ISL55290IUZ-T13 [INTERSIL]

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Low Power Op Amp; 单路和双路超低噪音,超低失真,低功耗运算放大器
ISL55290IUZ-T13
型号: ISL55290IUZ-T13
厂家: Intersil    Intersil
描述:

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Low Power Op Amp
单路和双路超低噪音,超低失真,低功耗运算放大器

运算放大器
文件: 总18页 (文件大小:962K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL55190, ISL55290  
®
Data Sheet  
March 30, 2007  
FN6262.1  
Single and Dual Ultra-Low Noise, Ultra-Low  
Distortion, Low Power Op Amp  
Features  
• 1.2nV/Hz input voltage noise, f = 1kHz  
O
The ISL55190 and ISL55290 are single and dual high speed  
operational amplifiers featuring low noise, low distortion, and  
rail-to-rail output drive capability. They are designed to  
operate with single and dual supplies from +5VDC  
(±2.5VDC) down to +3VDC (±1.5VDC). These amplifiers  
draw 16mA of quiescent supply current per amplifier. For  
power conservation, this family offers a low-power shutdown  
mode that reduces supply current to 21µA and places the  
amplifiers' output into a high impedance state. The ISL55190  
ENABLE logic places the device in the shutdown mode with  
EN = 0 and the ISL55290 is placed in the shutdown mode  
with EN = 1.  
• Harmonic Distortion -95dBc, -92dBc, f = 4MHz  
O
• Stable at gains as low as 5  
• 800MHz gain bandwidth product (A = 5)  
V
• 268V/µs typical slew rate  
• 16mA typical supply current (21µA in disable mode)  
• 300µV typical offset voltage  
• 25µA typical input bias current  
• 3V to 5V single supply voltage range  
• Rail-to-rail output  
These amplifiers have excellent input and output overload  
recovery times and outputs that swing rail-to-rail. Their input  
common mode voltage range includes ground. The  
• Enable pin  
• Pb-free plus anneal available (RoHS compliant)  
ISL55190 and ISL55290 are stable at gains as low as 5 with  
an input referred noise voltage of 1.2nV/Hz and harmonic  
distortion products -95dBc (2nd) and -92dBc (3rd) below a  
Applications  
• High speed pulse applications  
• Low noise signal processing  
• ADC buffers  
4MHz 2V  
P-P  
signal.  
The ISL55190 is available in space-saving 8 Ld DFN and 8 Ld  
SOIC packages. The ISL55290 is available in a 10 Ld MSOP  
package.  
• DAC output amplifiers  
• Radio systems  
Ordering Information  
• Portable equipment  
TABLE 1. ENABLE LOGIC  
PART  
NUMBER  
(Note)  
TAPE  
AND  
REEL  
PART  
MARKING  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
ENABLE  
EN = 1  
DISABLE  
EN = 0  
ISL55190IBZ  
55190 IBZ  
-
8 Ld SOIC  
8 Ld SOIC  
MDP0027  
MDP0027  
ISL55190  
ISL55290  
ISL55190IBZ-T13 55190 IBZ  
13”  
EN = 0  
EN = 1  
(2,500 pcs) Tape and Reel  
ISL55190IRZ  
190Z  
-
8 Ld DFN  
8 Ld DFN  
L8.3x3D  
L8.3x3D  
ISL55190IRZ-T13 190Z  
13”  
(2,500 pcs) Tape and Reel  
ISL55290IUZ  
5290Z  
-
10 Ld MSOP MDP0043  
10 Ld MSOP MDP0043  
ISL55290IUZ-T13 5290Z  
13”  
(2500 pcs) Tape and Reel  
Coming Soon  
ISL55190EVAL1Z  
Evaluation Board  
Coming Soon  
ISL55290EVAL1Z  
Evaluation Board  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100% matte  
tin plate termination finish, which are RoHS compliant and compatible  
with both SnPb and Pb-free soldering operations. Intersil Pb-free  
products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2006, 2007. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
ISL55190, ISL55290  
Pinouts  
ISL55190  
(8 LD SOIC)  
TOP VIEW  
ISL55190  
(8 LD DFN)  
TOP VIEW  
FEEDBACK  
1
2
3
4
8
7
6
5
EN  
EN  
V +  
1
2
3
4
8
7
6
5
IN-  
IN+  
V-  
VS+  
OUT  
NC  
FEEDBACK  
OUT  
NC  
V-  
-
+
-
+
IN-  
IN+  
ISL55290  
(10 LD MSOP)  
TOP VIEW  
OUT_A  
IN-_A  
IN+_A  
V-  
1
2
3
4
5
10 V+  
9
8
7
6
OUT_B  
IN-_B  
-
+
-
+
IN+_B  
EN_B  
EN_A  
FN6262.1  
March 30, 2007  
2
ISL55190, ISL55290  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V  
Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/μs  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
ESD Rating  
Thermal Resistance  
θ
(°C/W)  
JA  
65.75  
8 Ld DFN Package . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld SO Package . . . . . . . . . . . . . . . . . . . . . . . . . .  
10 Ld MSOP Package . . . . . . . . . . . . . . . . . . . . . . .  
Ambient Operating Temperature Range . . . . . . . . . .-40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
110  
115  
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . .3kV  
Machine Model (Per EIAJ ED-4701 Method C-111). . . . . . . .300V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V+ = 5V, V -= GND, R = 1kΩ, R = 30Ω, R = 120Ω. unless otherwise specified. Parameters are per amplifier.  
L
G
F
All values are at V+ = 5V, T = +25°C  
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC SPECIFICATIONS  
V
Input Offset Voltage  
-1100  
-300  
0.43  
500  
µV  
OS  
ΔV  
Input Offset Drift vs Temperature  
-40°C to +85°C  
µV/°C  
OS  
ΔT  
---------------  
I
I
Input Offset Current  
-1.3  
-0.3  
-25  
0.7  
-40  
3.8  
µA  
µA  
V
OS  
B
Input Bias Current  
V
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Maximum Output Voltage Swing  
0
CM  
CMRR  
PSRR  
V
= 0V to 3.8V  
80  
80  
85  
95  
100  
115  
39  
dB  
dB  
dB  
mV  
V
CM  
V+ = 3V to 5V  
V = 0.5V to 4V, R = 1kΩ  
O
A
VOL  
L
V
Output low, R = 1kΩ  
100  
OUT  
S,ON  
S,OFF  
L
Output high, R = 1kΩ, V+= 5V  
4.960  
4.978  
16  
L
I
I
Supply Current, Enabled  
ISL55190  
ISL55290  
20  
38  
49  
mA  
mA  
µA  
mA  
mA  
V
30  
Supply Current, Disabled  
Short-Circuit Output Current  
Short-Circuit Output Current  
Supply Operating Range  
ENABLE High Level  
21  
I +  
R
R
= 10Ω  
= 10Ω  
110  
110  
3
130  
130  
O
L
L
I -  
O
V
V
V
V+ to V-  
5
SUPPLY  
INH  
Referred to -V  
Referred to -V  
ISL55190 (EN)  
ISL55290 (EN)  
ISL55190 (EN)  
ISL55290 (EN)  
2
V
ENABLE Low Level  
0.8  
80  
V
INL  
I
ENABLE Input High Current  
20  
0.8  
5
nA  
µA  
µA  
nA  
ENH  
V
= V+  
EN  
1.5  
6.2  
80  
I
ENABLE Input Low Current  
= V-  
ENL  
V
EN  
20  
FN6262.1  
March 30, 2007  
3
ISL55190, ISL55290  
Electrical Specifications V+ = 5V, V -= GND, R = 1kΩ, R = 30Ω, R = 120Ω. unless otherwise specified. Parameters are per amplifier.  
L
G
F
All values are at V+ = 5V, T = +25°C  
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC SPECIFICATIONS  
GBW  
Gain Bandwidth Product  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
A
= +5; V  
= 100mV ; R /R = 402Ω/100Ω  
P-P  
800  
-95  
-92  
-65  
MHz  
dBc  
dBc  
dB  
V
OUT  
f
g
HD  
(4 MHz)  
A
= 5; V  
= 2V ; R /R = 402Ω/100Ω  
P-P  
V
OUT  
f
g
ISO  
Off-state Isolation; EN = 1 ISL55290;  
EN = 0 ISL55190  
f
= 10MHz; A = 5; V = 640mV  
IN  
;
P-P  
O
V
R /R = 402Ω/100Ω; C = 1.2pF  
f
g
L
X-TALK  
ISL55290  
Channel-to-Channel Crosstalk  
f
= 10MHz; A = 5; V  
(Driven Channel) =  
-75  
-45  
-38  
dB  
dB  
dB  
O
V
OUT  
640mV ; R /R = 402Ω/100Ω; C = 1.2pF  
P-P  
f
g
L
PSRR  
Power Supply Rejection Ratio  
V
= ±2.5V; A = 5; V  
= 640mV  
;
S
V
SOURCE  
P-P  
f
= 10MHz;  
R /R = 402Ω/100Ω; C = 1.2pF  
O
f
g
L
CMRR  
Input Common Mode Rejection  
V
= ±2.5V; A = 5; V  
640mV  
;
P-P  
S
V
CM =  
Ratio; f = 10MHz;  
R /R = 402Ω/100Ω; C = 1.2pF  
O
f
O
O
g
L
V
Input Referred Voltage Noise  
Input Referred Current Noise  
f
f
= 1kHz  
1.2  
6
nV/Hz  
pA/Hz  
N
IN  
= 10kHz  
TRANSIENT RESPONSE  
SR Slew Rate  
t , t Large Rise Time, t 10% to 90%  
163  
268  
11.2  
9.8  
4.4  
4.0  
2.2  
2.0  
1.6  
V/uS  
ns  
A
= 5; V  
= 3.5V  
; R /R = 402Ω/100Ω  
P-P f g  
r
f
r
V
OUT  
Signal  
C = 1.2pF  
L
Fall Time, t 10% to 90%  
ns  
f
Rise Time, t 10% to 90%  
A
= 5; V  
= 1V ; R /R = 402Ω/100Ω  
P-P  
ns  
r
V
OUT  
f
g
C = 1.2pF  
