25

MICROPROCESSOR|32-BIT|CMOS|QFP|132PIN|PLASTIC
ETC

NG80960KB20

RISC Microprocessor, 32-Bit, 20MHz, CMOS, PQFP132, 0.64 MM, PLASTIC, QFP-132
INTEL

NG80L960JA-16

RISC Microprocessor, 32-Bit, 16.67MHz, CMOS, PQFP132, PLASTIC, QFP-132
INTEL

NG80L960JA-25

RISC Microprocessor, 32-Bit, 25MHz, CMOS, PQFP132, PLASTIC, QFP-132
INTEL

NG80L960JF-16

RISC Microprocessor, 32-Bit, 16.67MHz, CMOS, PQFP132, PLASTIC, QFP-132
INTEL

NG80L960JF-25

RISC Microprocessor, 32-Bit, 25MHz, CMOS, PQFP132, PLASTIC, QFP-132
INTEL

NG82307-25

DMA Controller, CMOS, PQFP132
INTEL

NG82352

Interface Circuit, PQFP120
INTEL