ISL28273 [INTERSIL]

Micropower, Single Supply, Rail-to-Rail Input and Output (RRIO) Instrumentation Amplifier; 微功耗,单电源,轨到轨输入和输出( RRIO )仪表放大器
ISL28273
型号: ISL28273
厂家: Intersil    Intersil
描述:

Micropower, Single Supply, Rail-to-Rail Input and Output (RRIO) Instrumentation Amplifier
微功耗,单电源,轨到轨输入和输出( RRIO )仪表放大器

仪表放大器
文件: 总15页 (文件大小:580K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL28270, ISL28273, ISL28470  
®
Data Sheet  
April 13, 2007  
FN6260.2  
Micropower, Single Supply, Rail-to-Rail  
Input and Output (RRIO) Instrumentation  
Amplifier  
Features  
• 60µA supply current per channel ISL28270  
• 150µV max offset voltage  
The ISL28270 and ISL28273 are dual channel micropower  
instrumentation amplifiers (in-amps) and the ISL28470 is a  
Quad-channel in-amp optimized for low 2.4V to 5V single  
supplies.  
• 2nA max input bias current ISL28270  
• 110dB CMRR, PSRR  
• 0.7µV/°C offset voltage temperature coefficient  
• 240kHz -3dB bandwidth (G = 100) ISL28270, ISL28470  
• 230kHz -3dB bandwidth (G = 10) ISL28273  
• 0.5V/µs slew rate  
All three devices feature an Input Range Enhancement  
Circuit (IREC) which maintains CMRR performance for input  
voltages equal to the positive supply and down to 50mV  
above the negative supply rail. The input signal is capable of  
swinging above the positive supply rail and to 10mV above  
the negative supply with only a slight degradation of the  
CMRR performance. The output operation is rail to rail.  
• Single supply operation  
• Rail-to-rail input and output (RRIO)  
The ISL28273 is compensated for a minimum gain of 10 or  
more. For higher gain applications, the ISL28270 and  
ISL28470 are compensated for a minimum gain of 100. The  
in-amps have bipolar input devices for best offset and  
excellent 1/f noise performance. The amplifiers can be  
operated from one lithium cell or two Ni-Cd batteries.  
• Input is capable of swinging above V+ and below V-  
(ground sensing)  
• Output sources and sinks ±29mA load current  
• 0.5% gain error  
• Pb-free plus anneal available (RoHS compliant)  
Ordering Information  
Applications  
PART NUMBER  
(Note)  
PART  
MARKING  
TAPE & PACKAGE  
REEL (Pb-Free)  
PKG.  
DWG. #  
• Battery or solar-powered systems  
• Strain gauge  
ISL28270IAZ  
(Note)  
28270 IAZ  
28270 IAZ  
28273 FAZ  
97/Tube 16 Ld QSOP MDP0040  
(Pb-free)  
• Sensor signal conditioning  
• Medical devices  
ISL28270IAZ-T13  
(Note)  
13”  
16 Ld QSOP MDP0040  
(1k pcs) (Pb-free)  
• Industrial instrumentations  
Coming Soon  
ISL28273FAZ  
(Note)  
97/Tube 16 Ld QSOP MDP0040  
(Pb-free)  
Related Literature  
• AN1290, ISL2827xINEVAL1Z Evaluation Board User’s  
Guide  
Coming Soon  
ISL28273FAZ-T7  
(Note)  
28273 FAZ  
7”  
16 Ld QSOP MDP0040  
(1k pcs) (Pb-free)  
• AN1298, Instrumentation Amplifier Application Note  
ISL28470FAZ  
(Note)  
ISL28470FAZ 48/Tube 28 Ld QSOP M28.15  
(Pb-free)  
ISL28470FAZ-T7  
(Note)  
ISL28470FAZ  
7”  
28 Ld QSOP M28.15  
(1k pcs) (Pb-free)  
ISL28270INEVAL1Z Evaluation Platform  
(Note)  
ISL28273INEVAL1Z Evaluation Platform  
Coming Soon  
Evaluation Platform  
ISL28470EVAL1Z  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100% matte  
tin plate termination finish, which are RoHS compliant and compatible with  
both SnPb and Pb-free soldering operations. Intersil Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2006, 2007. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
ISL28270, ISL28273, ISL28470  
Pinouts  
ISL28270, ISL28273  
(16 LD QSOP)  
TOP VIEW  
ISL28470  
(28 LD QSOP)  
TOP VIEW  
NC  
OUT_A  
FB+_A  
FB-_A  
IN-_A  
IN+_A  
EN_A  
V-  
1
2
3
16 V+  
OUT_A  
FB+_A  
FB-_A  
IN-_A  
IN+_A  
EN_A  
V-  
1
2
3
4
5
6
7
8
9
28 OUT_D  
27 FB+_D  
15 OUT_B  
14 FB+_B  
13 FB-_B  
12 IN-_B  
11 IN+_B  
10 EN_B  
+
-
+ -  
26  
25  
FB-_D  
IN-_D  
+
-
-
+
4
5
6
7
8
24 IN+_D  
23 EN_D  
22 V-  
9
NC  
EN_B  
IN+_B  
21 EN_C  
20 IN+_C  
19 IN-_C  
18 FB-_C  
17 FB+_C  
16 OUT_C  
15 NC  
IN-_B 10  
FB-_B 11  
FB+_B 12  
OUT_B 13  
NC 14  
+ -  
- +  
