HI5810JIB-T [INTERSIL]

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold; CMOS 10微秒, 12位,采样A / D转换器,内置跟踪保持
HI5810JIB-T
型号: HI5810JIB-T
厂家: Intersil    Intersil
描述:

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
CMOS 10微秒, 12位,采样A / D转换器,内置跟踪保持

转换器
文件: 总13页 (文件大小:763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI5810  
TM  
May 2001  
File Number 3633.3  
CMOS 10 Microsecond, 12-Bit, Sampling  
A/D Converter with Internal Track and  
Hold  
Features  
• Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10µs  
• Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . . 100kSPS  
• Built-In Track and Hold  
The HI5810 is a fast, low power, 12-bit, successive-  
approximation, analog-to-digital converter. It can operate  
from a single 3V to 6V supply and typically draws just 1.9mA  
when operating at 5V. The HI5810 features a built-in track  
and hold. The conversion time is as low as 10µs with a 5V  
supply.  
itle  
I581  
• Single Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . .+5V  
• Maximum Power Consumption . . . . . . . . . . . . . . . 40mW  
• Internal or External Clock  
b-  
t
MO  
0
cro-  
-
• 1MHz Input Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . -3dB  
The twelve data outputs feature full high speed CMOS  
three-state bus driver capability, and are latched and held  
through a full conversion cycle. The output is user  
selectable: [i.e., 12-bit, 8-bit (MSBs), and/or 4-bit (LSBs)]. A  
data ready flag, and conversion-start input complete the  
digital interface.  
Applications  
• Remote Low Power Data Acquisition Systems  
• Digital Audio  
d,  
-Bit,  
m-  
ng  
D
n-  
rter  
th  
• DSP Modems  
An internal clock is provided and is available as an output.  
The clock may also be over-driven by an external source.  
• General Purpose DSP Front End  
µP Controlled Measurement Systems  
• Process Controls  
Part Number Information  
INL (LSB)  
(MAX OVER  
TEMP.)  
TEMP.  
• Industrial Controls  
PART  
NUMBER  
RANGE  
PKG.  
NO.  
o
( C)  
PACKAGE  
er-  
l
ck  
d
Related Literature  
Technical Brief TB363 “Guidelines for Handling and  
Processing Moisture Sensitive Surface Mount Devices  
(SMDs)”  
HI5810JIB-T  
2.5  
-40 to 85 24 Ld SOIC  
Tape and Reel  
M24.3  
ld)  
utho  
)
ey-  
rds  
ter-  
Pinout  
HI5810  
(SOIC)  
TOP VIEW  
DRDY  
(LSB) D0  
D1  
1
2
3
4
5
6
7
8
9
24  
V
DD  
23 OEL  
22 CLK  
21 STRT  
rpo-  
ion,  
mi-  
n-  
ctor,  
D,  
D2  
20  
19  
18  
17  
16  
V
V
-
REF  
D3  
+
D4  
REF  
D5  
V
IN  
D6  
V
+
AA  
D7  
V
-
AA  
D8 10  
D9 11  
15 OEM  
C,  
14 D11 (MSB)  
13 D10  
sh,  
V
12  
SS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Americas Inc. | Copyright © Intersil Americas Inc. 2001  
1
HI5810  
Functional Block Diagram  
STRT  
V
DD  
TO INTERNAL LOGIC  
V
SS  
V
IN  
CLK  
CLOCK  
CONTROL  
AND  
TIMING  
DRDY  
32C  
OEM  
V
+
REF  
16C  
8C  
D11 (MSB)  
50  
SUBSTRATE  
D10  
D9  
4C  
2C  
V
+
AA  
C
D8  
V
-
32C  
AA  
64C  
63  
D7  
16C  
12-BIT  
12-BIT EDGE  
SUCCESSIVE  
APPROXIMATION  
REGISTER  
D6  
D5  
D4  
D3  
TRIGGERED  
“D” LATCHES  
8C  
4C  
2C  
C
C
P1  
D2  
D1  
V
-
REF  
D0 (LSB)  
OEL  
2
HI5810  
Absolute Maximum Ratings  
Thermal Information  
o
Supply Voltage  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
JA  
V
to V  
. . . . . . . . . . . . . . . . . . . . (V  
-0.5V) < V  
DD  
< +6.5V  
+6.5V)  
DD  
SS  
SS  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
Plastic Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering, 10s). . . . . . . . . . . . .300 C  
75  
V
