HI5728INZ [INTERSIL]

10-Bit, 125/60MSPS, Dual High Speed CMOS D/A Converter;
HI5728INZ
型号: HI5728INZ
厂家: Intersil    Intersil
描述:

10-Bit, 125/60MSPS, Dual High Speed CMOS D/A Converter

转换器
文件: 总19页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI5728  
®
Data Sheet  
January 22, 2010  
FN4321.5  
10-Bit, 125/60MSPS, Dual High Speed  
CMOS D/A Converter  
Features  
• Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . .125MSPS  
• Low Power . . . . . . . . . . . . . . . 330mW at 5V, 54mW at 3V  
• Integral Linearity Error . . . . . . . . . . . . . . . . . . . . . ±1 LSB  
• Differential Linearity . . . . . . . . . . . . . . . . . . . . . . ±0.5 LSB  
• Gain Matching (Typ). . . . . . . . . . . . . . . . . . . . . . . . . .0.5%  
• SFDR at 5MHz Output . . . . . . . . . . . . . . . . . . . . . . . 68dBc  
• Single Power Supply from +5V to +3V  
The HI5728 is a 10-bit, dual 125MSPS D/A converter which  
is implemented in an advanced CMOS process. It is  
designed for high speed applications where integration,  
bandwidth and accuracy are essential. Operating from a  
single +5V or +3V supply, the converter provides 20.48mA of  
full scale output current and includes an input data register.  
Low glitch energy and excellent frequency domain  
performance are achieved using a segmented architecture.  
A 60MSPS version and an 8-bit (HI5628) version are also  
available. Comparable single DAC solutions are the HI5760  
(10-bit) and the HI5660 (8-bit).  
• CMOS Compatible Inputs  
• Excellent Spurious Free Dynamic Range  
• Internal Voltage Reference  
Ordering Information  
• Dual 10-Bit D/A Converters on a Monolithic Chip  
• Pb-Free Available (RoHS Compliant)  
MAX  
TEMP.  
RANGE  
(°C) PACKAGE DWG. # (MHz)  
CLOCK  
PART  
NUMBER  
PART  
MARKING  
PKG.  
SPEED  
Applications  
HI5728IN*  
HI5728IN  
-40 to +85 48 Ld LQFP Q48.7x7A 125  
• Wireless Local Loop  
HI5728INZ*  
(Note)  
HI5728INZ  
-40 to +85 48 Ld LQFP Q48.7x7A 125  
(Pb-free)  
• Direct Digital Frequency Synthesis  
• Wireless Communications  
• Signal Reconstruction  
HI5728/6IN  
HI5728/6IN -40 to +85 48 Ld LQFP Q48.7x7A  
60  
60  
HI5728/6INZ HI5728 /6INZ -40 to +85 48 Ld LQFP Q48.7x7A  
(Note)  
(Pb-free)  
• Arbitrary Waveform Generators  
Test Equipment/Instrumentation  
• High Resolution Imaging Systems  
HI5728EVAL1  
+25  
Evaluation Platform  
125  
*Add “-T” suffix for tape and reel. Please refer to TB347 for details on reel  
specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ special  
Pb-free material sets, molding compounds/die attach materials, and  
100% matte tin plate plus anneal (e3 termination finish, which is RoHS  
compliant and compatible with both SnPb and Pb-free soldering  
operations). Intersil Pb-free products are MSL classified at Pb-free peak  
reflow temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 1999, 2010. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
HI5728  
Pinout  
HI5728  
(48 LD LQFP)  
TOP VIEW  
48 47 46 45 44 43 42 41 40 39 38 37  
QD6  
QD5  
QD4  
36  
1
ID6  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
ID5  
ID4  
ID3  
2
3
QD3  
QD2  
QD1  
4
5
ID2  
ID1  
6
QD0 (LSB)  
ID0 (LSB)  
7
DV  
DD  
DGND  
SLEEP  
8
DV  
DD  
9
NC  
DGND  
10  
AV  
DD  
AGND  
NC  
11  
AV  
DD  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
FN4321.5  
January 22, 2010  
2
HI5728  
Functional Block Diagram  
IOUTA IOUTB  
(LSB) ID0  
ID1  
CASCODE  
CURRENT  
SOURCE  
ID2  
ID3  
5 LSBs  
+
36  
36  
ID4  
SWITCH  
MATRIX  
LATCH  
LATCH  
31 MSB  
ID5  
ID6  
SEGMENTS  
UPPER  
5-BIT  
31  
ID7  
DECODER  
ID8  
(MSB) ID9  
ICLK  
ICOMP1  
INT/EXT  
BIAS  
GENERATION  
INT/EXT  
REFERENCE  
SELECT  
VOLTAGE  
REFERENCE  
REFLO  
REFIO  
FSADJ  
SLEEP  
QCOMP1  
(LSB) QD0  
QD1  
CASCODE  
CURRENT  
SOURCE  
QD2  
QD3  
5 LSBs  
+
36  
36  
QD4  
SWITCH  
MATRIX  
LATCH  
LATCH  
31 MSB  
SEGMENTS  
QD5  
QD6  
UPPER  
5-BIT  
31  
QD7  
DECODER  
QD8  
QCLK  
AV  
AGND DV  
DD  
DGND  
QOUTA QOUTB  
DD  
FN4321.5  
January 22, 2010  
3
HI5728  
Typical Applications Circuit  
I
/Q  
CLK CLK  
DIGITAL  
GROUND  
PLANE  
50Ω  
DV  
DD  
DV  
DD  
ANALOG  
GROUND  
PLANE  
0.1µF  
0.1µF  
48 47 46 45 44 43 42 41 40 39 3837  
36  
QD6  
QD5  
QD4  
QD3  
QD2  
QD1  
QD0 (LSB)  
1
2
3
4
5
6
7
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
ID0 (LSB)  
SLEEP  
DV  
DGND  
NC (GROUND)  
DV  
DD  
8
9
DD  
DV  
DD  
DV  
DD  
DGND  
0.1µF  
10  
AV  
AV  
11 NC (GROUND)  
DD  
DD  
12  
0.1µF  
13 14 15 16 17 18 19 20 21 22 23 24  
0.1µF  
AGND  
AV  
DD  
0.1µF  
AGND  
QCOMP1  
AV  
DD  
0.1µF  
REFIO  
ICOMP1  
0.1µF  
0.1µF  
R
NOTE: ICOMP1 AND QCOMP1  
PINS (24, 14) MUST BE TIED  
TOGETHER EXTERNALLY  
SET  
2kΩ  
AV  
DD  
50Ω 50Ω  
50Ω 50Ω  
QOUTB  
QOUTA  
IOUTA  
IOUTB  
FERRITE  
BEAD  