FN6260.2  
April 13, 2007  
2
ISL28270, ISL28273, ISL28470  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V  
Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/μs  
Input Current (IN, FB) ISL28270, ISL28470 . . . . . . . . . . . . . . . 5mA  
Differential Input Voltage (IN, FB) ISL28270, ISL28470 . . . . . . 0.5V  
Input Current (IN, FB) ISL28273 . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Differential Input (IN, FB) Voltage ISL28273 . . . . . . . . . . . . . . . 1.0V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
ESD Tolerance  
Thermal Resistance  
θ
(°C/W)  
JA  
16 Ld QSOP Package . . . . . . . . . . . . . . . . . . . . . . .  
28 Ld QSOP Package . . . . . . . . . . . . . . . . . . . . . . .  
112  
79  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite  
Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV  
Machine Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
Electrical Specifications  
V
= +5V, V = GND, V  
M
= 1/2V , T = +25°C, unless otherwise specified. Boldface limits apply over the  
+
CM  
+
A
operating temperature range, -40°C to +125°C.  
PARAMETER  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
ISL28270, ISL28470  
-150  
±35  
150  
µV  
OS  
-225  
225  
ISL28273  
TBD  
0.7  
µV  
µV/°C  
nA  
TCV  
Input Offset Voltage Temperature  
Coefficient  
Temperature = -40°C to +125°C  
OS  
I
Input Offset Current between IN+ and ISL28270  
IN-, and between FB+ and FB-  
-1  
-1.5  
±0.25  
1
1.5  
OS  
ISL28470  
ISL28273  
-1.5  
-2.0  
±0.25  
1.5  
2
nA  
TBD  
±0.5  
nA  
nA  
I
Input Bias Current (IN+, IN-, FB+, and ISL28270  
FB- terminals)  
-2.0  
-2.5  
2.0  
2.5  
B
ISL28470  
ISL28273  
-2.5  
-3.0  
±0.5  
2.5  
3.0  
nA  
nA  
TBD  
3.5  
3.5  
60  
e
Input Noise Voltage  
ISL28270, ISL28470  
f = 0.1Hz to 10Hz  
µV  
µV  
N
P-P  
P-P  
ISL28273  
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
ISL28270, ISL28470  
ISL28273  
f = 1kHz  
nV/Hz  
nV/Hz  
pA/Hz  
pA/Hz  
MΩ  
o
210  
0.48  
0.65  
3
i
ISL28270, ISL28470  
ISL28273  
f = 1kHz  
o
N
R
ISL28270, ISL28470  
ISL28273  
IN  
IN  
15  
MΩ  
V
Input Voltage Range  
V
= 2.4V to 5.0V  
0
V
V
+
+
FN6260.2  
April 13, 2007  
3
ISL28270, ISL28273, ISL28470  
Electrical Specifications  
V
= +5V, V = GND, V  
= 1/2V , T = +25°C, unless otherwise specified. Boldface limits apply over the  
CM + A  
+
M
operating temperature range, -40°C to +125°C. (Continued)  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CMRR  
Common Mode Rejection Ratio  
ISL28270  
V
= 0.05V to 5V  
90  
110  
dB  
CM  
TBD  
ISL28273  
ISL28470  
TBD  
110  
dB  
dB  
90  
85  
PSRR  
Power Supply Rejection Ratio  
ISL28270  
V
= 2.4V to 5V  
90  
110  
dB  
+
TBD  
ISL28273  
ISL28470  
TBD  
110  
dB  
dB  
90  
65  
E
Gain Error  
ISL28270, ISL28470  
ISL28273  
R
= 100kΩ to 2.5V  
L
+0.5  
TBD  
4
%
%
G
V
Maximum Voltage Swing  
Output low, 100kΩ to 2.5V  
Output low, 1kΩ to 2.5V  
10  
mV  
mV  
OUT  
130  
250  
300  
Output high, 100kΩ to 2.5V  
Output high, 1kΩ to GND  
4.990  
4.996  
4.88  
V
V
4.75  
4.70  
SR  
Slew Rate  
R
= 1kΩ to GND  
0.3  
0.5  
0.7  
V/µs  
L
0.25  
0.75  
-3dB BW  
-3dB Bandwidth  
ISL28270, ISL28470  
Gain = 100  
Gain = 200  
Gain = 500  
Gain = 1000  
Gain = 10  
Gain = 20  
Gain = 50  
Gain = 100  
240  
84  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
µA  
30  
13  
ISL28273  
265  
100  
25  
13  
I
Supply Current, Enabled  
Supply Current, Disabled  
ISL28270 - Both A and B channels enabled,  
EN = V-  
120  
156  
195  
S,EN  
ISL28470 - A, B, C and D channels enabled,  
EN = V-  
260  
4
335  
µA  
µA  
µA  
I
ISL28270 - Both A and B channels disabled,  
EN = V+  
7
9
S,DIS  
ISL28470 - A, B, C and D channels disabled,  
EN = V+  
10  
12  
15  
V
EN Pin for Shut-down  
EN Pin for Power-On  
EN Input Current High  
2
V
V
ENH  
V
0.8  
ENL  
I
EN = V+  
EN = V-  
0.8  
26  
1
1.3  
µA  
ENH  
I
EN Input Current Low  
50  
100  
nA  
V
ENL  
V
Minimum Supply Voltage  
2.4  
+
FN6260.2  
April 13, 2007  
4
ISL28270, ISL28273, ISL28470  