+ to V - . . . . . . . . . . . . . . . . . . . (V -0.5V) to (V  
+ to V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3V  
AA AA SS  
SS  
o
V
AA DD  
o
o
Analog and Reference Inputs  
+ V - . . . . . . . . (V -0.3V) < V  
o
V
V
< (V  
+0.3V)  
+0.3V)  
IN, REF  
,
REF SS  
INA  
DD  
DD  
Digital I/O Pins . . . . . . . . . . . . . . . (V -0.3V) < V < (V  
SS I/O  
(SOIC - Lead Tips Only)  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
Electrical Specifications  
V
= V + = 5V, V  
+ = +4.608V, V = V - = V  
SS AA  
- = GND, CLK = External 1.5MHz,  
REF  
DD  
Unless Otherwise Specified  
AA REF  
o
o
o
25 C  
-40 C TO 85 C  
PARAMETER  
MIN  
TYP  
MAX  
MIN  
MAX  
TEST CONDITIONS  
UNITS  
ACCURACY  
Resolution  
12  
-
-
-
-
-
-
-
12  
-
-
Bits  
LSB  
LSB  
LSB  
LSB  
Integral Linearity Error, INL (End Point)  
Differential Linearity Error, DNL  
2.5  
2.0  
3.5  
2.5  
2.5  
2.0  
3.5  
2.5  
-
-
Gain Error, FSE (Adjustable to Zero)  
-
-
Offset Error, V  
(Adjustable to Zero)  
-
-
OS  
DYNAMIC CHARACTERISTICS  
Signal to Noise Ratio, SINAD  
RMS Signal  
f
f
= Internal Clock, f = 1kHz  
IN  
-
-
68.8  
62.1  
-
-
-
-
-
-
dB  
dB  
S
S
= 1.5MHz, f = 1kHz  
IN  
RMS Noise + Distortion  
Signal to Noise Ratio, SNR  
RMS Signal  
f
f
= Internal Clock, f = 1kHz  
IN  
70.5  
63.2  
dB  
dB  
S
S
= 1.5MHz, f = 1kHz  
IN  
RMS Noise  
Total Harmonic Distortion, THD  
f
f
= Internal Clock, f = 1kHz  
IN  
-
-
-73.9  
-68.4  
-
-
-
-
-
-
dBc  
dBc  
S
S
= 1.5MHz, f = 1kHz  
IN  
Spurious Free Dynamic Range, SFDR  
f
f
= Internal Clock, f = 1kHz  
IN  
75.4  
69.2  
dB  
dB  
S
S
= 1.5MHz, f = 1kHz  
IN  
ANALOG INPUT  
Input Current, Dynamic  
Input Current, Static  
Input Bandwidth -3dB  
Reference Input Current  
At V = V  
+, 0V  
-
-
-
-
-
-
-
125  
0.6  
1
150  
-
-
-
-
-
-
-
150  
µA  
µA  
MHz  
µA  
W
IN REF  
Conversion Stopped  
10  
-
10  
-
160  
420  
380  
20  
-
-
Input Series Resistance, R  
In Series with Input C  
During Sample State  
During Hold State  
-
-
S
SAMPLE  
HOLD  
SAMPLE  
Input Capacitance, C  
Input Capacitance, C  
-
-
pF  
-
-
pF  
3
HI5810  
Electrical Specifications  
V
= V + = 5V, V  
+ = +4.608V, V = V - = V  
- = GND, CLK = External 1.5MHz,  
REF  
DD  
AA REF  
SS  
AA  
Unless Otherwise Specified (Continued)  
o
o
o
25 C  
-40 C TO 85 C  
PARAMETER  
MIN  
TYP  
MAX  
MIN  
MAX  
TEST CONDITIONS  
UNITS  
DIGITAL INPUTS OEL, OEM, STRT  
High-Level Input Voltage, V  
2.4  
-
-
-
0.8  
10  
-
2.4  
-
0.8  
10  
-
V
V
IH  
Low-Level Input Voltage, V  
-
-
-
-
-
-
IL  
Input Leakage Current, I  
Except CLK, V = 0V, 5V  
IN  
-
µA  
pF  
IL  
Input Capacitance, C  
10  
IN  
DIGITAL OUTPUTS  
High-Level Output Voltage, V  
I
I
= -400µA  
4.6  
-
-
-
0.4  
10  
-
4.6  
-
0.4  
10  
-
V
V
OH  
SOURCE  
Low-Level Output Voltage, V  
= 1.6mA  
-
-
-
-
-
-
OL  
SINK  
Three-State Leakage, I  
Except DRDY, V  
Except DRDY  
= 0V, 5V  
OUT  
-
µA  
pF  
OZ  
Output Capacitance, C  
20  
OUT  
CLOCK  
High-Level Output Voltage, V  
I
I
= -100µA (Note 2)  
4
-
-
-
-
-
4
-
-
V
V
OH  
SOURCE  
Low-Level Output Voltage, V  
Input Current  
= 100µA (Note 2)  
1
5
1
5
OL  
SINK  
CLK Only, V = 0V, 5V  
IN  
-
-
mA  
TIMING  
Conversion Time (t  
(Includes Acquisition Time)  
+ t  
)
10  
-
-
10  
-
µs  
CONV  
ACQ  
Clock Frequency  
Internal Clock, (CLK = Open)  
External CLK (Note 2)  
External CLK (Note 2)  
(Note 2)  
200  
300  
-
400  
2.0  
-
150  
500  
-
kHz  
MHz  
ns  
0.05  
-
Clock Pulse Width, t  
, t  
LOW HIGH  
100  
-
100  
-
Aperture Delay, t APR  
-
-
35  
105  
100  
30  
60  
4
50  