FERRITE  
BEAD  
+5V OR +3V SUPPLY  
+5V OR +3V SUPPLY  
+
+
10µH  
DV  
(POWER PLANE)  
AV  
(POWER PLANE)  
DD  
10µH  
DD  
10µF  
0.1µF  
0.1µF  
10µF  
FN4321.5  
January 22, 2010  
4
HI5728  
Pin Descriptions  
PIN NO.  
PIN NAME  
PIN DESCRIPTION  
39, 38, 37, 36, QD9 (MSB) Through Digital Data Bit 9, the Most Significant Bit through Digital Data Bit 0, the Least Significant Bit, of the Q  
35, 34, 33, 32,  
31, 30  
QD0 (LSB)  
channel.  
1, 2, 3, 4, 5, 6, 7, ID9 (MSB) Through Digital Data Bit 9, the Most Significant Bit through Digital Data Bit 0, the Least Significant Bit, of the I  
46, 47, 48  
ID0 (LSB)  
channel.  
8
SLEEP  
Control Pin for Power-Down mode. Sleep Mode is active high; Connect to ground for Normal Mode. Sleep  
pin has internal 20µA active pull-down current.  
15  
23  
REFLO  
REFIO  
Connect to analog ground to enable internal 1.2V reference or connect to AV  
to disable.  
DD  
Reference voltage input if internal reference is disabled and reference voltage output if internal reference is  
enabled. Use 0.1µF cap to ground when internal reference is enabled.  
22  
FSADJ  
Full Scale Current Adjust. Use a resistor to ground to adjust full scale output current. Full Scale Output  
Current Per Channel = 32 x I  
.
FSADJ  
14, 24  
ICOMP1, QCOMP1 Reduces noise. Connect each to AV  
with 0.1µF capacitor near each pin. The ICOMP1 and QCOMP1  
DD  
pins MUST be tied together externally.  
13, 18, 19, 25  
AGND  
IOUTB  
IOUTA  
QOUTB  
QOUTA  
NC  
Analog Ground Connections.  
17  
The complimentary current output of the I channel. Bits set to all 0s gives full scale current.  
Current output of the I channel. Bits set to all 1s gives full scale current.  
The complimentary current output of the Q channel. Bits set to all 0s gives full scale current.  
Current output of the Q channel. Bits set to all 1s gives full scale current.  
No Connect. Recommended: connect to ground.  
16  
20  
21  
11, 27  
12, 26  
10, 28, 41, 44  
9, 29, 40, 45  
43  
AV  
Analog Supply (+2.7V to +5.5V).  
DD  
DGND  
DV  
Digital Ground.  
Supply voltage for digital circuitry (+2.7V to +5.5V).  
DD  
ICLK  
Clock input for I channel. Positive edge of clock latches data.  
Clock input for Q channel. Positive edge of clock latches data.  
42  
QCLK  
FN4321.5  
January 22, 2010  
5
HI5728  
Absolute Maximum Ratings  
Thermal Information  
Digital Supply Voltage DV  
to DCOM . . . . . . . . . . . . . . . . . +5.5V  
to ACOM. . . . . . . . . . . . . . . . . . +5.5V  
Thermal Resistance (Typical, Note 1)  
θ
(°C/W)  
55  
DD  
Analog Supply Voltage AV  
JA  
DD  
48 Ld TQFP Package. . . . . . . . . . . . . . . . . . . . . . . .  
Maximum Power Dissipation  
Grounds, ACOM TO DCOM . . . . . . . . . . . . . . . . . . . -0.3V to +0.3V  
Digital Input Voltages (D9-D0, CLK, SLEEP). . . . . . . . .DV +0.3V  
DD  
Internal Reference Output Current. . . . . . . . . . . . . . . . . . . . . ±50µA  
Reference Input Voltage Range. . . . . . . . . . . . . . . . . . AV +0.3V  
48 Ld TQFP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .930mW  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +150°C  
Maximum Storage Temperature Range. . . . . . . . . -65°C to +150°C  
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
DD  
) . . . . . . . . . . . . . . . . . . . . . . . . . 24mA  
Analog Output Current (I  
OUT  
Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTE:  
1. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
Electrical Specifications AV = DV = +5V, V  
= Internal 1.2V, IOUTFS = 20mA, T = +25°C for All Typical Values. Data given is  
A
per channel except for “POWER SUPPLY CHARACTERISTICS” on page 8  
DD  
DD  
REF  
HI5728IN  
T
= -40°C TO +85°C  
A
MIN  
MAX  
PARAMETER  
SYSTEM PERFORMANCE (Per Channel)  
Resolution  
TEST CONDITIONS  
(Note 11) TYP (Note 11)  
UNITS  
10  
-1  
-
-
+1  
Bits  
LSB  
Integral Linearity Error, INL  
“Best Fit” Straight Line (Note 7)  
±0.5  
±0.25  
Differential Linearity Error, DNL  
(Note 7)  
(Note 7)  
(Note 7)  
-0.5  
-0.025  
-
+0.5  
+0.025  
-
LSB  
Offset Error, I  
OS  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
ppm FSR/°C  
ppm FSR/°C  
dB  
Offset Drift Coefficient  
0.1  
±2  
Full Scale Gain Error, FSE  
With External Reference (Notes 2, 7)  
With Internal Reference (Notes 2, 7)  
With External Reference (Note 7)  
With Internal Reference (Note 7)  
-10  
-10  
-
+10  
+10  
-
±1  
Full Scale Gain Drift  
±50  
±100  
0.1  
80  
-
-
Gain Matching Between Channels  
I/Q Channel Isolation  
-0.5  
-
0.5  
-
F
= 10MHz  
dB  
OUT  
(Note 3)  
Output Voltage Compliance Range  
-0.3  
2
-
1.25  
20  
V
Full Scale Output Current, I  
-
mA  
FS  
DYNAMIC CHARACTERISTICS (Per Channel)  
Maximum Clock Rate, f  
Output Settling Time, (t  
(Note 3)  
125  
-
-
-
-
-
-
-
-
-
-
MHz  