Electrical Specifications  
V
= +5V, V = GND, V  
= 1/2V , T = +25°C, unless otherwise specified. Boldface limits apply over the  
CM + A  
+
M
operating temperature range, -40°C to +125°C. (Continued)  
PARAMETER  
DESCRIPTION  
Short Circuit Output Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
V
V
= 5V, R  
LOAD  
= 10Ω  
±20  
±18  
±29  
mA  
SC  
+
+
= 2.4V, R  
LOAD  
= 10Ω  
±8  
mA  
Typical Performance Curves  
70  
60  
50  
40  
30  
20  
10  
90  
COMMON-MODE INPUT = V+  
COMMON-MODE INPUT = V +  
S
GAIN = 10,000V/V  
GAIN = 5,000V/V  
80  
70  
60  
50  
40  
30  
GAIN = 1000  
GAIN = 500  
GAIN = 2,000V/V  
GAIN = 200  
GAIN = 100  
GAIN = 50  
GAIN = 1,000V/V  
GAIN = 500V/V  
GAIN = 200V/V  
GAIN = 100V/V  
GAIN = 20  
GAIN = 10  
1
10  
100  
1k  
10k  
100k  
1M  
1E+00  
1E+01  
1E+02  
1E+03  
1E+04  
1E+05  
1E+06  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. ISL28270, ISL28470 FREQUENCY RESPONSE vs  
CLOSED LOOP GAIN (V+ = V = 5V)  
FIGURE 2. ISL28273 FREQUENCY RESPONSE vs CLOSED  
LOOP GAIN (V  
= V+)  
CM  
CM  
90  
80  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
20  
10  
COMMON-MODE INPUT = 1/2V  
GAIN = 10,000V/V  
S
COMMON-MODE INPUT = 1/2V  
+
GAIN = 1000  
GAIN = 500  
GAIN = 5,000V/V  
GAIN = 2,000V/V  
GAIN = 200  
GAIN = 100  
GAIN = 50  
GAIN = 1,000V/V  
GAIN = 500V/V  
GAIN = 200V/V  
GAIN = 100V/V  
GAIN = 20  
GAIN = 10  
1
10  
100  
1k  
10k  
100k  
1M  
1E+00  
1E+01  
1E+02  
1E+03  
1E+04  
1E+05  
1E+06  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 3. ISL28270, ISL28470 FREQUENCY RESPONSE vs  
FIGURE 4. ISL28273 FREQUENCY RESPONSE vs CLOSED  
LOOP GAIN (V = 1/2V+)  
CLOSED LOOP GAIN (V+ = 5V, V  
= 1/2V+)  
CM  
CM  
FN6260.2  
April 13, 2007  
5
ISL28270, ISL28273, ISL28470  
Typical Performance Curves (Continued)  
70  
60  
50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
COMMON-MODE INPUT = V +10mV  
M
COMMON-MODE INPUT = V +10mV  
M
GAIN = 1000  
GAIN = 500  
GAIN = 10,000V/V  
GAIN = 5,000V/V  
GAIN = 2,000V/V  
GAIN = 1,000V/V  
GAIN = 200  
GAIN = 100  
GAIN = 50  
GAIN = 500V/V  
GAIN = 200V/V  
GAIN = 100V/V  
GAIN = 20  
GAIN = 10  
1E+00  
1E+01  
1E+02  
1E+03  
1E+04  
1E+05  
1E+06  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. ISL28270, ISL28470 FREQUENCY RESPONSE vs  
FIGURE 6. ISL28273 FREQUENCY RESPONSE vs CLOSED  
LOOP GAIN (VCM = V-)  
CLOSED LOOP GAIN (V+ = 5V, V  
= 10mV)  
CM  
25  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 5V  
+
V
S
= 5V  
20  
15  
10  
V
= 3.3V  
+
V
= 3.3V  
S
V
= 2.4V  
+
V
= 2.4V  
S
A = 10  
V
A
R
C
= 100  
= 10kΩ  
= 10pF  
V
L
L
F
F
G
R = 10kΩ  
= 10pF  
C
L
5
0
R /R = 9.08Ω  
R /R = 99.02  
R
R
F
F
G
G
G
R
R
= 178kΩ  
= 221kΩ  
= 19.6kΩ  
= 2.23kΩ  
0
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 8. ISL28273 FREQUENCY RESPONSE vs SUPPLY  
VOLTAGE  
FIGURE 7. ISL28270, ISL28470 FREQUENCY RESPONSE vs  
SUPPLY VOLTAGE  
50  
45  
30  
C
= 100pF  
L
25  
20  
15  
10  
5
C
C
= 47pF  
= 27pF  
L
L
C
= 820pF  
L
C
= 470pF  
= 220pF  
L
40  
35  
30  
25  
C
L
C
= 2.7pF  
L
C
= 56pF  
L
A
= 100  
= ±2.5V  
= 10kΩ  
V
A
= 10  
= 5V  
= 10kΩ  
V
V
R
S
V
R
+
L
L
R /R = 99.02  
R
R
F
F
G
G
R /R = 9.08Ω  
R
R
F
F
G
G
= 221kΩ  
= 178kΩ  
= 2.23kΩ  
= 19.6kΩ  
0
100  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FIGURE 9. ISL28270, ISL28470 FREQUENCY RESPONSE vs  
FIGURE 10. ISL28273 FREQUENCY RESPONSE vs C  
LOAD  
C
LOAD  
FN6260.2  
April 13, 2007  
6
ISL28270, ISL28273, ISL28470  
Typical Performance Curves (Continued)  
120  
100  
80  
60  
40  
20  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CMRR  
CMRR  
-10  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 12. ISL28273 CMRR vs FREQUENCY  
FIGURE 11. ISL28270, ISL28470 CMRR vs FREQUENCY  
140  
120  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PSRR+  
PSRR+  
100  
80  
PSRR-  
PSRR-  
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 13. ISL28270, ISL28470 PSRR vs FREQUENCY  