150  
160  
-
-
70  
180  
195  
-
ns  
D
Clock to Data Ready Delay, t DRDY  
D1  
(Note 2)  
-
ns  
Clock to Data Ready Delay, t DRDY  
D2  
(Note 2)  
-
-
75  
100  
15  
-
ns  
Start Removal Time, t STRT  
(Note 2)  
75  
85  
10  
-
ns  
R
Start Setup Time, t STRT  
SU  
(Note 2)  
-
-
ns  
Start Pulse Width, t STRT  
(Note 2)  
-
-
ns  
W
Start to Data Ready Delay, t DRDY  
D3  
(Note 2)  
65  
60  
20  
80  
105  
-
120  
-
ns  
Clock Delay from Start, t STRT  
(Note 2)  
-
-
ns  
D
Output Enable Delay, t  
(Note 2)  
-
30  
95  
-
50  
120  
ns  
EN  
Output Disabled Delay, t  
(Note 2)  
-
-
ns  
DIS  
POWER SUPPLY CHARACTERISTICS  
Supply Current, I  
+ I  
AA  
-
2.6  
8
-
8.5  
mA  
DD  
NOTE:  
2. Parameter guaranteed by design or characterization, not production tested.  
4
HI5810  
Timing Diagrams  
5 - 14  
4
15  
1
3
1
2
2
3
CLK  
(EXTERNAL  
OR INTERNAL)  
t
LOW  
t
DRDY  
D1  
t
HIGH  
STRT  
DRDY  
t
DRDY  
D2  
DATA N - 1  
D0 - D11  
DATA N  
HOLD N  
V
TRACK N  
TRACK N + 1  
IN  
OEL = OEM = V  
SS  
FIGURE 1. CONTINUOUS CONVERSION MODE  
2
2
3
15  
2
4
1
5
CLK  
(EXTERNAL)  
t STRT  
SU  
t
STRT  
R
t
STRT  
W
STRT  
t
DRDY  
D3  
DRDY  
HOLD  
HOLD  
TRACK  
V
IN  
FIGURE 2. SINGLE SHOT MODE EXTERNAL CLOCK  
15  
1
3
4
5
CLK  
(INTERNAL)  
2
t
STRT  
D
t
STRT  
R
t
STRT  
W
STRT  
DRDY  
DON’T CARE  
t
DRDY  
D3  
HOLD  
HOLD  
TRACK  
V
IN  
FIGURE 3. SINGLE SHOT MODE INTERNAL CLOCK  
5
HI5810  
Timing Diagrams (Continued)  
OEL OR OEM  
t
t
DIS  
EN  
D0 - D3 OR  
90%  
10%  
D4 - D11  
50%  
HIGH  
IMPEDANCE  
TO HIGH  
TO  
OUTPUT  
PIN  
HIGH  
IMPEDANCE  
50%  
TO LOW  
1.6mA  
1.6mA  
+2.1V  
50pF  
+2.1V  
50pF  
-400µA  
-1.6mA  
FIGURE 4. OUTPUT ENABLE/DISABLE TIMING DIAGRAM  
FIGURE 5. TIMING LOAD CIRCUIT  
Typical Performance Curves  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
2.0  
V
= V + = 5V, V  
AA  
+ = 4.608V, CLK = 1.5MHz  
REF  
DD  
V
= V + = 5V, V  
AA REF  
+ = 4.608V, CLK = 1.5MHz  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
DD  
0
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
-50 -40 -30 -20 -10  
10 20 30 40 50 60 70 80 90  
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 6. NL vs TEMPERATURE  
FIGURE 7. OFFSET ERROR vs TEMPERATURE  
-1.0  
-1.1  
-1.2  
-1.3  
-1.4  
-1.5  
-1.6  
-1.7  
-1.8  
-1.9  
-2.0  
-2.1  
-2.2  
-2.3  
-2.4  
-2.5  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
V
= V + = 5V, V  
AA  
+ = 4.608V, CLK = 1.5MHz  
REF  
V
= V + = 5V, V  
AA  
+ = 4.608V, CLK = 1.5MHz  
REF  
DD  
DD  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 8. DNL vs TEMPERATURE  
FIGURE 9. FULL SCALE ERROR vs TEMPERATURE  
6
HI5810  
Typical Performance Curves (Continued)  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
INPUT FREQUENCY = 1kHz  
SAMPLING RATE = 100kHz  
SNR = 64.92dB  
SINAD = 63.82dB  
EFFECTIVE BITS = 10.30  
THD = -69.44dBc  
PEAK NOISE = -70.1dB  
SFDR = 70.1dB  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
FREQUENCY  
TEMPERATURE ( C)  
FIGURE 10. SUPPLY CURRENT vs TEMPERATURE  
FIGURE 11. FFT SPECTRUM  
500  
V
= V + = 5V, V + = 4.608V  
AA REF  
DD  
450  
400  
350  
300  
250  
200  
150  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
o
TEMPERATURE ( C)  
FIGURE 12. INTERNAL CLOCK FREQUENCY vs TEMPERATURE  
7
HI5810  
capacitors to V  
-. The capacitor common node, after the  
REF  
TABLE 1. PIN DESCRIPTIONS  
charges balance out, will indicate whether the input was  
1
above  
/
of (V  
+ - V  
-). At the end of the fourth  
REF  
PIN NO. NAME  
DESCRIPTION  
2
REF  