ns  
CLK  
)
0.1% (±1 LSB, equivalent to 9 Bits) (Note 7)  
0.05% (±1/2 LSB, equivalent to 10 Bits) (Note 7)  
-
-
-
-
-
-
-
-
20  
35  
35  
1.5  
1.5  
10  
50  
30  
SETT  
ns  
Singlet Glitch Area (Peak Glitch)  
Output Rise Time  
R
= 25Ω (Note 7)  
pV•s  
ns  
L
Full Scale Step  
Full Scale Step  
Output Fall Time  
ns  
Output Capacitance  
Output Noise  
pF  
IOUTFS = 20mA  
IOUTFS = 2mA  
pA/Hz  
pA/Hz  
FN4321.5  
January 22, 2010  
6
HI5728  
Electrical Specifications AV = DV = +5V, V = Internal 1.2V, IOUTFS = 20mA, T = +25°C for All Typical Values. Data given is  
REF A  
DD  
DD  
per channel except for “POWER SUPPLY CHARACTERISTICS” on page 8 (Continued)  
HI5728IN  
T
= -40°C TO +85°C  
A
MIN  
MAX  
PARAMETER  
TEST CONDITIONS  
(Note 11) TYP (Note 11)  
UNITS  
AC CHARACTERISTICS (Per Channel) - HI5728IN - 125MHz  
Spurious Free Dynamic Range,  
SFDR Within a Window  
f
= 125MSPS, f  
= 100MSPS, f  
= 32.9MHz, 10MHz Span (Notes 4, 7)  
= 5.04MHz, 4MHz Span (Notes 4, 7)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
75  
76  
75  
76  
78  
71  
71  
76  
54  
64  
52  
60  
68  
74  
63  
55  
68  
73  
73  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
CLK  
OUT  
f
CLK  
OUT  
f
= 60MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 10.1MHz, 10MHz Span (Notes 4, 7)  
= 5.02MHz, 2MHz Span (Notes 4, 7)  
= 1.00MHz, 2MHz Span (Notes 4, 7)  
CLK  
OUT  
OUT  
OUT  
f
CLK  
f
CLK  
Total Harmonic Distortion (THD) to  
Nyquist  
f
f
f
= 100MSPS, f  
= 2.00MHz (Notes 4, 7)  
OUT  
CLK  
CLK  
CLK  
= 50MSPS, f  
= 50MSPS, f  
= 2.00MHz (Notes 4, 7)  
OUT  
OUT  
= 1.00MHz (Notes 4, 7)  
Spurious Free Dynamic Range,  
SFDR to Nyquist  
f
= 125MSPS, f  
= 125MSPS, f  
= 100MSPS, f  
= 100MSPS, f  
= 100MSPS, f  
= 100MSPS, f  
= 32.9MHz, 62.5MHz Span (Notes 4, 7)  
= 10.1MHz, 62.5MHz Span (Notes 4, 7)  
= 40.4MHz, 50MHz Span (Notes 4, 7)  
= 20.2MHz, 50MHz Span (Notes 4, 7)  
= 5.04MHz, 50MHz Span (Notes 4, 7)  
= 2.51MHz, 50MHz Span (Notes 4, 7)  
CLK  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
f
CLK  
f
CLK  
f
CLK  
f
CLK  
f
CLK  
f
= 60MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 10.1MHz, 30MHz Span (Notes 4, 7)  
= 20.2MHz, 25MHz Span (Notes 4, 7)  
= 5.02MHz, 25MHz Span (Notes 4, 7)  
= 2.51MHz, 25MHz Span (Notes 4, 7)  
= 1.00MHz, 25MHz Span (Notes 4, 7)  
CLK  
OUT  
OUT  
OUT  
OUT  
OUT  
f
CLK  
f
CLK  
f
CLK  
f
CLK  
AC CHARACTERISTICS (Per Channel) - HI5728/6IN - 60MHz  
Spurious Free Dynamic Range,  
SFDR Within a Window  
f
= 60MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 10.1MHz, 10MHz Span (Notes 4, 7)  
= 5.02MHz, 2MHz Span (Notes 4, 7)  
= 1.00MHz, 2MHz Span (Notes 4, 7)  
-
-
-
-
-
-
-
-
-
-
-
-
75  
76  
78  
71  
76  
56  
63  
55  
68  
73  
73  
71  
-
-
-
-
-
-
-
-
-
-
-
-
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
CLK  
OUT  
OUT  
OUT  
f
CLK  
f
CLK  
Total Harmonic Distortion (THD) to  
Nyquist  
f
f
= 50MSPS, f  
= 50MSPS, f  
= 2.00MHz (Notes 4, 7)  
= 1.00MHz (Notes 4, 7)  
CLK  
CLK  
OUT  
OUT  
Spurious Free Dynamic Range,  
SFDR to Nyquist  
f
= 60MSPS, f  
= 60MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 25MSPS, f  
= 20.2MHz, 30MHz Span (Notes 4, 7)  
= 10.1MHz, 30MHz Span (Notes 4, 7)  
= 20.2MHz, 25MHz Span (Notes 4, 7)  
= 5.02MHz, 25MHz Span (Notes 4, 7)  
= 2.51MHz, 25MHz Span (Notes 4, 7)  
= 1.00MHz, 25MHz Span (Notes 4, 7)  
= 5.02MHz, 25MHz Span (Notes 4, 7)  
CLK  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
f
CLK  
f
CLK  
f
CLK  
f
CLK  
f
CLK  
f
CLK  
VOLTAGE REFERENCE  
Internal Reference Voltage, V  
Voltage at Pin 22 with Internal Reference  
1.04  
1.16  
±60  
0.1  
1.28  
V
ppm/°C  
µA  
FSADJ  
Internal Reference Voltage Drift  
-
-
-
-
Internal Reference Output Current  
Sink/Source Capability  
Reference Input Impedance  
-
-
1
-
-
MΩ  
Reference Input Multiplying  
Bandwidth  
(Note 7)  
1.4  
MHz  
DIGITAL INPUTS D9-D0, CLK (Per Channel)  
Input Logic High Voltage with (Note 3)  
5V Supply, V  
3.5  
5
-
V
IH  
FN4321.5  
January 22, 2010  
7
HI5728  
Electrical Specifications AV = DV = +5V, V = Internal 1.2V, IOUTFS = 20mA, T = +25°C for All Typical Values. Data given is  
REF A  
DD  
DD  
per channel except for “POWER SUPPLY CHARACTERISTICS” on page 8 (Continued)  
HI5728IN  
T
= -40°C TO +85°C  
A
MIN  
MAX  
PARAMETER  
TEST CONDITIONS  
(Note 11) TYP (Note 11)  
UNITS  
Input Logic High Voltage with  
(Note 3)  
(Note 3)  
(Note 3)  
2.1  
3
0
0
-
V
3V Supply, V  
IH  
Input Logic Low Voltage with  
5V Supply, V  
-
-
1.3  
0.9  
V
V
IL  
Input Logic Low Voltage with  
3V Supply, V  
IL  
Input Logic Current, I  
Input Logic Current, I  
-10  
-10  
-
-
-
+10  
+10  
-
µA  
µA  
pF  
IH  
IL  
Digital Input Capacitance, C  
5
IN  
TIMING CHARACTERISTICS (Per Channel)  