FIGURE 14. ISL28273 PSRR vs FREQUENCY  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
250  
200  
150  
100  
50  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 16. ISL28273 INPUT VOLTAGE NOISE SPECTRAL  
DENSITY (GAIN = 10)  
FIGURE 15. ISL28270, ISL28470 INPUT VOLTAGE NOISE  
SPECTRAL DENSITY (GAIN = 100)  
FN6260.2  
April 13, 2007  
7
ISL28270, ISL28273, ISL28470  
Typical Performance Curves (Continued)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 17. ISL28270, ISL28470 INPUT CURRENT NOISE  
SPECTRAL DENSITY (GAIN = 100)  
FIGURE 18. ISL28273 INPUT CURRENT NOISE SPECTRAL  
DENSITY (GAIN = 10)  
TIME (1s/DIV)  
TIME (1s/DIV)  
FIGURE 20. ISL28273 0.1 Hz TO 10Hz INPUT VOLTAGE NOISE  
(GAIN = 10)  
FIGURE 19. ISL28270, ISL28470 0.1 Hz TO 10Hz INPUT  
VOLTAGE NOISE (GAIN = 100)  
400  
140  
n = 930  
135  
350  
n = 930  
MAX  
MAX  
130  
125  
120  
115  
110  
300  
250  
200  
150  
100  
MEDIAN  
MEDIAN  
105  
MIN  
100  
MIN  
95  
90  
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 21. SUPPLY CURRENT vs TEMPERATURE V = ±2.5V  
S
FIGURE 22. CMRR vs TEMPERATURE (V  
= +2.5V TO -2.5V)  
CM  
ENABLED (R = INF)  
L
FN6260.2  
April 13, 2007  
8
ISL28270, ISL28273, ISL28470  
Typical Performance Curves (Continued)  
4.90  
4.89  
4.88  
4.87  
4.86  
4.85  
165  
155  
145  
135  
125  
115  
105  
95  
n = 930  
n = 930  
MAX  
MAX  
MEDIAN  
MEDIAN  
85  
MIN  
MIN  
75  
65  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 24. POSITIVE V  
vs TEMPERATURE (R = 1k,  
L
FIGURE 23. PSRR vs TEMPERATURE (V = ±2.5V)  
OUT  
= ±2.5V)  
S
V
S
170  
4.9964  
4.9962  
4.9960  
4.9958  
4.9956  
4.9954  
4.9952  
4.9950  
4.9948  
4.9946  
4.9944  
n = 930  
n = 930  
160  
150  
140  
130  
120  
110  
100  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 25. NEGATIVE V  
OUT  
vs TEMPERATURE (R = 1k,  
L
FIGURE 26. POSITIVE V  
vs TEMPERATURE (R = 100k,  
L
OUT  
V
= ±2.5V)  
S
V
= ±2.5V)  
S
4.502  
n = 930  
4.002  
MAX  
MEDIAN  
3.502  
3.002  
2.502  
2.002  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
FIGURE 27. NEGATIVE V  
vs TEMPERATURE (R = 100k, V = ±2.5V)  
L S  
OUT  
FN6260.2  
April 13, 2007  
9
ISL28270, ISL28273, ISL28470  
Pin Descriptions  
ISL28270  
ISL28273  
ISL28470  
EQUIVALENT  
16 Ld QSOP 16 Ld QSOP 28 Ld QSOP PIN NAME  
CIRCUIT  
PIN FUNCTION  
2, 15  
3, 14  
2, 15  
3, 14  
1, 13  
16, 28  
OUT_A,B  
C_D  
Circuit 3  
Output Voltage. A complementary Class AB common-source output  
stage drives the output of each channel. When disabled, the outputs are  
in a high impedance state  
2, 12  
17, 27  
FB+_A,B  
C_D  
Circuit 1A,  
Circuit 1B  
Positive Feedback high impedance terminals. ISL28270 and ISL28470  
input circuit is shown in Circuit 1A, and the ISL28273 input circuit is  
shown in Circuit 1B.  
ISL28273: to avoid offset drift, it is recommended that the terminals of  
the ISL28273 are not overdriven beyond 1V and the input current must  
never exceed 5mA.  
4, 13  
4, 13  
3, 11  
18, 26  
FB-_A,B  
C_D  
Circuit 1A,  
Circuit 1B  
Negative Feedback high impedance terminals. The FB- pins connect to  
an external resistor divider to individually set the desired gain of the in-  
amp. ISL28270 and ISL28470 input circuit is shown in Circuit 1A, and the  
ISL28273 input circuit is shown in Circuit 1B.  
ISL28273: to avoid offset drift, it is recommended that the terminals of  
the ISL28273 are not overdriven beyond 1V and the input current must  
never exceed 5mA.  
5, 12  
6, 11  
7, 10  
5, 12  
6, 11  
7, 10  
4, 10  
19, 25  
IN-_A,B  
C_D  
Circuit 1A,  
Circuit 1B  
High impedance Inverting input terminals. Connect to the low side of the  
input source signal. ISL28270 and ISL28470 input circuit is shown in  
Circuit 1A, and the ISL28273 input circuit is shown in Circuit 1B.  
ISL28273: to avoid offset drift, it is recommended that the terminals of  
the ISL28273 are not overdriven beyond 1V and the input current must  
never exceed 5mA.  
5, 9  
20, 24  
IN+_A,B  
C_D  
Circuit 1A,  
Circuit 1B  
High impedance Non-inverting input terminals. Connect to the high side  