period, the comparator output is stored and the MSB  
capacitor is either left connected to V + (if the comparator  
1
DRDY Output flag signifying new data is available.  
Goes high at end of clock period 15. Goes low  
when new conversion is started.  
REF  
was high) or returned to V  
comparison to be at either / or / of (V  
-. This allows the next  
1
REF  
3
+ - V  
-).  
2
3
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
Bit 0 (Least Significant Bit, LSB).  
4
4
REF  
REF  
Bit 1.  
At the end of periods 5 through 14, capacitors representing  
D10 through D1 are tested, the result stored, and each  
4
Bit 2.  
5
Bit 3.  
capacitor either left at V  
+ or at V  
-.  
REF  
REF  
6
Bit 4.  
At the end of the 15th period, when the LSB (D0) capacitor is  
tested, (D0) and all the previous results are shifted to the  
output registers and drivers. The capacitors are reconnected  
to the input, the comparator returns to the balance state, and  
the data ready output goes active. The conversion cycle is  
now complete.  
7
Bit 5.  
8
Bit 6.  
9
Bit 7.  
10  
11  
12  
13  
14  
15  
Bit 8.  
Bit 9.  
V
Digital Ground, (0V).  
Analog Input  
SS  
D10 Bit 10.  
The analog input pin is a predominately capacitive load that  
changes between the track and hold periods of the  
conversion cycle. During hold, clock period 4 through 15, the  
input loading is leakage and stray capacitance, typically less  
than 5µA and 20pF.  
D11 Bit 11 (Most Significant Bit, MSB)  
OEM Three-State Enable for D4-D11. Active low  
input.  
16  
17  
18  
19  
V
V
-
Analog Ground, (0V).  
AA  
+
Analog Positive Supply. (+5V) (See text.)  
Analog Input.  
At the start of input tracking, clock period 1, some charge is  
dumped back to the input pin. The input source must have low  
enough impedance to dissipate the current spike by the end of  
the tracking period as shown in Figure 13. The amount of  
charge is dependent on supply and input voltages. The  
average current is also proportional to clock frequency.  
AA  
V
IN  
V
+
Reference Voltage Positive Input, sets 4095  
code end of input range.  
REF  
20  
21  
22  
V
-
Reference Voltage Negative Input, sets 0  
code end of input range.  
REF  
STRT Start Conversion Input active low, recognized  
after end of clock period 15.  
CLK CLK Input or Output. Conversion functions are  
synchronized to positive going edge (see text).  
20mA  
I
IN  
10mA  
0mA  
23  
24  
OEL Three-State Enable for D0 D3. Active low input.  
V
Digital Positive Supply (+5V).  
DD  
Theory of Operation  
5V  
The HI5810 is a CMOS 12-bit, Analog-to-Digital Converter  
that uses capacitor charge balancing to successively  
approximate the analog input. A binarily weighted capacitor  
network forms the A/D heart of the device. See the block  
diagram for the HI5810.  
CLK  
0V  
5V  
DRDY  
0V  
200ns/DIV.  
The capacitor network has a common node which is  
connected to a comparator. The second terminal of each  
CONDITIONS: V  
V
= V + = 5.0V, V + = 4.608V,  
REF  
DD  
AA  
= 4.608V, CLK = 750kHz, T = 25 C  
o
IN  
A
capacitor is individually switchable to the input, V  
+ or  
REF  
FIGURE 13. TYPICAL ANALOG INPUT CURRENT  
V
-.  
REF  
During the first three clock periods of a conversion cycle, the  
switchable end of every capacitor is connected to the input  
and the comparator is being auto balanced at the capacitor  
common node.  
As long as these current spikes settle completely by end of  
the signal acquisition period, converter accuracy will be  
preserved. The analog input is tracked for 3 clock cycles.  