Data Setup Time, t  
See Figure 41 (Note 3)  
3
3
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
SU  
Data Hold Time, t  
See Figure 41 (Note 3)  
See Figure 41  
HLD  
Propagation Delay Time, t  
1
-
PD  
CLK Pulse Width, t  
, t  
PW1 PW2  
See Figure 41 (Note 3)  
4
POWER SUPPLY CHARACTERISTICS  
AVDD Power Supply  
(Notes 8, 9)  
2.7  
5.0  
5.0  
46  
5.5  
V
V
DVDD Power Supply  
(Notes 8, 9)  
2.7  
5.5  
Analog Supply Current (I  
)
(5V or 3V, IOUTFS = 20mA)  
(5V or 3V, IOUTFS = 2mA)  
(5V, IOUTFS = Don’t Care) (Note 5)  
(3V, IOUTFS = Don’t Care) (Note 5)  
-
60  
mA  
AVDD  
-
8
-
mA  
Digital Supply Current (I  
)
-
6
10  
mA  
DVDD  
-
3
-
mA  
Supply Current (I  
) Sleep Mode (5V or 3V, IOUTFS = Don’t Care)  
(5V, IOUTFS = 20mA) (Note 6)  
(5V, IOUTFS = 2mA) (Note 6)  
-
3.2  
330  
140  
170  
54  
6
mA  
AVDD  
Power Dissipation  
-
-
mW  
mW  
mW  
mW  
mW  
mW  
mW  
% FSR/V  
-
-
(3V, IOUTFS = 20mA) (Note 6)  
(3V, IOUTFS = 2mA) (Note 6)  
-
-
-
-
(5V, IOUTFS = 20mA) (Note 10)  
(3.3V, IOUTFS = 20mA) (Note 10)  
(3V, IOUTFS = 20mA) (Note 10)  
-
300  
150  
135  
-
-
-
-
-
-
Power Supply Rejection  
NOTES:  
Single Supply (Note 7)  
-0.2  
+0.2  
2. Gain Error measured as the error in the ratio between the full scale output current and the current through R  
should be 32.  
(typically 625μA). Ideally the ratio  
SET  
3. Limits established by characterization and are not production tested.  
4. Spectral measurements made with differential coupled transformer and 100% amplitude.  
5. Measured with the clock at 50MSPS and the output frequency at 1MHz, both channels.  
6. Measured with the clock at 100MSPS and the output frequency at 40MHz, both channels.  
7. See “Definition of Specifications” on page 16.  
8. For operation below 3V, it is recommended that the output current be reduced to 12mA or less to maintain optimum performance. DV and AV  
DD  
DD  
do not have to be equal.  
9. For operation above 125MHz, it is recommended that the power supply be 3.3V or greater. The part is functional with the clock above 125MSPS  
and the power supply below 3.3V, but performance is degraded.  
10. Measured with the clock at 60MSPS and the output frequency at 10MHz, both channels.  
11. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN4321.5  
January 22, 2010  
8
HI5728  
Typical Performance Curves, 5V Power Supply  
80  
75  
70  
65  
60  
55  
50  
76  
74  
72  
70  
-6dBFS  
-6dBFS  
0dBFS  
-12dBFS  
68  
66  
64  
62  
60  
-12dBFS  
0dBFS  
1
2
3
4
5
6
7
8
9
10  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
FIGURE 1. SFDR vs f  
, CLOCK = 5MSPS  
OUT  
FIGURE 2. SFDR vs f  
, CLOCK = 25MSPS  
OUT  
80  
75  
70  
65  
60  
55  
0dBFS  
-6dBFS  
75  
70  
-12dBFS  
-6dBFS  
65  
60  
55  
-12dBFS  
0dBFS  
25  
50  
45  
0
5
10  
15  
20  
30  
35  
40  
45  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
FIGURE 3. SFDR vs f  
, CLOCK = 50MSPS  
OUT  
FIGURE 4. SFDR vs f  
, CLOCK = 100MSPS  
OUT  
75  
80  
75  
70  
65  
60  
55  
50  
45  
25MSPS  
70  
65  
60  
55  
50  
45  
50MSPS  
100MSPS  
6dBFS  
-12dBFS  
125MSPS  
0dBFS  
30  
-25  
-20  
-15  
-10  
-5  
0
0
5
10  
15  
20  
25  
35  
40  
45  
50  
AMPLITUDE (dBFS)  
OUTPUT FREQUENCY (MHz)  
FIGURE 5. SFDR vs f  
, CLOCK = 125MSPS  
OUT  
FIGURE 6. SFDR vs AMPLITUDE, f  
/f = 10  
CLK OUT  
FN4321.5  
January 22, 2010  
9
HI5728  
Typical Performance Curves, 5V Power Supply (Continued)  
75  
70  
65  
60  
55  
50  
45  
40  
80  
75  
70  
65  
60  
55  
50  
45  
40  
25MSPS  
50MSPS  
25MSPS  
(3.38/3.63MHz)  
100MSPS  
50MSPS  
(6.75/7.25MHz)  
125MSPS  
100MSPS  
(13.5/14.5MHz)  
125MSPS  
(16.9/18.1MHz)  
-25  
-20  
-15  
-10  
-5  
0
-25  
-20  
-15  
-10  
-5  
0
AMPLITUDE (dBFS)  
AMPLITUDE (TOTAL PEAK POWER OF COMBINED TONES) (dBFS)  
FIGURE 7. SFDR vs AMPLITUDE, f  
/f  
CLK OUT  
= 5  
FIGURE 8. SFDR vs AMPLITUDE OF TWO TONES, f  
/f = 7  
CLK OUT  
75  
75  
2.5MHz  
10MHz  
70  
65  
60  
55  
50  
45  
40  
70  
-6dBFS DIFF  
0dBFS DIFF  
65  
20MHz  
60  
40MHz  
55  
-6dBFS SINGLE  
50  
0dBFS SINGLE  
45  
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
30  
35  
40  
I
(mA)  
OUTPUT FREQUENCY (MHz)  
OUT  
FIGURE 9. SFDR vs I  
, CLOCK = 100MSPS  
OUT  
FIGURE 10. DIFFERENTIAL vs SINGLE-ENDED,  
CLOCK = 100MSPS  
80  
75  
70  
65  
60  
55  
50  
45  
40  
-10  
2.5MHz  
f
= 100MSPS  
-20  
CLK  
f
=9.95MHz  
OUT  
AMPLITUDE = 0dBFS  
SFDR = 64dBc  
-30
10.1MHz  
-40  
14dB EXTERNAL ANALYZER ATTENUATION  
-50  
-60
-70
-80
-90  
40.4MHz  
60  
-100  
-110  
0
50  
5MHz/DIV.  
FREQUENCY (MHz)  
-40  
-20  
0
20  
40  
80  
5MHz/DIV.  
TEMPERATURE (°C)  
FIGURE 11. SFDR vs TEMPERATURE, CLOCK = 100MSPS  
FIGURE 12. SINGLE TONE SFDR  
FN4321.5  
January 22, 2010  
10  
HI5728  