of the input source signal. ISL28270 and ISL28470 input circuit is shown  
in Circuit 1A, and the ISL28273 input circuit is shown in Circuit 1B.  
ISL28273: to avoid offset drift, it is recommended that the terminals of  
the ISL28273 are not overdriven beyond 1V and the input current must  
never exceed 5mA.  
6, 8  
21, 23  
EN_A,B  
C_D  
Circuit 2  
Active LOW logic pins. When pulled above 2V, the corresponding  
channel turns off and OUT is high impedance. A channel is enabled  
when pulled below 0.8V. Built-in pull downs define each EN pin LOW  
when left floating.  
16  
8
16  
8
7
V
Circuit 4  
Circuit 4  
Positive Supply terminal shared by all channels.  
+
22  
V-  
Negative Supply terminal shared by all channels. Grounded for single  
supply operation.  
1, 9  
1, 9  
14,15  
NC  
No Connect, pins can be left floating or grounded  
V+  
V-  
V+  
V+  
V+  
IN+  
FB+  
CAPACITIVELY  
OUT  
IN-  
FB-  
LOGIC  
PIN  
COUPLED  
ESD CLAMP  
V-  
V-  
V-  
CIRCUIT 1A  
CIRCUIT 2  
CIRCUIT 3  
CIRCUIT 4  
V+  
IN-  
IN+  
FB-  
FB+  
V-  
CIRCUIT 1B  
FN6260.2  
April 13, 2007  
10  
ISL28270, ISL28273, ISL28470  
The IREC enables rail-to-rail input amplification without the  
Application Information  
problems usually associated with the dual differential stage  
topology. The IREC ensures that there are no drastic  
changes in offset voltage over the entire range of the input.  
See Input Offset Voltage vs Common-Mode Input Voltage in  
performance charts. IREC also cures the abrupt change and  
even reverse polarity of the input bias current over the whole  
range of input.  
Product Description  
The ISL28270 and ISL28273 are dual channel micropower  
instrumentation amplifiers (in-amps) and the ISL28470 is a  
Quad-channel which delivers rail-to-rail input amplification  
and rail-to-rail output swing. The in-amps also deliver  
excellent DC and AC specifications while consuming only  
about 60µA per channel. Because the independent pair of  
feedback terminals set the gain and adjust the output 0 level,  
the ISL28270, ISL28273 and ISL28470 achieve high CMRR  
regardless of the tolerance of the gain setting resistors. The  
ISL28270 and ISL28470 are internally compensated for a  
minimum gain of 100. The ISL28273 is internally  
Input Bias Cancellation/Compensation  
All three parts have an Input Bias Cancellation/Compensation  
Circuit for both the input and feedback terminals (IN+, IN-, FB+  
and FB-), achieving a low input bias current throughout the  
input common-mode range and the operating temperature  
range. While the PNP bipolar input stages are biased with an  
adequate amount of biasing current for speed and increased  
noise performance, the Input Bias Cancellation/Compensation  
Circuit sinks most of the base current of the input transistors  
leaving a small portion as input bias current, typically 500pA. In  
addition, the Input Bias Cancellation/Compensation Circuit  
maintains a smooth and flat behavior of input bias current over  
the common mode range and over the operating temperature  
range. The Input Bias Cancellation/Compensation Circuit  
operates from input voltages of 10mV above the negative  
supply to input voltages slightly above the positive supply.  
compensated for a minimum gain of 10.  
EN pins are available to independently enable or disable a  
channel. When all channels are off, current consumption is  
down to typically 4µA.  
Input Protection  
All input terminals and feedback terminals have internal ESD  
protection diodes to both positive and negative supply rails,  
limiting the input voltage to within one diode beyond the  
supply rails. Input signals originating from low impedance  
sources should have current limiting resistors in series with  
the IN+ and IN- pins to prevent damaging currents during  
power supply sequencing and other transient conditions.  
The ISL28270 and ISL28470 have additional back-to-back  
diodes across the input terminals and also across the  
feedback terminals. If overdriving the inputs is necessary,  
the external input current must never exceed 5mA. External  
series resistors may be used as an external protection to  
limit excessive external voltage and current from damaging  
the inputs. On the other hand, the ISL28273 has no clamps  
to limit the differential voltage on the input terminals allowing  
higher differential input voltages at lower gain applications. It  
is recommended, however, that the terminals of the  
Output Stage and Output Voltage Range  
A Class AB common-source output stage drives the output.  
The pair of complementary MOSFET devices drive the  
output VOUT to within a few millivolts of the supply rails. At a  
100kΩ load, the PMOS sources current and pulls the output  
up to 4mV below the positive supply. The NMOS sinks  
current and pulls the output down to 4mV above the negative  
supply, or ground in the case of a single supply operation.  
The current sinking and sourcing capability are internally  
limited to 29mA. When disabled, the outputs are in a high  
impedance state.  
Gain Setting  
ISL28273 are not overdriven beyond 1V to avoid offset drift.  
VIN (the potential difference across IN+ and IN-), is  
replicated (less the input offset voltage) across FB+ and FB-.  
The function of the in-amp is to maintain the differential  
voltage across FB- and FB+ equal to IN+ and IN-; (FB- -  
FB+) = (IN+ - IN-). Consequently, the transfer function can  
be derived. The in-amp gain is set by two external resistors,  
the feedback resistor RF, and the gain resistor RG.  
Input Stage and Input Voltage Range  
The input terminals (IN+ and IN-) of the in-amps are a single  
differential pair of bipolar PNP devices aided by an Input Range  
Enhancement Circuit (IREC), to increase the headroom of  
operation of the common-mode input voltage. The feedback  
terminals (FB+ and FB-) also have a similar topology. As a  
result, the input common-mode voltage range is rail-to-rail  
regardless of the feedback terminal settings and regardless of  
the gain settings. They are able to handle input voltages that  
are at or slightly beyond the supply and close to ground making  
these in-amps well suited for single 5V down to 2.4V supply  
systems. There is no need to bias the common-mode input to  
achieve symmetrical input voltage. It is recommended,  
however, that the common-mode input be biased at least 10mV  
above the negative supply rail to achieve top performance. See  
“Input Bias Cancellation/Compensation” on page 11.  
FN6260.2  
April 13, 2007  
11  
ISL28270, ISL28273, ISL28470  
an economical resistor divider can be used to set the voltage  
at the REF terminal without degrading or affecting the CMRR  
performance. Any voltage applied to the REF terminal will  
2.4V TO 5V  
EN  
IN+  
IN-  
shift V  
by V  
times the closed loop gain, which is set  
by resistors R and R . See Figure 29.  
V+  
+
EN  
OUT  
REF  
IN+  
IN-  
F
G
-
ISL28270  
VOUT  
FB+  
FB-  
The FB+ pin can also be connected to the other end of  
resistor, R . See Figure 30. Keeping the basic concept that  
the in-amp maintains constant differential voltage across the  
input terminals and feedback terminals (FB- - FB+) =  
(IN+ - IN-), the transfer function of Figure 30 can be derived.  
+
-
G
VCM  
V-  
R
R
F
G
2.4V TO 5V  
EN  
IN+  
V+  
ISL28270  
V-  
EN  
IN+  
IN-  
FIGURE 28. GAIN IS SET BY TWO EXTERNAL RESISTORS,  
AND R  
+
-
R
F
G
IN-  
VOUT  
FB+  
FB-  
+
-
V
V
= IN+ IN-  
IN  
VCM  
R
F
--------  
(EQ. 1)  
=
1 +  
V
OUT  
IN  
R
G
R
S
In Figure 28, the FB+ pin and one end of resistor RG are  
connected to GND. With this configuration, the gain equation  
(Equation 1) is only true for a positive swing in VIN; negative  
input swings will be ignored because the output will be at  
ground.  
R
R
F
G
VREF  
FIGURE 30. REFERENCE CONNECTION WITH AN  
AVAILABLE VREF  
V
V
= IN+ IN-  
IN  
Reference Connection  
Unlike a three op-amp in-amp realization, a finite series  
resistance seen at the REF terminal does not degrade the  