With an external clock of 1.5MHz the track period is 2µs.  
During the fourth period, all capacitors are disconnected  
from the input; the one representing the MSB (D11) is  
A simplified analog input model is presented in Figure 14.  
During tracking, the A/D input (V ) typically appears as a  
IN  
connected to the V  
+ terminal; and the remaining  
380pF capacitor being charged through a 420internal  
REF  
8
HI5810  
switch resistance. The time constant is 160ns. To charge this  
capacitor from an external “zero ” source to 0.5 LSB  
(1/8192), the charging time must be at least 9 time constants  
accuracy is of utmost importance full scale and offset errors  
may be adjusted to zero.  
The V  
REF  
+ and V - pins reference the two ends of the  
REF  
or 1.4µs. The maximum source impedance (R  
Max)  
SOURCE  
analog input range and may be used for offset and full scale  
for a 2µs acquisition time settling to within 0.5 LSB is 164.  
adjustments. In a typical system the V - might be returned  
REF  
to a clean ground, and the offset adjustment done on an input  
amplifier. V + would then be adjusted to null out the full  
If the clock frequency was slower, or the converter was not  
restarted immediately (causing a longer sample time), a  
higher source impedance could be tolerated.  
REF  
scale error. When this is not possible, the V  
- input can be  
REF  
- must be well  
adjusted to null the offset error, however, V  
decoupled.  
REF  
V
IN  
R
SW 420Ω  
C
SAMPLE 380pF  
Full scale and offset error can also be adjusted to zero in the  
R
SOURCE  
signal conditioning amplifier driving the analog input (V ).  
IN  
-t  
ACQ  
ln [2  
- R  
R
=
C
SW  
SOURCE (MAX)  
-(N + 1)  
Control Signal  
]
SAMPLE  
The HI5810 may be synchronized from an external source  
by using the STRT (Start Conversion) input to initiate  
conversion, or if STRT is tied low, may be allowed to free  
run. Each conversion cycle takes 15 clock periods.  
FIGURE 14. ANALOG INPUT MODEL IN TRACK MODE  
Reference Input  
The reference input V  
+ should be driven from a low  
REF  
impedance source and be well decoupled.  
The input is tracked from clock period 1 through period 3,  
then disconnected as the successive approximation takes  
As shown in Figure 15, current spikes are generated on the  
reference pin during each bit test of the successive  
approximation part of the conversion cycle as the charge  
place. After the start of the next period 1 (specified by t  
D
data), the output is updated.  
balancing capacitors are switched between V  
- and  
REF  
The DRDY (Data Ready) status output goes high (specified  
V
+ (clock periods 5 - 14). These current spikes must  
REF  
settle completely during each bit test of the conversion to not  
degrade the accuracy of the converter. Therefore V  
by t DRDY) after the start of clock period 1, and returns  
D1  
low (specified by t DRDY) after the start of clock period 2.  
D2  
+
-
REF  
REF  
- should be well bypassed. Reference input V  
The 12 data bits are available in parallel on three-state bus  
driver outputs. When low, the OEM input enables the most  
significant byte (D4 through D11) while the OEL input  
and V  
REF  
is normally connected directly to the analog ground plane. If  
- is biased for nulling the converters offset it must be  
V
REF  
enables the four least significant bits (D0 - D3). t  
specify the output enable and disable times.  
and t  
DIS  
stable during the conversion cycle.  
EN  
If the output data is to be latched externally, either the trailing  