L
Fall Time, t 10% to 90%  
ns  
f
t , t , Small  
Rise Time, t 10% to 90%  
A
= 5; V  
= 1V ; R /R = 402Ω/100Ω  
ns  
r
f
r
V
OUT  
P-P  
f
g
Signal  
C = 1.2pF  
L
Fall Time, t 10% to 90%  
f
ns  
t
t
Propagation Delay  
A
= 5; V  
= 100mV  
; R /R = 402Ω/100Ω  
ns  
pd  
V
OUT  
P-P  
f
g
10% V to 10% V  
IN  
C = 1.2pF  
OUT  
L
Positive Input Overload Recovery  
Time, t ; 10% V to 10% V  
V
= ±2.5V; A = 5; V = +V  
IN  
+0.1V;  
15  
18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IOL  
S
V
CM  
R /R = 402Ω/100Ω; C = 1.2pF  
IOL+ IN  
OUT  
f
g
L
Negative Input Overload Recovery  
Time, t ; 10% V to 10% V  
V
= ±2.5V; A = 5; V = -V -0.5V;  
IN  
S
V
R /R = 402Ω/100Ω; C = 1.2pF  
IOL-  
IN  
Positive Output Overload Recovery  
Time, t ; 10% V to 10% V  
OUT  
f
g
L
t
t
V
= ±2.5V; A = 5; V = 1.1V  
;
;
17  
OOL  
S
V
IN P-P  
R /R = 402Ω/100Ω; C = 1.2pF  
OOL+ IN OUT  
f
g
L
Negative Output Overload Recovery  
Time, t ; 10% V to 10% V  
V
= ±2.5V; A = 5; V = 1.1V  
IN P-P  
17  
S
V
R /R = 402Ω/100Ω; C = 1.2pF  
OOL-  
IN  
ENABLE to Output Turn-on Delay  
Time; 10% EN to 10% V  
OUT  
f
g
L
A
= 5; V = 500mV  
IN  
; R /R = 402Ω/100Ω  
420  
240  
160  
32  
EN  
V
P-P  
f
g
ISL55190  
C = 1.2pF  
OUT  
ENABLE to Output Turn-off Delay  
Time; 10% EN to 10% V  
L
A
= 5; V = 500mV  
IN  
; R /R = 402Ω/100Ω  
f g  
V
P-P  
P-P  
P-P  
C = 1.2pF  
OUT  
ENABLE to Output Turn-on Delay  
Time; 10% EN to 10% V  
L
t
A
= 5; V = 500mV  
IN  
; R /R = 402Ω/100Ω  
f g  
EN  
ISL55290  
V
C = 1.2pF  
OUT  
ENABLE to Output Turn-off Delay  
L
A
= 5; V = 500mV  
IN  
; R /R = 402Ω/100Ω  
f g  
V
Time;10% EN to 10% V  
C = 1.2pF  
OUT  
L
FN6262.1  
March 30, 2007  
4
ISL55190, ISL55290  
Typical Performance Curves  
2
1
0
A
= 5  
R = 1.21k, R = 301  
V
L
f
G
R
= 1k  
V
= 100mV  
1
0
OUT  
V
= 100mV  
OUT  
P-P  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
R = 100, R = 24.9  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
f
G
V
= 200mV  
OUT  
R = 402, R = 100  
f
G
V
= 1V  
R = 604, R = 150  
OUT  
f
G
A
= 5  
V
f
g
L
R = 402  
R
R
= 100  
= 1k  
-8  
.01  
0.1  
1.0  
10  
100  
1k  
0.1  
1.0  
10  
FREQUENCY (MHz)  
100  
1k  
FREQUENCY (MHz)  
FIGURE 1. GAIN vs FREQUENCY vs R AND R  
f
FIGURE 2. GAIN vs FREQUENCY vs V  
OUT  
g
70  
60  
50  
40  
30  
20  
10  
0
1
0
R
C
C
= 1k  
= 2.2pF  
= 2.5pF  
L
L
g
A
= 1000 R /R = 100k/100  
f g  
V
-1  
-2  
V
= 100mV  
P-P  
A
= 100 R /R = 10k/100  
V
f
g
-3  
-4  
-5  
-6  
-7  
-8  
-9  
R = 1000  
L
R = 499  
L
A
= 10 R /R = 909/100  
f g  
V
R = 249  
L
A
= 5  
V
C
C
R
= 0.8pF  
= 1.2pF  
= 100  
g
L
g
R = 100  
L
R = 402  
f
A
= 5 R /R = 402/100  
f g  
V
V
= 100mV  
P-P  
0.1  
1.0  
10  
FREQUENCY (MHz)  
100  
1k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FIGURE 3. ISL55290 GAIN vs FREQUENCY vs R  
FIGURE 4. CLOSED LOOP GAIN vs FREQUENCY  
L
1
0
4
C
= 13.2pF  
L
3
2
1
-1  
-2  
-3  
C
= 8.0pF  
L
C
= 4.5pF  
L
0
V
= 2.4V  
-4  
-5  
-6  
-7  
-8  
-9  
C = 2.2pF  
L
S
-1  
-2  
-3  
C
= 1.2pF  
L
A
= 5  
=1.6pF
= 1k  
V
V =5.0V  
S
C
R
R
A
R
= 5  
= 1k  
g  
L
V
L
f
g
-4  
-5  
=100
R = 402  
g  
R
V
= 100  
= 100mV  
R =402
f  
V
=100mV  
OUT P-P  
OUT  
P-P  
-6  
.01  
0.1  
1.0  
10  
100  
1k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 5. GAIN vs FREQUENCY vs VS  
FIGURE 6. ISL55190 GAIN vs FREQUENCY vs C  
L
FN6262.1  
March 30, 2007  
5
ISL55190, ISL55290  
Typical Performance Curves (Continued)  
5
5
4
A
R
R
= 5  
= 1k  
= 100  
C
= 9.0pF  
= 7.6pF  
A
R
= 5  
= 1k  
V
L
g
V
L
f
g
4
C
g
g
R = 402  
C
= 13.2pF  
g
L
3
3
R
V
= 100  
= 100mV  
R = 402  
f
C
C
= 5.5pF  
= 4.1pF  
V
= 100mV  
2
OUT  
pp  
2
OUT  
P-P  
C
= 8.0pF  
L
1
1
g
0
0
C
= 3.0pF  
= 2.3pF  
g
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
C
= 2.2pF  
L
C
C
= 2.2pF  
g
L
C
= 1.2pF  
C
= 1.8pF  