high CMRR performance, eliminating the need for an  
additional external buffer amplifier. Figure 29 uses the FB+  
pin to provide a high impedance REF terminal.  
R
+ R  
F
S
R
G
---------------------  
+ V  
REF  
=
=
1 +  
1 +  
OUT  
OUT  
(EQ. 3)  
R
F
--------  
V
(V ) + (V  
)
REF  
IN  
(EQ. 4)  
R
G
2.4V to 5V  
EN  
A finite resistance RS in series with the V  
REF  
source, adds  
an output offset of V *(R /R ). As the series resistance RS  
IN  
S
G
approaches zero, Equation 3 is simplified to Equation 4 for  
IN+  
V+  
ISL28270  
V-  
EN  
IN+  
IN-  
Figure 30. V is simply shifted by an amount V  
.
REF  
OUT  
+
-
IN-  
External Resistor Mismatches  
VOUT  
FB+  
FB-  
+
-
Because of the independent pair of feedback terminals  
provided by the in-amps, the CMRR is not degraded by any  
resistor mismatches. Hence, unlike a three op-amp and  
especially a two op-amp in-amp realization, the ISL28270,  
ISL28273 and ISL28470 reduce the cost of external  
components by allowing the use of 1% or more tolerance  
resistors without sacrificing CMRR performance. The CMRR  
will be typically 110dB regardless of the tolerance of the  
resistors used. Instead, a resistor mismatch results in a  
higher deviation from the theoretical gain - gain Error.  
2.9V to 5V  
VCM  
R
1
2
REF  
R
R
R
F
G
FIGURE 29. GAIN SETTING AND REFERENCE CONNECTION  
.
Gain Error and Accuracy  
V
= IN+ IN-  
IN  
The gain error indicated in the “Electrical Specifications”  
Table on page 3 is the inherent gain error alone. The gain  
error specification listed does not include the gain error  
contributed by the resistors. There is an additional gain error  
R
R
F
R
G
F
--------  
--------  
(EQ. 2)  
V
=
1 +  
(V ) + 1 +  
(V  
)
REF  
OUT  
IN  
R
G
The FB+ pin is used as a REF terminal to center or to adjust  
the output. Because the FB+ pin is a high impedance input,  
FN6260.2  
April 13, 2007  
12  
ISL28270, ISL28273, ISL28470  
due to the tolerance of the resistors used. The resulting  
non-ideal transfer function effectively becomes Equation 5:  
pulled above 2V, and will power up when the EN bar is pulled  
below 0.8V.  
R
F
Unused Channels  
--------  
V
=
1 +  
× [1 ± (E  
+ E  
+ E )] × V  
RF G IN  
(EQ. 5)  
OUT  
RG  
R
G
The ISL28270, ISL28273 and ISL28470 are Dual-channel  
and Quad-channel op-amps. If the application only requires  
one channel when using the ISL28270, ISL28273 or less  
than 4-channels when using the ISL28470, the user must  
configure the unused channel(s) to prevent them from  
oscillating. The unused channel(s) will oscillate if the input  
and output pins are floating. This will result in higher than  
expected supply currents and possible noise injection into  
the channel being used. The proper way to prevent this  
oscillation is to short the output to the negative input and  
ground the positive input (as shown in Figure 31).  
Where:  
E
E
E
= Tolerance of RG  
= Tolerance of RF  
RG  
RF  
G
= Gain Error of the ISL28270  
The term [1 - (E  
RG  
+E +E )] is the deviation from the  
G
RF  
theoretical gain. Thus, (E  
+E +E ) is the total gain  
RG  
RF  
G
error. For example, if 1% resistors are used, the total gain  
error would be as follows in Equation 6:  
TotalGainError = ±(E  
+ E  
+ E (typical))  
RF G  
RG  
(EQ. 6)  
TotalGainError = ±(0.01 + 0.01 + 0.005)= ±2.5%  
1/2 ISL28270, ISL28273  
IN+  
+
1/4 ISL28470  
IN-  
Disable/Power-Down  
-
The ISL28270, ISL28273 and ISL28470 have an  
FB+  
FB-  
enable/disable pin for each channel. They can be powered  
down to reduce the supply current to typically 4µA when all  
channels are off. When disabled, the corresponding output is  
in a high impedance state. The active low EN pin has an  
internal pull down and hence can be left floating and the  
in-amp enabled by default. When the EN is connected to an  
external logic, the in-amp will shutdown when the EN pin is  
+
-
R
R
F
G
FIGURE 31. PREVENTING OSCILLATIONS IN UNUSED  
CHANNELS  
FN6260.2  
April 13, 2007  
13  
ISL28270, ISL28273, ISL28470  
Shrink Small Outline Plastic Packages (SSOP)  
Quarter Size Outline Plastic Packages (QSOP)  
M28.15  
N
28 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE  
(0.150” WIDE BODY)  
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
E
GAUGE  
PLANE  
INCHES  
MIN  
MILLIMETERS  
-B-  
SYMBOL  
MAX  
0.069  
0.010  
0.061  
0.012  
0.010  
0.394  
0.157  
MIN  
1.35  
0.10  
-
MAX  
1.75  
0.25  
1.54  
0.30  
0.25  
10.00  
3.98  
NOTES  
A
A1  
A2  
B
0.053  
0.004  
-
-
1
2
3
-
L
0.25  
0.010  
SEATING PLANE  
A
-
-A-  
0.008  
0.007  
0.386  
0.150  
0.20  
0.18  
9.81  
3.81  
9
D
h x 45°  
C
D
E
-
-C-  
3
α
4
A2  
e
A1  
C
e
0.025 BSC  
0.635 BSC  
-
B
0.10(0.004)  
H
h
0.228  
0.0099  
0.016  
0.244  
0.0196  
0.050  
5.80  
0.26  
0.41  
6.19  
0.49  
1.27  
-
0.17(0.007) M  
C
A M B S  
5
L
6
NOTES:  
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2  
of Publication Number 95.  
N
α
28  
28  
7
0°  
8°  
0°  
8°  
-
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Rev. 1 6/04  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusion and gate burrs shall not exceed  
0.15mm (0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch)  
per side.  
5. The chamfer on the body is optional. If it is not present, a visual in-  
dex feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “B” does not include dambar protrusion. Allowable dam-  
bar protrusion shall be 0.10mm (0.004 inch) total in excess of “B”  
dimension at maximum material condition.  
10. Controlling dimension: INCHES. Converted millimeter dimensions  
are not necessarily exact.  
FN6260.2  
April 13, 2007  
14  
ISL28270, ISL28273, ISL28470  
Quarter Size Outline Plastic Packages Family (QSOP)  
A
MDP0040  
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY  
D
(N/2)+1  
N
INCHES  
SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.056  
0.010  
0.008  
0.193  
0.236  
0.154  
0.025  
0.025  
0.041  
16  
0.068  
0.006  
0.056  
0.010  
0.008  
0.341  
0.236  
0.154  
0.025  
0.025  
0.041  
24  
0.068  
0.006  
0.056  
0.010  
0.008  
0.390  
0.236  
0.154  
0.025  
0.025  
0.041  
28  
Max.  
±0.002  
±0.004  
±0.002  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
PIN #1  
I.D. MARK  
E
E1  
-
-
-
1
(N/2)  
c
-
B
D
1, 3  
0.010 C A B  
E
-
e
E1  
e
2, 3  
H
-
C
SEATING  
L
±0.009  
Basic  
-
PLANE  
L1  
N
-
0.007 C A B  
b
0.004 C  
Reference  
-
Rev. F 2/07  
L1  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not  
included.  
A
2. Plastic interlead protrusions of 0.010” maximum per side are not  
included.  
c
SEE DETAIL "X"  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
0.010  
A2  
GAUGE  
PLANE  
L
A1  
4°±4°  
DETAIL X  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6260.2  
April 13, 2007  
15  

相关型号:

ISL28273FAZ

Micropower, Single Supply, Rail-to-Rail Input and Output (RRIO) Instrumentation Amplifier
INTERSIL

ISL28273FAZ-T7

Micropower, Single Supply, Rail-to-Rail Input and Output (RRIO) Instrumentation Amplifier
INTERSIL

ISL28273INEVAL1Z

Micropower, Single Supply, Rail-to-Rail Input and Output (RRIO) Instrumentation Amplifier
INTERSIL

ISL28274

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifier and Precision Operational Amplifier
INTERSIL

ISL28274FAZ

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifier and Precision Operational Amplifier
INTERSIL

ISL28274FAZ-T7

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifier and Precision Operational Amplifier
INTERSIL

ISL28276

Dual Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op-Amps
INTERSIL

ISL28276FBZ

Single, Dual and Quad Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op Amp
INTERSIL

ISL28276IAZ

Dual Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op-Amps
INTERSIL

ISL28276IAZ-T

Dual Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op-Amps
INTERSIL

ISL28276IAZ-T7

Dual and Quad Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op Amps
INTERSIL

ISL28276_07

Dual and Quad Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op Amps
INTERSIL