edge of data ready or the next falling edge of the clock after  
data ready goes high can be used.  
20mA  
I
+
10mA  
0mA  
REF  
When STRT input is used to initiate conversions, operation is  
slightly different depending on whether an internal or  
external clock is used.  
Figure 3 illustrates operation with an internal clock. If the  
5V  
0V  
CLK  
STRT signal is removed (at least t STRT) before clock  
R
period 1, and is not reapplied during that period, the clock  
will shut off after entering period 2. The input will continue to  
track and the DRDY output will remain high during this time.  
5V  
0V  
DRDY  
2µs/DIV.  
A low signal applied to STRT (at least t STRT wide) can  
W
now initiate a new conversion. The STRT signal (after a  
delay of (t STRT)) causes the clock to restart.  
D
CONDITIONS: V  
= V + = 5.0V, V  
+ = 4.608V,  
o
DD  
AA REF  
V
= 2.3V, CLK = 750kHz, T = 25 C  
A
IN  
FIGURE 15. TYPICAL REFERENCE INPUT CURRENT  
Depending on how long the clock was shut off, the low  
portion of clock period 2 may be longer than during the  
remaining cycles.  
The HI5810 is specified with a 4.608V reference, however, it  
will operate with a reference down to 3V having a slight  
degradation in performance.  
The input will continue to track until the end of period 3, the  
same as when free running.  
Full Scale and Offset Adjustment  
In many applications the accuracy of the HI5810 would be  
sufficient without any adjustments. In applications where  
9
HI5810  
Figure 2 illustrates the same operation as above but with an  
Except for V +, which is a substrate connection to V , all  
AA DD  
external clock. If STRT is removed (at least t STRT) before  
pins have protection diodes connected to V  
and V  
.
R
DD  
SS  
clock period 2, a low signal applied to STRT will drop the  
DRDY flag as before, and with the first positive going clock  
Input transients above V  
the digital supplies.  
or below V will get steered to  
SS  
DD  
edge that meets the (t STRT) setup time, the converter will  
continue with clock period 3.  
SU  
The V + and V - terminals supply the charge balancing  
AA AA  
comparator only. Because the comparator is autobalanced  
between conversions, it has good low frequency supply  
rejection. It does not reject well at high frequencies however;  
Clock  
The HI5810 can operate either from its internal clock or from  
one externally supplied. The CLK pin functions either as the  
clock output or input. All converter functions are  
V
- should be returned to a clean analog ground and V +  
AA AA  
should be RC decoupled from the digital supply as shown in  
Figure 17.  
synchronized with the rising edge of the clock signal.  
There is approximately 50of substrate impedance  
Figure 16 shows the configuration of the internal clock. The  
clock output drive is low power: if used as an output, it  
should not have more than 1 CMOS gate load applied, and  
stray wiring capacitance should be kept to a minimum.  
between V  
and V +. This can be used, for example, as  
DD  
part of a low pass RC filter to attenuate switching supply  
AA  
noise. A 10µF capacitor from V + to ground would  
AA  
attenuate 30kHz noise by approximately 40dB. Note that  
The internal clock will shut down if the A/D is not restarted  
after a conversion. The clock could also be shut down with  
an open collector driver applied to the CLK pin. This should  
only be done during the sample portion (the first three clock  
periods) of a conversion cycle, and might be useful for using  
the device as a digital sample and hold.  