Typical Performance Curves, 5V Power Supply (Continued)  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
f
= 100MSPS  
CLK  
l=
= 100MSPS  
f
CLK  
-30  
f
= 3.8, 4.4, 5.6, 6.2MHz  
COMBINED PEAK  
AMPLITUDE = 0dBFS  
SFDR = 71.4dBc  
OUT  
f
= 13.5/14.5MHZ  
OUT  
COMBINED PEAK  
-40
AMPLITUDE = 0dBFS  
SFDR = 62.9dBc  
-50  
14dB EXTERNAL  
ANALYZER ATTENUATION  
(IN A WINDOW)  
-60  
-70  
-80  
-90  
-100  
-110
0
5MHz/DIV.  
5MHz/DIV.  
50  
0.5  
15  
FREQUENCY (MHz)  
1.45MHz/ DIV.  
FIGURE 13. TWO TONE, CLOCK = 100MSPS  
FIGURE 14. FOUR-TONE, CLOCK = 100MSPS  
-20  
-30  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
= 50MSPS  
CLK  
f
= 100MSPS  
CLK  
= 2.6, 3.2, 3.8, 4.4, 5.6, 6.2, 6.8MHZ  
f
= 1.9, 2.2, 2.8, 3.1MHZ  
COMBINED PEAK  
AMPLITUDE = 0dBFS  
SFDR = 73.6dBc  
OUT  
f
OUT  
COMBINED PEAK AMPLITUDE = 0dBFS  
SFDR = 67dBc (IN A WINDOW)  
-40  
-50  
(IN A WINDOW)  
-60  
-70  
-80  
-90  
-100  
-110  
0.5  
950kHz/DIV.  
10  
1.95MHz/DIV.  
20  
0.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 15. EIGHT-TONE, CLOCK = 100MSPS  
FIGURE 16. FOUR-TONE, CLOCK = 50MSPS  
0.4  
0.2  
0
0.4  
0.2  
0
-0.2  
-0.4  
-0.2  
-0.4  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
CODE  
CODE  
FIGURE 17. DIFFERENTIAL NONLINEARITY  
FIGURE 18. INTEGRAL NONLINEARITY  
FN4321.5  
January 22, 2010  
11  
HI5728  
Typical Performance Curves, 5V Power Supply (Continued)  
320  
310  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
0
20  
40  
60  
80  
100  
120  
CLOCK RATE (MSPS)  
FIGURE 19. POWER vs CLOCK RATE, f  
/f  
= 10, I  
= 20mA  
CLK OUT  
OUT  
Typical Performance Curves, 3V Power Supply  
80  
75  
70  
65  
80  
0dBFS  
-6dBFS  
75  
-6dBFS  
70  
0dBFS  
65  
-12dBFS  
60  
-12dBFS  
55  
60  
1
50  
2
3
4
5
6
7
8
9
10  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
FIGURE 20. SFDR vs f  
, CLOCK = 5MSPS  
FIGURE 21. SFDR vs f  
, CLOCK = 25MSPS  
OUT  
OUT  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
45  
0dBFS  
-6dBFS  
-6dBFS  
-12dBFS  
-12dBFS  
0dBFS  
10  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
2
4
6
8
12  
14  
16  
18  
20  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
FIGURE 22. SFDR vs f  
, CLOCK = 50MSPS  
FIGURE 23. SFDR vs f  
, CLOCK = 100MSPS  
OUT  
OUT  
FN4321.5  
January 22, 2010  
12  
HI5728  
Typical Performance Curves, 3V Power Supply (Continued)  
80  
75  
70  
65  
60  
55  
50  
45  
80  
75  
70  
65  
60  
55  
50  
45  
0dBFS  
25MSPS  
50MSPS  
100MSPS  
125MSPS  
-6dBFS  
-12dBFS  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
-25  
-20  
-15  
-10  
-5  
0
OUTPUT FREQUENCY (MHz)  
AMPLITUDE (dBFS)  
FIGURE 24. SFDR vs f  
, CLOCK = 125MSPS  
OUT  
FIGURE 25. SFDR vs AMPLITUDE, f  
/f = 10  
CLK OUT  
75  
70  
80  
75  
70  
65  
60  
55  
50  
45  
40  
25MSPS  
25MSPS  
65  
(3.38/3.63MHz)  
50MSPS  
100MSPS  
60  
50MSPS  
(6.75/7.25MHz)  
5MSPS  
55  
100MSPS  
(13.5/14.5MHz)  
125MSPS  
50  
45  
40  
125MSPS  
(16.9/18.1MHz)  
-25  
-20  
-15  
-10  
-5  
0
-25  
-20  
-15  
-10  
-5  
0
AMPLITUDE (dBFS)  
AMPLITUDE (dBFS)  
FIGURE 26. SFDR vs AMPLITUDE, f  
/f  
CLK OUT  
= 5  
FIGURE 27. SFDR vs AMPLITUDE OF TWO TONES, f  
/f  
= 7  
CLK OUT  
80  
80  
2.5MHz  
75  
70  
65  
60  
55  
50  
45  
75  
70  
65  
60  
55  
50  
45  
0dBFS DIFF  
10MHz  
20MHz  
-6dBFS SINGLE  
-6dBFS DIFF  
40MHz  
0dBFS SINGLE  
0
5
10  
15  
20  
25  
30  
35  
40  
2
4
6
8
10  
12  
14  
16  
18  
20  
I
(mA)  
OUT  
OUTPUT FREQUENCY (MHz)  
FIGURE 28. SFDR vs I  
, CLOCK = 100MSPS  
OUT  
FIGURE 29. DIFFERENTIAL vs SINGLE-ENDED,  
CLOCK = 100MSPS  
FN4321.5  
January 22, 2010  
13  
HI5728  
Typical Performance Curves, 3V Power Supply (Continued)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
-10  
-20  
f
= 100MSPS  
CLK  
f
2.5MHz  
= 9.95MHz  
OUT  
AMPLITUDE = 0dBFS  
SFDR = 63dBc  
14dB EXTERNAL  
ANALYZER ATTENUATION  
-30  
10.1MHz  
-40  
-50  
-60  
-70  
-80  
40.4MHz  
60  
-90  
-100  
-110  
-40  
-20  
0
20  
40  
80  
0
5MHz/DIV.  
50  
o
TEMPERATURE ( C)  
FREQUENCY (MHz)  
FIGURE 30. SFDR vs TEMPERATURE, CLOCK = 100MSPS  
FIGURE 31. SINGLE TONE SFDR  
-20  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
= 100MSPS  
CLK  
f
= 100MSPS  
CLK  
= 13.5/14.5MHz  
-30  
-40  
f
= 3.8, 4.4, 5.6, 6.2MHz  
COMBINED PEAK  
AMPLITUDE = 0dBFS  
SFDR = 70.6dBc  
OUT  
f
OUT  
COMBINED PEAK  
AMPLITUDE = 0dBFS  
SFDR = 61.5dBc  
-50  
(IN A WINDOW)  
14dB EXTERNAL  
ANALYZER ATTENUATION  
-60  
-70  
-80  
-90  
-100  
-110  
0.5  
1.45MHz/DIV.  
15  
0
5MHz/DIV.  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 32. TWO-TONE, CLOCK = 100MSPS  
FIGURE 33. FOUR-TONE, CLOCK = 100MSPS  
-20  
-30  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
= 100MSPS  
CLK  
f
= 50MSPS  
CLK  
f
= 2.6, 3.2, 3.8, 4.4,  
OUT  
f