L
g
C
= 0.8pF  
g
.01  
0.1  
1.0  
10  
100  
1k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 7. ISL55290 GAIN vs FREQUENCY vs C  
FIGURE 8. ISL55190 GAIN vs FREQUENCY vs C  
g
L
5
10M  
A
R
R
= 5  
= 1k  
= 100  
V
L
g
C
= 10.5pF  
= 8.7pF  
A = 5  
V
4
3
g
R
= 1k  
L
1M  
100k  
10k  
1k  
C
g
C
C
= 1.6pF  
= 1.2pF  
g
L
R = 402  
f
2
V
= 100mV  
OUT  
P-P  
C
C
= 5.2pF  
= 3.8pF  
R = 402  
g
g
f
1
R
= 100  
g
V
= 500mV  
P-P  
0
SOURCE  
C
C
= 2.7pF  
= 2.0pF  
g
-1  
-2  
-3  
-4  
-5  
100  
10  
g
C
= 1.6pF  
g
C
= 0.5pF  
g
1
.01  
.01  
0.1  
1.0  
10  
100  
1k  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 9. ISL55290 GAIN vs FREQUENCY vs C  
FIGURE 10. DISABLED INPUT IMPEDANCE vs FREQUENCY  
g
100k  
10k  
1k  
1000  
OUTPUT DISABLED  
100  
A
= 5  
V
100  
10  
1
R
= 1k  
L
A
= 5  
V
R = 402  
f
R = 402  
f
R = 100  
i
R
= 100  
g
V
= 500mV  
P-P  
SOURCE  
V
= 1V  
P-P  
SOURCE  
10  
.01  
0.1  
1.0  
10  
100  
1k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 11. ENABLED INPUT IMPEDANCE vs FREQUENCY  
FIGURE 12. DISABLED OUTPUT IMPEDANCE vs  
FREQUENCY  
FN6262.1  
March 30, 2007  
6
ISL55190, ISL55290  
Typical Performance Curves (Continued)  
100  
10  
0
A
= 5  
A
R
= 5  
= 100  
V
V
C
R
R
= 0.8pF  
= 1k  
= 100  
g
L
g
g
R = 402  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
10  
V
=1V  
P-P  
SOURCE  
R = 402  
f
V
= 1V  
CM  
P-P  
1
OUTPUT ENABLED  
0.1  
0.01  
.01  
.01  
0.1  
1.0  
10  
100  
1k  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 13. ENABLED OUTPUT IMPEDANCE vs FREQUENCY  
FIGURE 14. CMRR vs FREQUENCY  
10  
0
A
= 5  
= 0.8pF  
= 1k  
V
A
= 5  
V
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
C
R
R
g
L
g
C
C
R
= 1.6pF  
= 1.2pF  
= 1k  
g
L
L
f
i
-20  
PSRR-  
= 100  
R = 402  
R = 402  
R = 100  
f
-40  
V
= 1V  
P-P  
SOURCE  
V
= 640mV  
P-P  
IN  
-60  
PSRR+  
-80  
-100  
-120  
.01  
0.1  
1.0  
10  
100  
1k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 15. PSRR vs FREQUENCY  
FIGURE 16. OFF ISOLATION vs FREQUENCY  
100  
10  
1
0
-20  
A = 100  
V
A
= 5  
V
C = 1.6pF  
C
C
R
= 1.6pF  
= 1.2pF  
= 1k  
g
g
L
L
f
i
R = 330  
f
g
R
= 3.3  
R = 1k  
R = 402  
R = 100  
i
-40  
V
(DRIVEN CHANNEL) = 640mV  
OUT  
P-P  
-60  
-80  
-100  
-120  
0.1  
1
10  
100  
1k  
10k  
100k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
FIGURE 17. ISL55290 CHANNEL TO CHANNEL CROSSTALK  
vs FREQUENCY  
FIGURE 18. INPUT VOLTAGE NOISE vs FREQUENCY  
FN6262.1  
March 30, 2007  
7
ISL55190, ISL55290  
Typical Performance Curves (Continued)  
1000  
100  
10  
0.6  
0.4  
0.2  
0
A
= 5  
= ±2.5V  
= 1k  
= 1.3pF  
= 1V  
V
V
R
C
S
L
L
V
OUT  
P-P  
-0.2  
-0.4  
-0.6  
A
C
= 100  
= 1.6pF  
V
g
f
g
R = 330  
R
R = 1k  
= 3.3  
i
1
0
10 20 30 40 50 60 70 80 90 100  
TIME (µs)  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 19. INPUT NOISE CURRENT vs FREQUENCY  
FIGURE 20. LARGE SIGNAL STEP RESPONSE  
0.06  
0.04  
0.02  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
A
R
R
= 5  
= 1k  
= 100  
V
L
3
2
V
= 0.1V  
OUT  
g
R = 402  
f
A
= 5  
= ±2.5V  
= 1k  
= 1.3pF  
=100mV  
V
V
S
R
C
V
L
L
1
0
-0.02  
-0.04  
-0.06  
V
= 0.5V  
OUT  
OUT  
P-P  
0
V
= 1V  
OUT  
V
= 3.5V  
-1  
-2  
-3  
OUT  
0
0
10 20 30 40 50 60 70 80 90 100  
TIME (µs)  
0
5
10  
15  
20  
25  
C
pF)  
L (  
FIGURE 21. SMALL SIGNAL STEP RESPONSE  
FIGURE 22. ISL55290 PERCENT OVERSHOOT vs V  
C
OUT, L  
-1.0  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
3
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A
R
= 5  
= 10k  
= ±2.5V  
= 100  
V
L
-1.5  
2
1
V
INPUT  
S
R
g
R = 402  
-2.0  
f
INPUT  
V
= VCM +0.1V  
IN  
-2.5  
-3.0  
-3.5  
-4.0  
OUTPUT  
0
OUTPUT  
A
= 5  
= 10k  
= ±2.5V  
= 100  
V
R
-1  
-2  
-3  
L
-0.5  
-1.0  
-1.5  
-2.0  
V
S
R
g
R = 402  
f
V
= -V-0.5V  