back-to-back diodes should be placed from V  
handle supply to capacitor turn-on or turn-off current spikes.  
to V + to  
DD  
AA  
Dynamic Performance  
Fast Fourier Transform (FFT) techniques are used to  
evaluate the dynamic performance of the A/D. A low  
distortion sine wave is applied to the input of the A/D  
converter. The input is sampled by the A/D and its output  
stored in RAM. The data is than transformed into the  
frequency domain with a 4096 point FFT and analyzed to  
evaluate the converters dynamic performance such as SNR  
and THD. See Typical Performance Characteristics.  
If an external clock is supplied to the CLK pin, it must have  
sufficient drive to overcome the internal clock source. The  
external clock can be shut off, but again, only during the  
sample portion of a conversion cycle. At other times, it must  
be above the minimum frequency shown in the  
specifications. In the above two cases, a further restriction  
applies in that the clock should not be shut off during the  
third sample period for more than 1ms. This might cause an  
internal charge pump voltage to decay.  
Signal-To-Noise Ratio  
The signal to noise ratio (SNR) is the measured RMS signal to  
RMS sum of noise at a specified input and sampling frequency.  
The noise is the RMS sum of all except the fundamental and  
the first five harmonic signals. The SNR is dependent on the  
number of quantization levels used in the converter. The  
theoretical SNR for an N-bit converter with no differential or  
integral linearity error is: SNR = (6.02N + 1.76)dB. For an ideal  
12-bit converter the SNR is 74dB. Differential and integral  
linearity errors will degrade SNR.  
If the internal or external clock was shut off during the  
conversion time (clock cycles 4 through 15) of the A/D, the  
output might be invalid due to balancing capacitor droop.  
An external clock must also meet the minimum t  
and  
LOW  
times shown in the specifications. A violation may  
t
HIGH  
cause an internal miscount and invalidate the results.  
Sinewave Signal Power  
SNR = 10 Log  
INTERNAL  
ENABLE  
Total Noise Power  
CLOCK  
CLK  
Signal-To-Noise + Distortion Ratio  
OPTIONAL  
EXTERNAL  
CLOCK  
SINAD is the measured RMS signal to RMS sum of noise  
plus harmonic power and is expressed by the following.  
100kΩ  
18pF  
Sinewave Signal Power  
SINAD = 10 Log  
FIGURE 16. INTERNAL CLOCK CIRCUITRY  
Noise + Harmonic Power (2nd - 6th)  
Power Supplies and Grounding  
Effective Number of Bits  
V
and V are the digital supply pins: they power all  
DD  
SS  
internal logic and the output drivers. Because the output  
drivers can cause fast current spikes in the V and V  
The effective number of bits (ENOB) is derived from the  
SINAD data;  
DD  
SS  
lines, V should have a low impedance path to digital  
SS  
ground and V  
SINAD - 1.76  
should be well bypassed.  
DD  
ENOB =  
6.02  
10  
HI5810  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
The total harmonic distortion (THD) is the ratio of the RMS  
sum of the second through sixth harmonic components to  
the fundamental RMS signal for a specified input and  
sampling frequency.  
The spurious-free dynamic range (SFDR) is the ratio of the  
fundamental RMS amplitude to the RMS amplitude of the  
next largest spur or spectral component. If the harmonics  
are buried in the noise floor it is the largest peak.  
Total Harmonic Power (2nd - 6th Harmonic)  
THD = 10Log  
Sinewave Signal Power  
SFDR = 10Log  
Sinewave Signal Power  
Highest Spurious Signal Power  
TABLE 2. CODE TABLE  
BINARY OUTPUT CODE  