= 1.9, 2.2, 2.8, 3.1MHz  
COMBINED PEAK  
AMPLITUDE = 0dBFS  
SFDR = 74.2dBc  
OUT  
5.6, 6.2, 6.8MHz  
-40  
COMBINED PEAK  
-50  
AMPLITUDE = 0dBFS  
SFDR = 67.4dBc  
(IN A WINDOW)  
(IN A WINDOW)  
-60  
-70  
-80  
-90  
-100  
-110  
0.5  
1.95MHz/DIV.  
20  
0
950kHz/DIV.  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 34. EIGHT-TONE, CLOCK = 100MSPS  
FIGURE 35. FOUR-TONE, CLOCK = 50MSPS  
FN4321.5  
January 22, 2010  
14  
HI5728  
Typical Performance Curves, 3V Power Supply (Continued)  
0.4  
0.2  
0
0.4  
0.2  
0
-0.2  
-0.4  
-0.2  
-0.4  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
CODE  
CODE  
FIGURE 36. DIFFERENTIAL NONLINEARITY  
FIGURE 37. INTEGRAL NONLINEARITY  
152  
148  
144  
140  
136  
132  
128  
124  
120  
0
20  
40  
60  
80  
100  
120  
CLOCK RATE (MSPS)  
FIGURE 38. POWER vs CLOCK RATE, f  
/f  
CLK OUT  
= 10, I  
= 20mA  
OUT  
FN4321.5  
January 22, 2010  
15  
HI5728  
Timing Diagrams  
50%  
CLK  
D9-D0  
1
GLITCH AREA =  
/ (H x W)  
2
V
HEIGHT (H)  
1 LSB ERROR BAND  
I
OUT  
t(ps)  
WIDTH (W)  
t
SETT  
t
PD  
FIGURE 40. PEAK GLITCH AREA (SINGLET) MEASUREMENT  
METHOD  
FIGURE 39. OUTPUT SETTLING TIME DIAGRAM  
t
t
PW2  
PW1  
50%  
CLK  
t
t
t
SU  
SU  
SU  
t
t
t
HLD  
HLD  
HLD  
D9-D0  
t
SETT  
t
PD  
I
OUT  
t
t
SETT  
SETT  
t
t
PD  
PD  
FIGURE 41. PROPAGATION DELAY, SETUP TIME, HOLD TIME AND MINIMUM PULSE WIDTH DIAGRAM  
measurement was done by switching from code 0 to 256, or  
quarter scale. Termination impedance was 25Ω due to the  
parallel resistance of the output 50Ω and the oscilloscope’s  
50Ω input. This also aids the ability to resolve the specified  
error band without overdriving the oscilloscope.  
Definition of Specifications  
Integral Linearity Error, INL, is the measure of the worst  
case point that deviates from a best fit straight line of data  
values along the transfer curve.  
Differential Linearity Error, DNL, is the measure of the  
step size output deviation from code to code. Ideally the step  
size should be 1 LSB. A DNL specification of 1 LSB or less  
guarantees monotonicity.  
Singlet Glitch Area, is the switching transient appearing on  
the output during a code transition. It is measured as the  
area under the overshoot portion of the curve and is  
expressed as a Volt-Time specification. This is tested under  
the same conditions as “Output Settling Time, (tSETT)” on  
page 6  
Output Settling Time, is the time required for the output  
voltage to settle to within a specified error band measured  
from the beginning of the output transition. The  
FN4321.5  
January 22, 2010  
16  
HI5728  
Full Scale Gain Error, is the error from an ideal ratio of 32  
between the output current and the full scale adjust current  
The five MSBs are represented by 31 major current sources  
of equivalent current. The five LSBs are comprised of binary  
weighted current sources. Consider an input waveform to  
the converter which is ramped through all the codes from 0  
to 1023. The five LSB current sources would begin to count  
up. When they reached the all high state (decimal value of  
31) and needed to count to the next code, they would all turn  
off and the first major current source would turn on. To  
continue counting upward, the 5 LSBs would count up  
another 31 codes, and then the next major current source  
would turn on and the five LSBs would all turn off. The  
process of the single, equivalent, major current source  
turning on and the five LSBs turning off each time the  
converter reaches another 31 codes greatly reduces the  
glitch at any one switching point. In previous architectures  
that contained all binary weighted current sources or a  
binary weighted resistor ladder, the converter might have a  
substantially larger amount of current turning on and off at  
certain, worst-case transition points such as mid-scale and  
quarter scale transitions. By greatly reducing the amount of  
current switching at certain ‘major’ transitions, the overall  
glitch of the converter is dramatically reduced, improving  
settling times and transient problems.  
(through R  
SET  
).  
Full Scale Gain Drift, is measured by setting the data inputs to  
all ones and measuring the output voltage through a known  
resistance as the temperature is varied from T  
to T . It is  
MIN  
MAX  
defined as the maximum deviation from the value measured at  
room temperature to the value measured at either T or  
MIN  
. The units are ppm of FSR (full scale range) per °C.  
T
MAX  
Total Harmonic Distortion, THD, is the ratio of the DAC output  
fundamental to the RMS sum of the first five harmonics.  
Spurious Free Dynamic Range, SFDR, is the amplitude  
difference from the fundamental to the largest harmonically or  
non-harmonically related spur within the specified window.  
Output Voltage Compliance Range, is the voltage limit  
imposed on the output. The output impedance load should  
be chosen such that the voltage developed does not violate  
the compliance range.  
Offset Error, is measured by setting the data inputs to all  
zeros and measuring the output voltage through a known  
resistance. Offset error is defined as the maximum deviation  
of the output current from a value of 0mA.  
Digital Inputs And Termination  
The HI5728 digital inputs are guaranteed to CMOS levels.  
However, TTL compatibility can be achieved by lowering the  
supply voltage to 3V due to the digital threshold of the input  
buffer being approximately half of the supply voltage. The  
internal register is updated on the rising edge of the clock. To  
minimize reflections, proper termination should be  
Offset Drift, is measured by setting the data inputs to all zeros  
and measuring the output voltage through a known resistance  
as the temperature is varied from T  
to T . It is defined as  
MIN  
MAX  
the maximum deviation from the value measured at room  
temperature to the value measured at either T or T  
.
MIN MAX  
The units are ppm of FSR (Full Scale Range) per °C.  
implemented. If the lines driving the clock(s) and digital  
inputs are 50Ω lines, then 50Ω termination resistors should  
be placed as close to the converter inputs as possible.  
Power Supply Rejection, is measured using a single power  
supply. Its nominal +5V is varied ±10% and the change in the  
DAC full scale output is noted.  
Ground Plane(s)  
Reference Input Multiplying Bandwidth, is defined as the  
3dB bandwidth of the voltage reference input. It is measured  
by using a sinusoidal waveform as the external reference  
with the digital inputs set to all 1s. The frequency is  
increased until the amplitude of the output waveform is  
0.707 of its original value.  
If separate digital and analog ground planes are used, then all  
of the digital functions of the device and their corresponding  
components should be over the digital ground plane and  
terminated to the digital ground plane. The same is true for the  
analog components and the analog ground plane. Refer to the  
Application Note on the HI5728 Evaluation Board for further  
discussion of the ground plane(s) upon availability.  
Internal Reference Voltage Drift, is defined as the  
maximum deviation from the value measured at room  
Noise Reduction  
temperature to the value measured at either T  
or T .  
MAX  
MIN  
To minimize power supply noise, 0.1µF capacitors should be  
placed as close as possible to the converter’s power supply  
The units are ppm per °C.  
pins, AV  
and DV . Also, should the layout be designed  
Detailed Description  
The HI5728 is a dual, 10-bit, current out, CMOS, digital to  
DD  
DD  
using separate digital and analog ground planes, these  
capacitors should be terminated to the digital ground for  
analog converter. Its maximum update rate is 125MSPS and  
can be powered by either single or dual power supplies in  
the recommended range of +3V to +5V. It consumes less  
than 330mW of power when using a +5V supply with the  
data switching at 100MSPS. The architecture is based on a  
segmented current source arrangement that reduces glitch  
by reducing the amount of current switching at any one time.  
DV  
DD  
and to the analog ground for AV . Additional filtering  
DD  
of the power supplies on the board is recommended. See  
the Application Note on the HI5728 Evaluation Board for  
more information upon availability.  
FN4321.5  
January 22, 2010  
17  
HI5728  
recommended that the unused output be either grounded or  
equally terminated. The voltage developed at the output  
must not violate the output voltage compliance range of  
Voltage Reference  
The internal voltage reference of the device has a nominal  
value of +1.2V with a ±60 ppm/°C drift coefficient over the full  
temperature range of the converter. It is recommended that a  
0.1μF capacitor be placed as close as possible to the REFIO  
pin, connected to the analog ground. The REFLO pin (15)  
selects the reference. The internal reference can be selected if  
pin 15 is tied low (ground). If an external reference is desired,  
then pin 15 should be tied high (to the analog supply voltage)  
and the external reference driven into REFIO, pin 23. The full  
scale output current of the converter is a function of the voltage  
-0.3V to 1.25V. R  
should be chosen so that the desired  
LOAD  
output voltage is produced in conjunction with the output full  
scale current, which is described above in the ‘Reference’  
section. If a known line impedance is to be driven, then the  
output load resistor should be chosen to match this  
impedance. The output voltage equation is:  
(EQ. 2)  
V
= I  
× R  
OUT LOAD  
OUT  
These outputs can be used in a differential-to-single-ended  
arrangement to achieve better harmonic rejection. The  
SFDR measurements in this data sheet were performed with  
a 1:1 transformer on the output of the DAC (see Figure 1).  
With the center tap grounded, the output swing of pins 16  
and 17 will be biased at zero volts. It is important to note  
here that the negative voltage output compliance range limit  
reference used and the value of R should be within  
the 2mA to 20mA range, through operation below 2mA is  
possible, with performance degradation.  
. I  
SET OUT  
If the internal reference is used, V  
FSADJ  
will equal  
approximately 1.16V (pin 22). If an external reference is used,  
will equal the external reference. The calculation for  
V
FSADJ  
(Full Scale) is:  
I
OUT  
is -300mV, imposing a maximum of 600mV  
amplitude  
P-P  
(EQ. 1)  
I
(Full Scale)= V  
R  
× 32  
SET  
OUT  
FSADJ  
with this configuration. The loading as shown in Figure 1 will  
result in a 500mV signal at the output of the transformer if  
the full scale output current of the DAC is set to 20mA.  
If the full scale output current is set to 20mA by using the  
internal voltage reference (1.16V) and a 1.86kΩ R  
SET  
resistor, then the input coding to output current will resemble  
the following:  
V
= (2 x I  
x R )V  
OUT EQ  
OUT  
50Ω  
TABLE 1. INPUT CODING vs OUTPUT CURRENT (Per DAC)  
IOUTB (QOUTB)  
PIN 17 (20)  
PIN 16 (21)  
IOUTA  
(mA)  
IOUTB  
(mA)  
100Ω  
50Ω  
INPUT CODE (D9-D0)  
11111 11111  
IOUTA (QOUTA)  
50Ω  
20  
10  
0
0
10000 00000  
10  
20  
00000 00000  
FIGURE 42.  
V
= 2 x I  
x R  
EQ ,  
where R is ~12.5Ω.  
EQ  
Outputs  
OUT  
OUT  
IOUTA and IOUTB (or QOUTA and QOUTB) are  
Allowing the center tap to float will result in identical  
complementary current outputs. The sum of the two currents  
is always equal to the full scale output current minus one  
LSB. If single ended use is desired, a load resistor can be  
used to convert the output current to a voltage. It is  
transformer output, however the output pins of the DAC will  
have positive DC offset. The 50Ω load on the output of the  
transformer represents the spectrum analyzer’s input  
impedance.  
FN4321.5  
January 22, 2010  
18  
HI5728  
Thin Plastic Quad Flatpack Packages (LQFP)  
D
Q48.7x7A (JEDEC MS-026BBC ISSUE B)  
48 LEAD THIN PLASTIC QUAD FLATPACK PACKAGE  
D1  
-D-  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
MIN  
-
MAX  
1.60  
0.15  
1.45  
0.27  
0.23  
9.10  
7.10  
9.10  
7.10  
0.75  
NOTES  
A
A1  
A2  
b
-
0.062  
0.005  
0.057  
0.010  
0.009  
0.358  
0.280  
0.358  
0.280  
0.029  
-
0.002  
0.054  
0.007  
0.007  
0.350  
0.272  
0.350  
0.272  
0.018  
0.05  
1.35  
0.17  
0.17  
8.90  
6.90  
8.90  
6.90  
0.45  
-
-
-A-  
-B-  
6
E
b1  
D
-
E1  
3
D1  
E
4, 5  
3
E1  
L
4, 5  
e
-
N
48  
0.020 BSC  
48  
0.50 BSC  
7
PIN 1  
e
-
SEATING  
PLANE  
Rev. 2 1/99  
-H-  
A
NOTES:  
1. Controlling dimension: MILLIMETER. Converted inch  
dimensions are not necessarily exact.  
0.08  
0.003  
-C-  
2. All dimensions and tolerances per ANSI Y14.5M-1982.  
3. Dimensions D and E to be determined at seating plane -C- .  
4. Dimensions D1 and E1 to be determined at datum plane  
0.08  
0.003  
D
A-B  
C
S
M
S
-H-  
.
b
o
o
5. Dimensions D1 and E1 do not include mold protrusion.  
Allowable protrusion is 0.25mm (0.010 inch) per side.  
11 -13  
0.020  
b1  
MIN  
0.008  
o
6. Dimension b does not include dambar protrusion. Allowable  
dambar protrusion shall not cause the lead width to exceed  
the maximum b dimension by more than 0.08mm (0.003  
inch).  
0
MIN  
0.09/0.16  
0.004/0.006  
A2  
A1  
GAGE  
PLANE  
BASE METAL  
WITH PLATING  
7. “N” is the number of terminal positions.  
L
0.09/0.20  
o
o
11 -13  
0.25  
0.010  
0.004/0.008  
o
o
0 -7  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN4321.5  
January 22, 2010  
19  

相关型号:

HI5728INZ-T

10-Bit, 125/60MSPS, Dual High Speed CMOS D/A Converter; LQFP48; Temp Range: -40° to 85°C
RENESAS

HI5728INZ-T

10-Bit, 125/60MSPS, Dual High Speed CMOS D/A Converter
INTERSIL

HI5731

12-Bit, 100 MSPS, High Speed D/A Converter
INTERSIL

HI5731-EVS

12-Bit, 100 MSPS, High Speed D/A Converter
INTERSIL

HI5731BIB

12-Bit, 100 MSPS, High Speed D/A Converter
INTERSIL

HI5731BIB-T

12-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5731BIBZ

12-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5731BIP

12-Bit, 100 MSPS, High Speed D/A Converter
INTERSIL

HI5731BIPZ

12-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5731_04

12-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5735

12-Bit, 80 MSPS, High Speed Video D/A Converter
INTERSIL

HI5735KCB

12-Bit, 80 MSPS, High Speed Video D/A Converter
INTERSIL