IN  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
TIME (ns)  
50  
60  
70  
80  
TIME (ns)  
FIGURE 23. POSITIVE INPUT OVERLOAD RECOVERY TIME  
FIGURE 24. NEGATIVE INPUT OVERLOAD RECOVERY TIME  
FN6262.1  
March 30, 2007  
8
ISL55190, ISL55290  
Typical Performance Curves (Continued)  
0.6  
0.4  
0.2  
0
3
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
INPUT  
2
A
R
R
= 5  
V
L
g
= 1k  
= 100  
OUTPUT  
1
OUTPUT  
R = 402  
f
V
= 0.5V  
IN  
0
A
R
= 5  
= 10k  
= +2.5V  
= 100  
V
L
ENABLE  
-0.2  
-0.4  
-0.6  
-1  
-2  
-3  
V
S
R
g
f
R = 402  
V
= 1.1V  
P-P  
IN  
-0.5  
-1.0  
4.0  
0
0.5  
1.0 1.5  
2.0 2.5  
3.0 3.5  
0
10 20 30 40 50 60 70 80 90 100  
TIME (nS)  
TIME (µs)  
FIGURE 25. OUTPUT OVERLOAD RECOVERY TIME  
FIGURE 26. ISL55290 ENABLE TO OUTPUT DELAY  
265  
-220  
A
R
= 5  
= 10k  
V
L
-230  
-240  
-250  
-260  
-270  
-280  
-290  
R = 100  
i
255  
245  
235  
225  
215  
R = 402  
f
A
R
= 5  
= 10k  
V
L
R = 100  
i
R = 402  
f
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
(V)  
V (V)  
S
S
FIGURE 27. ISL55290 POSITIVE SLEW RATE vs VS  
FIGURE 28. ISL55290 NEGATIVE SLEW RATE vs VS  
24  
34  
n = 100  
n = 100  
32  
22  
MAX  
30  
MAX  
20  
28  
MEDIAN  
18  
26  
MEDIAN  
24  
22  
20  
16  
14  
MIN  
ISL55190  
12  
18  
MIN  
16  
10  
-40  
-40  
-20  
0
20  
40  
60  
80  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 29. SUPPLY CURRENT ENABLED vs TEMPERATURE  
= ±2.5V  
FIGURE 30. SUPPLY CURRENT DISABLED vs TEMPERATURE  
= ±2.5V  
V
V
S
S
FN6262.1  
March 30, 2007  
9
ISL55190, ISL55290  
Typical Performance Curves (Continued)  
17.5  
16.5  
15.5  
14.5  
13.5  
12.5  
11.5  
10.5  
9.5  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
n = 100  
n = 100  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
60  
ISL55190  
60 80  
8.5  
-40  
-20  
0
20  
40  
80  
-40  
-20  
0
20  
40  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 31. SUPPLY CURRENT ENABLED vs TEMPERATURE  
= ±1.5V  
FIGURE 32. SUPPLY CURRENT DISABLED vs  
V
TEMPERATURE V = ±1.5V  
S
S
600  
300  
500  
300  
n = 100  
n = 100  
MAX  
MAX  
MEDIAN  
MEDIAN  
100  
0
-100  
-300  
-500  
-700  
-900  
-1100  
-300  
-600  
-900  
-1200  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 33. V vs TEMPERATURE V = ±2.5V  
IO  
FIGURE 34. V vs TEMPERATURE V = ±1.5V  
IO  
S
S
-22  
-23  
-24  
-25  
-26  
-27  
-28  
-29  
-30  
-31  
-32  
-22  
-23  
-24  
-25  
-26  
-27  
-28  
-29  
-30  
-31  
n = 100  
n = 100  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
40  
MIN  
40  
-40  
-20  
0
20  
60  
80  
-40  
-20  
0
20  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 35. I  
vs TEMPERATURE V = ±2.5V  
S
FIGURE 36. I vs TEMPERATURE V = ±2.5V  
BIAS- S  
BIAS+  
FN6262.1  
March 30, 2007  
10  
ISL55190, ISL55290  
Typical Performance Curves (Continued)  
-21  
-22  
-23  
-24  
-25  
-26  
-27  
-28  
-29  
-30  
-31  
-21  
-22  
-23  
-24  
-25  
-26  
-27  
-28  
-29  
-30  
n = 100  
n = 100  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 37. I  
vs TEMPERATURE V = ±1.5V  
S
FIGURE 38. I  
BIAS-  
vs TEMPERATURE V = ±1.5V  
S
BIAS+  
0.4  
0.5  
n = 100  
n = 100  
0.2  
0
0.3  
0.1  
MAX  
MAX  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-0.1  
-0.3  
-0.5  
-0.7  
-0.9  
-1.1  
-1.3  
-1.5  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 39. I  
vs TEMPERATURE V = ±2.5V  
S
FIGURE 40. I  
OS  
vs TEMPERATURE V = ±1.5V  
S
OS  
98  
97  
96  
95  
94  
93  
92  
91  
n = 100  
n = 100  
130  
120  
110  
100  
90  
V+ = 5V  
MAX  
MEDIAN  
V+ = 3V  
MIN  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 41. CMRR vs TEMPERATURE. V+ = ±2.5V, ±1.5V  
FIGURE 42. PSRR vs TEMPERATURE ±1.5V to ±2.5V,  
= ±2.5V  
V
S
FN6262.1  
March 30, 2007  
11  
ISL55190, ISL55290  
Typical Performance Curves (Continued)  
4.986  
4.984  
4.982  
4.980  
4.978  
4.976  
4.974  
4.972  
4.970  
4.968  
110  
100  
90  
n = 100  
n = 100  
MAX  
80  
MAX  
70  
MEDIAN  
60  
50  
40  
MEDIAN  
0
MIN  
30  
MIN  
80  
20  
-40  
-20  
20  
40  
60  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 43. V  
R
HIGH vs TEMPERATURE V = ±2.5V,  
S
= 1k  
FIGURE 44. V  
LOW vs TEMPERATURE V = ±2.5V, R = 1k  
OUT S L  
OUT  
L
2.986  
60  
55  
50  
45  
40  
n = 100  
n = 100  
MAX  
2.984  
2.982  
2.980  
2.978  
2.976  
2.974  
2.972  
MAX  
MEDIAN  
35  
30  
25  
20  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 45. V  
R
HIGH vs TEMPERATURE V = ±1.5V,  
S
FIGURE 46. V  
LOW vs TEMPERATURE V = ±1.5V, R = 1k  
OUT  
= 1k  
OUT  
S
L
L
FN6262.1  
March 30, 2007  
12  
ISL55190, ISL55290  
Pin Descriptions  
ISL55190  
ISL55190  
ISL55290  
(8 Ld SOIC)  
(8 Ld DFN)  
(10 Ld MSOP) PIN NAME  
FUNCTION  
Not connected  
EQUIVALENT CIRCUIT  
5
2
6
3
NC  
2 (A)  
8 (B)  
IN-  
Inverting input  
V+  
IN+  
V-  
IN-  
Circuit 1  
3
4
3 (A)  
7 (B)  
IN+  
Non-inverting input  
(See circuit 1)  
4
6
5
7
4
V-  
Negative supply  
Output  
1 (A)  
9 (B)  
OUT  
V+  
OUT  
V-  
Circuit 2  
7
8
10  
V+  
Positive supply  
5 (A)  
6 (B)  
EN  
Enable pin with internal pull-  
down referenced to the -V  
pin; Logic “1” selects the  
disabled state; Logic “0”  
selects the enabled state.  
V+  
EN  
V-  
Circuit 3a  
8
1
EN  
Enable pin with internal pull-  
down referenced to the -V  
pin; Logic “0” (-V) selects  
the disabled state; Logic “1”  
(+V) selects the enabled  
state.  
V+  
EN  
V-  
Circuit 3b  
1
2
FEEDBACK Feedback pin to reduce IN-  
capacitance  
V+  
FEEDBACK  
OUT  
V-  
Circuit 4  
FN6262.1  
March 30, 2007  
13  
ISL55190, ISL55290  
where:  
Applications Information  
• P  
DMAXTOTAL  
dissipation of each amplifier in the package (PD  
is the sum of the maximum power  
Product Description  
)
MAX  
The ISL55190 and ISL55290 are single and dual high  
speed, voltage feedback amplifiers designed for fast pulse  
applications, as well as communication and imaging systems  
that require very low voltage and current noise. Both devices  
are stable at a minimum gain of 5 and feature low distortion  
while drawing moderately low supply current. The ISL55190  
and ISL55290 use a classical voltage-feedback topology,  
which allows them to be used in a variety of high speed  
applications where current-feedback amplifiers are not  
appropriate due to restrictions placed upon the feedback  
element used with the amplifier.  
• PD  
for each amplifier can be calculated using  
Equation 2:  
MAX  
V
OUTMAX  
R
L
----------------------------  
PD  
= 2*V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
(EQ. 2)  
where:  
• T  
= Maximum ambient temperature  
MAX  
θ = Thermal resistance of the package  
JA  
• PD  
= Maximum power dissipation of 1 amplifier  
• V = Supply voltage  
MAX  
Enable/Power-Down  
S
Both devices can be operated from a single supply with a  
voltage range of +3V to +5V, or from split ±1.5V to ±2.5V.  
The logic level input to the ENABLE pins are TTL compatible  
and are referenced to the -V terminal in both single and split  
supply applications. The following discussion assumes  
single supply operation.  
• I  
= Maximum supply current of 1 amplifier  
MAX  
• V  
= Maximum output voltage swing of the  
OUTMAX  
application  
• R = Load resistance  
L
The ISL55190 uses a logic “0” (<0.8V) to disable the  
amplifier and the ISL55290 uses a logic “1” (>2V) to disable  
its amplifiers. In this condition, the output(s) will be in a high  
impedance state and the amplifier(s) current will be reduced  
to 21µA. The ISL55190 has an internal pull-up on the EN pin  
and is enabled by either floating or tying the EN pin to a  
voltage >2V. The ISL55290 has internal pull-downs on the  
EN pins and are enabled by either floating or tying the EN  
pins to a voltage <0.8V. The enable pins should be tied  
directly to their respective supply pins when not being used  
(EN tied to -V for the ISL55290 and EN tied to +V for the  
ISL55190).  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Low  
impedance ground plane construction is essential. Surface  
mount components are recommended, but if leaded  
components are used, lead lengths should be as short as  
possible. The power supply pins must be well bypassed to  
reduce the risk of oscillation. The combination of a 4.7µF  
tantalum capacitor in parallel with a 0.01µF capacitor has  
been shown to work well when placed at each supply pin.  
For good AC performance, parasitic capacitance should be  
kept to a minimum, especially at the inverting input. When  
ground plane construction is used, it should be removed  
from the area near the inverting input to minimize any stray  
capacitance at that node. Carbon or Metal-Film resistors are  
acceptable with the Metal-Film resistors giving slightly less  
peaking and bandwidth because of additional series  
inductance. Use of sockets (particularly for the SOIC  
package) should be avoided if possible. Sockets add  
parasitic inductance and capacitance which, will result in  
additional peaking and overshoot.  
Current Limiting  
The ISL55190 and ISL55290 have no internal current-  
limiting circuitry. If the output is shorted, it is possible to  
exceed the Absolute Maximum Rating for output current or  
power dissipation, potentially resulting in the destruction of  
the device.  
Power Dissipation  
It is possible to exceed the +125°C maximum junction  
temperatures under certain load and power-supply  
conditions. It is therefore important to calculate the  
For inverting gains, this parasitic capacitance has little effect  
because the inverting input is a virtual ground, but for non-  
inverting gains, this capacitance (in conjunction with the  
feedback and gain resistors) creates a pole in the feedback  
path of the amplifier. This pole, if low enough in frequency,  
has the same destabilizing effect as a zero in the forward  
open-loop response. The use of large-value feedback and  
gain resistors exacerbates the problem by further lowering  
the pole frequency (increasing the possibility of oscillation).  
maximum junction temperature (T  
) for all applications  
JMAX  
to determine if power supply voltages, load conditions, or  
package type need to be modified to remain in the safe  
operating area. These parameters are related using  
Equation 1:  
T
= T  
+ xPD  
)
MAXTOTAL  
JMAX  
MAX  
JA  
(EQ. 1)  
FN6262.1  
March 30, 2007  
14  
ISL55190, ISL55290  
CURRENT  
INPUT  
+5VDC  
R
F
10kΩ  
R
G-  
100  
ISL55190  
R
T
IN- V+  
PARASITIC  
L TO R  
R
FEEDBACK  
SENSE  
0.01Ω  
VOUT  
OUT  
V-  
IN+  
R
G+  
100Ω  
R
L
R
REF  
10kΩ  
V
REF  
+2.5V  
CURRENT  
INPUT  
FIGURE 47. GROUND SIDE CURRENT SENSE AMPLIFIER  
The ISL55190 single has a dedicated feedback pin which is  
internally connected to the amplifier output and located next  
to the inverting input pin. This additional output connection  
enables the PC board trace capacitance at the inverting pin  
to be minimized.  
Current Sense Application Circuit  
The schematic in Figure 47 provides an example of utilizing  
the ISL55190 high speed performance with the ground  
sensing input capability to implement a single-supply, G =1 0  
differential low side current sense amplifier. This circuit can  
be used to sense currents of either polarity. The reference  
voltage applied to V  
(+2.5V) defines the amplifier output  
REF  
0A current sense reference voltage at one half the supply  
voltage level (V = +5VDC), and R sets the current  
S
SENSE  
sense gain and full scale values. In this example the current  
gain is 10A/V over a maximum current range of slightly less  
than ±25A with R  
= 0.01Ω. The amplifier V error  
IO  
SENSE  
(-1.1mV max) and input bias offset current (I ) error (1.3µA)  
IO  
together contribute less than 15mV (150mA) at the output for  
better than 0.3% full scale accuracy.  
The amplifier’s high slew rate and fast pulse response make  
this circuit suitable for low-side current sensing in PWM and  
motor control applications. The excellent input overload  
recovery response enables the circuit to maintain  
performance in the presence of parasitic inductance that can  
cause fast rise and falling edge spikes that can momentarily  
overload the input stage of the amplifier.  
FN6262.1  
March 30, 2007  
15  
ISL55190, ISL55290  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN6262.1  
March 30, 2007  
16  
ISL55190, ISL55290  
Package Outline Drawing  
L8.3x3D  
8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE (DFN)  
Rev 0, 9/06  
PIN 1 INDEX AREA  
3.00  
A
1.45  
PIN 1 INDEX AREA  
B
0.075 C  
4X  
6X 0.50 BSC  
1.50  
REF  
3.00  
1.75  
8X 0.25  
0.10 M C A B  
8X 0.40  
2.20  
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL X''  
0.10 C  
(8X 0.60)  
(1.75)  
(8X 0.25)  
0.85  
C
SEATING PLANE  
0.08 C  
(6X 0.50 BSC)  
SIDE VIEW  
(1.45)  
(2.20)  
5
TYPICAL RECOMMENDED LAND PATTERN  
0.20 REF  
c
0~0.05  
DETAIL “X”  
NOTES:  
1. Controlling dimensions are in mm.  
Dimensions in ( ) for reference only.  
2. Unless otherwise specified, tolerance : Decimal ±0.05  
Angular ±2°  
3. Dimensioning and tolerancing conform to JEDEC STD MO220-D.  
4. The configuration of the pin #1 identifier is optional, but must be located  
within the zone indicated. The pin #1 identifier may be either a mold or  
mark feature.  
5. Tiebar shown (if present) is a non-functional feature.  
FN6262.1  
March 30, 2007  
17  
ISL55190, ISL55290  
Mini SO Package Family (MSOP)  
MDP0043  
0.25 M C A B  
A
MINI SO PACKAGE FAMILY  
D
(N/2)+1  
MILLIMETERS  
MSOP8 MSOP10  
1.10 1.10  
N
SYMBOL  
TOLERANCE  
Max.  
NOTES  
A
A1  
A2  
b
-
0.10  
0.86  
0.33  
0.18  
3.00  
4.90  
3.00  
0.65  
0.55  
0.95  
8
0.10  
0.86  
0.23  
0.18  
3.00  
4.90  
3.00  
0.50  
0.55  
0.95  
10  
±0.05  
-
E
E1  
PIN #1  
I.D.  
±0.09  
-
+0.07/-0.08  
±0.05  
-
c
-
D
±0.10  
1, 3  
1
B
(N/2)  
E
±0.15  
-
E1  
e
±0.10  
2, 3  
Basic  
-
e
H
C
L
±0.15  
-
SEATING  
PLANE  
L1  
N
Basic  
-
Reference  
-
0.08  
M
C A B  
b
0.10 C  
Rev. D 2/07  
N LEADS  
NOTES:  
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
L1  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
DETAIL X  
A1  
3° ±3°  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6262.1  
March 30, 2007  
18  

相关型号:

ISL55291

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail, Low Power Op Amp
INTERSIL

ISL55291EVAL1Z

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail, Low Power Op Amp
INTERSIL

ISL55291IUZ

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail, Low Power Op Amp
INTERSIL

ISL55291IUZ

DUAL OP-AMP, 800uV OFFSET-MAX, 800MHz BAND WIDTH, PDSO10, ROHS COMPLIANT, MSOP-10
RENESAS

ISL55291IUZ-T13

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail, Low Power Op Amp
INTERSIL

ISL55291IUZ-T13

DUAL OP-AMP, 800uV OFFSET-MAX, 800MHz BAND WIDTH, PDSO10, ROHS COMPLIANT, MSOP-10
RENESAS

ISL5571A

Access High Voltage Switch
INTERSIL

ISL5571AIB

Access High Voltage Switch
INTERSIL

ISL5571AIB-T

SPECIALTY TELECOM CIRCUIT, PDSO16, PLASTIC, MS-013AA, SOIC-16
RENESAS

ISL5571AIBZ

Access High Voltage Switch
INTERSIL

ISL5571AIBZ

Access High Voltage Switch; SOIC16; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL5571A_04

Access High Voltage Switch
INTERSIL