INPUT VOLTAGE  
+ = 4.608V  
MSB  
LSB  
D0  
1
CODE  
DESCRIPTION  
V
DECIMAL  
COUNT  
REF  
V
- = 0V (V)  
D11  
1
D10  
1
D9  
1
D8  
1
D7  
1
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
REF  
Full Scale (FS)  
4.6069  
4.6058  
3.4560  
2.3040  
1.1520  
0.001125  
0
4095  
4094  
3072  
2048  
1024  
1
FS - 1 LSB  
3
1
1
1
1
1
1
1
1
1
1
1
0
/
/
/
FS  
FS  
FS  
1
1
0
0
0
0
0
0
0
0
0
0
4
2
4
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1 LSB  
Zero  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
The voltages listed above represent the ideal lower transition of each output code shown as a function of the reference voltage.  
+5V  
0.1µF  
4.7µF  
10µF  
0.1µF  
0.1µF  
0.01µF  
V
+
V
DD  
AA  
D11  
.
.
.
OUTPUT  
DATA  
D0  
V
REF  
V
+
REF  
0.001µF  
4.7µF  
DRDY  
OEM  
OEL  
ANALOG  
INPUT  
V
V
IN  
STRT  
CLK  
1.5MHz CLOCK  
-
V
-
V
SS  
REF  
AA  
FIGURE 17. GROUND AND SUPPLY DECOUPLING  
11  
HI5810  
Die Characteristics  
DIE DIMENSIONS  
PASSIVATION  
3200µm x 3940µm  
Type: PSG  
Thickness: 13kÅ 2.5kÅ  
METALLIZATION  
WORST CASE CURRENT DENSITY  
Type: AlSi  
Thickness: 11kÅ 1kÅ  
5
2
1.84 x 10 A/cm  
Metallization Mask Layout  
HI5810  
DRDY  
D0  
(LSB)  
D1  
V
OEL  
DD  
CLK  
D2  
D3  
STRT  
V
-
REF  
D4  
D5  
D6  
V
+
REF  
D7  
D8  
V
IN  
V
+
-
AA  
V
AA  
D9  
V
D10  
D11  
(MSB)  
OEM  
SS  
12  
HI5810  
Small Outline Plastic Packages (SOIC)  
M24.3 (JEDEC MS-013-AD ISSUE C)  
N
24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
2.35  
0.10  
0.33  
0.23  
MAX  
2.65  
0.30  
0.51  
0.32  
15.60  
7.60  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0926  
0.0040  
0.013  
0.1043  
0.0118  
0.020  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0091  
0.5985  
0.2914  
0.0125  
-
-A-  
o
0.6141 15.20  
3
h x 45  
D
0.2992  
7.40  
4
-C-  
0.05 BSC  
1.27 BSC  
-
α
µ
H
h
0.394  
0.010  
0.016  
0.419  
0.029  
0.050  
10.00  
0.25  
0.40  
10.65  
0.75  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C A M B S  
N
α
24  
24  
7
o
o
o
o
0
8
0
8
-
NOTES:  
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 0 12/93  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch)  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
All Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at website www.intersil.com/design/quality/iso.asp.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice.  
Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. How-  
ever, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use.  
No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
Intersil Corporation  
2401 Palm Bay Rd.  
Palm Bay, FL 32905  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
EUROPE  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
ASIA  
Intersil Ltd.  
8F-2, 96, Sec. 1, Chien-kuo North,  
Taipei, Taiwan 104  
Republic of China  
TEL: 886-2-2515-8508  
FAX: 886-2-2515-8369  
13  

相关型号:

HI5810JIJ

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5810JIP

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5810KIB

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5810KIJ

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5810KIP

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5810_01

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIB

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIBZ

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIJ

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIP

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIPZ

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL