ISL59530_07 [INTERSIL]

16x16 Video Crosspoint; 16×16视频交叉点
ISL59530_07
型号: ISL59530_07
厂家: Intersil    Intersil
描述:

16x16 Video Crosspoint
16×16视频交叉点

文件: 总22页 (文件大小:1230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL59530  
®
Data Sheet  
February 7, 2007  
FN6220.3  
16x16 Video Crosspoint  
Features  
The ISL59530 is a 300MHz 16x16 Video Crosspoint Switch.  
Each input has an integrated DC-restore clamp and an input  
buffer. Each output has a fast On-Screen Display (OSD)  
switch (for inserting graphics or other video) and an output  
buffer. The switch is non-blocking, so any combination of  
inputs to outputs can be chosen, including one channel  
driving multiple outputs. The Broadcast Mode directs one  
input to all 16 outputs. The output buffers can be individually  
controlled through the SPI interface, the gain can be  
programmed to x1 or x2, and each output can be placed into  
a high impedance mode.  
• 16x16 non-blocking switch with buffered inputs and outputs  
• 300MHz typical bandwidth  
• 0.025%/0.05° dG/dP  
• Output gain switchable x1 or x2 for each channel  
• Individual outputs can be put in a high impedance state  
• -90dB Isolation at 6MHz  
• SPI digital interface  
• Single +5V supply operation  
• Pb-free plus anneal available (RoHS compliant)  
The ISL59530 offers a typical -3dB signal bandwidth of  
300MHz. Differential gain of 0.025% and differential phase of  
0.05°, along with 0.1dB flatness out to 50MHz, make the  
ISL59530 suitable for many video applications.  
Applications  
• Security camera switching  
• RGB routing  
The switch matrix configuration and output buffer gain are  
programmed through an SPI/QSPI™-compatible three-wire  
serial interface. The ISL59530 interface is designed to  
facilitate both fast updates and initialization. On power-up, all  
outputs are high impedance to avoid output conflicts.  
• HDTV routing  
Ordering Information  
TAPE &  
REEL  
PKG.  
DWG. #  
The ISL59530 is available in a 356 ball BGA package and  
specified over an extended -40°C to +85°C temperature range.  
PART NUMBER  
PACKAGE  
ISL59530IKZ (Note)  
-
356 Ld PBGA (Pb-free) V356.27x27  
The single-supply ISL59530 can accommodate input signals  
from 0V to 3.5V and output voltages from 0V to 3.8V. Each  
input includes a clamp circuit that restores the input level to  
an externally applied reference in AC-coupled applications.  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100% matte  
tin plate termination finish, which are RoHS compliant and compatible  
with both SnPb and Pb-free soldering operations. Intersil Pb-free  
products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
The ISL59531 is a fully differential input version of this device.  
Block Diagram  
VS  
VOVERn  
OVERn  
16 OVERLAY  
VIDEO INPUTS  
16 OVERLAY  
CHANNEL  
ENABLES  
VREF  
CLAMP  
16 VIDEO  
OUTPUTS  
OUT0 – OUT15  
16 VIDEO  
INPUTS  
IN0 – IN15  
16x16  
SWITCH  
MATRIX  
CLAMP  
AV  
X1, X2  
OUTPUT  
ENABLE  
CLAMP  
ENABLE  
SDI  
VSDO  
SDO  
SPI INTERFACE AND  
CONTROL REGISTERS  
SCLK  
SLATCH  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2006, 2007. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
ISL59530  
Pinout  
ISL59530  
(356 LD BGA)  
TOP VIEW  
A
B
C
D
E
F
In12  
In13  
In14  
In15  
Over15  
Over14  
Out14  
Out13  
Over13  
Vover13  
Out12  
Over12  
Vover12  
Out15  
Vover15  
Vover14  
In11  
In10  
In9  
In8  
In7  
In6  
In5  
In4  
Vover11 Out11 Over11  
Vover10 Out10 Over10  
Vover9 Over9 Out9  
Vover8 Over8 Out8  
V
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
SDO  
GND GND GND GND GND GND GND GND GND GND  
GND GND GND GND GND GND GND GND GND GND  
GND GND GND GND GND GND GND GND GND GND  
GND GND GND GND GND GND GND GND GND GND  
GND GND GND GND GND GND GND GND GND GND  
GND GND GND GND GND GND GND GND GND GND  
GND GND GND GND GND GND GND GND GND GND  
GND GND GND GND GND GND GND GND GND GND  
GND GND GND GND GND GND GND GND GND GND  
GND GND GND GND GND GND GND GND GND GND  
G
H
J
SDO  
RESET  
SLATCH  
SCLK  
K
L
SDI  
M
N
P
R
T
V
Vover7 Out7  
Vover6 Out6  
Over7  
Over6  
REF  
Vover5 Over5 Out5  
U
V
W
Y
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
Vs  
NC  
NC  
NC  
Vover0  
Vover1  
Vover2  
Vover3  
Vover4 Over4 Out4  
Over0  
Over1  
Out2  
Out3  
In3  
In2  
In1  
In0  
Out0  
Out1  
Over2  
Over3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
= NO BALLS  
BALLS LABELLED “NC” SHOULD BE LEFT UNCONNECTED - DO NOT TIE THEM TO  
GROUND!  
BALLS WITH NO LABELS MAY BE TIED TO GROUND TO SLIGHTLY REDUCE  
THERMAL IMPEDANCE.  
FN6220.3  
February 7, 2007  
2
ISL59530  
Absolute Maximum Ratings (T = +25°C)  
A
Supply Voltage between V and GND. . . . . . . . . . . . . . . . . . . . 6.0V  
S
Maximum power supply (V ) slew rate . . . . . . . . . . . . . . . . . . 1V/μs  
ESD Classification  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500V  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100V  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 40mA  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
DC Electrical Specifications  
V = 5V, R = 150Ω unless otherwise noted.  
S L  
PARAMETER  
DESCRIPTION  
Power Supply Voltage  
CONDITION  
MIN  
4.5  
1.2  
0.98  
1.96  
-1.5  
-1.5  
0
TYP  
MAX  
5.5  
UNIT  
V
V
S
V
Power Supply for SDO output pin  
Gain  
Establishes serial data output high level  
5.5  
V
SDO  
A
A
= 1  
= 2  
= 1  
= 2  
= 1  
= 2  
1
2
1.02  
2.04  
+1.5  
+1.5  
3.5  
V/V  
V/V  
%
V
V
A
V
GM  
Gain Matching (to average of all other  
outputs)  
A
V
A
%
V
V
V
Video Input Voltage Range  
Video Output Voltage Range  
Input Bias Current  
A
V
IN  
V
A
0.1  
-10  
0.5  
3.8  
V
OUT  
V
I
Clamp function disabled (DC coupled inputs)  
-5  
2
1
µA  
µA  
µA  
mV  
mV  
mA  
mA  
dB  
mA  
mA  
mA  
B
Clamp function enabled, V = V  
IN  
+ 0.5V  
10  
REF  
I
V
Input Current  
Clamp function enabled  
-110  
8
REF  
REF  
V
Output Offset Voltage  
A
= 1  
= 2  
-20  
-70  
60  
35  
40  
OS  
V
A
-10  
108  
31  
V
I
Output Current  
Sourcing, R = 10Ω to GND  
L
OUT  
Sinking, R = 10Ω to 2.5V  
24  
L
PSRR  
Power Supply Rejection Ratio  
Supply Current  
A
= 1 and A = 2  
50  
70  
V
V
I
Enabled, all outputs enabled, no load current  
Enabled, all outputs disabled, no load current  
Disabled  
275  
135  
1.2  
320  
165  
1.8  
360  
195  
2.4  
S
AC Electrical Specifications  
V = 5V, R = 150Ω unless otherwise noted.  
S L  
PARAMETER  
BW -3dB  
BW 0.1dB  
SR  
DESCRIPTION  
3dB Bandwidth  
CONDITION  
MIN  
TYP  
300  
50  
MAX  
UNIT  
MHz  
MHz  
V/µs  
ns  
V
V
V
V
= 200mV , A = 2  
V
OUT  
OUT  
OUT  
OUT  
P-P  
0.1dB Bandwidth  
Slew Rate  
= 200mV , A = 2  
P-P  
V
= 2V , A = 2  
300  
520  
12  
740  
P-P  
V
T
Settling Time to 0.1%  
Switching Glitch, Peak  
Overlay Delay Time  
Diff Gain  
= 2V , A = 2  
S
P-P  
V
Glitch  
A
= 1  
40  
mV  
V
T
From OVER rising edge to output transition  
6
ns  
over  
dG  
dP  
Xt  
A
= 2, R = 150Ω  
0.025  
0.05  
-85  
18  
%
V
L
Diff Phase  
A
= 2, R = 150Ω  
°
V
L
Hostile Crosstalk  
Input Referred Noise Voltage  
6MHz  
dB  
V
nV/Hz  
N
FN6220.3  
February 7, 2007  
3
ISL59530  
Pin Descriptions (Continued)  
Pin Descriptions  
NAME  
NUMBER  
P20  
M20  
K19  
H19  
F20  
D20  
B17  
B15  
A13  
A11  
DESCRIPTION  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Video Input  
NAME  
NUMBER  
DESCRIPTION  
Crosspoint Video Input  
OVER6  
IN0  
Y8  
OVER7  
IN1  
Y6  
Crosspoint Video Input  
OVER8  
IN2  
Y4  
Crosspoint Video Input  
OVER9  
IN3  
Y2  
Crosspoint Video Input  
OVER10  
OVER11  
OVER12  
OVER13  
OVER14  
OVER15  
VOVER0  
VOVER1  
VOVER2  
VOVER3  
VOVER4  
VOVER5  
VOVER6  
VOVER7  
VOVER8  
VOVER9  
VOVER10  
VOVER11  
VOVER12  
VOVER13  
VOVER14  
VOVER15  
IN4  
V1  
Crosspoint Video Input  
IN5  
T1  
Crosspoint Video Input  
IN6  
P1  
Crosspoint Video Input  
IN7  
M1  
Crosspoint Video Input  
IN8  
K1  
Crosspoint Video Input  
IN9  
H1  
Crosspoint Video Input  
V10  
V12  
V14  
V16  
V18  
T18  
P18  
M18  
K18  
H18  
F18  
D18  
C17  
C15  
C13  
C11  
M3  
IN10  
F1  
Crosspoint Video Input  
Overlay Video Input  
IN11  
D1  
Crosspoint Video Input  
Overlay Video Input  
IN12  
A1  
Crosspoint Video Input  
Overlay Video Input  
IN13  
A3  
Crosspoint Video Input  
Overlay Video Input  
IN14  
A5  
Crosspoint Video Input  
Overlay Video Input  
IN15  
A7  
Crosspoint Video Input  
Overlay Video Input  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
OVER0  
OVER1  
OVER2  
OVER3  
OVER4  
OVER5  
Y10  
Y12  
W14  
W16  
V20  
T20  
P19  
M19  
K20  
H20  
F19  
D19  
A17  
A15  
B13  
B11  
W10  
W12  
Y14  
Y16  
V19  
T19  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Crosspoint Video Output  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Logic Control (with pulldown)  
Overlay Video Input  
Overlay Video Input  
Overlay Video Input  
Overlay Video Input  
Overlay Video Input  
Overlay Video Input  
Overlay Video Input  
Overlay Video Input  
Overlay Video Input  
V
DC-restore clamp reference input. In an  
AC-coupled configuration (DC-Restore  
clamp enabled), the sync tip of  
composite video inputs will be restored  
to this level. Set to 0.3 to 0.7V for  
optimum performance.  
REF  
In an DC-coupled configuration  
(DC-Restore clamp disabled), this pin  
should be tied to ground.  
Do not let the V  
pin float! A  
REF  
pin drifts high and, if the  
floating V  
REF  
clamp function is enabled, will cause all  
of the outputs to simultaneously try to  
drive ~4V DC into their 150Ω loads.  
SLATCH  
J3  
Serial Latch. Serial data is latched into  
ISL59530 on rising edge of SLATCH.  
FN6220.3  
February 7, 2007  
4
ISL59530  
Pin Descriptions (Continued)  
NAME  
SCLK  
SDI  
NUMBER  
DESCRIPTION  
Serial data clock  
Serial data input  
K3  
L3  
SDO  
G3  
Serial data output. Can be tied to SDI of  
another ISL59530 to enable daisy-  
chaining of multiple devices.  
RESET  
H3  
D3  
Reset input. Pull high then low to reset  
device, but not needed in normal opera-  
tion. Tie to ground in final application.  
V
Power supply for SDO pin. Tie to +5V  
for a 0V to 5V SDO output signal swing.  
SDO  
V
+5V power supply  
Ground  
S
GND  
NC  
No Connect - Do not electrically  
connect to anything, including ground.  
FN6220.3  
February 7, 2007  
5
ISL59530  
Typical Performance Curves  
15pF  
15pF  
V
=+5V  
= 2  
= 100Ω  
V =+5V  
s
S
A
A
= 1  
V
V
L
R
R
= 100Ω  
L
10pF  
INPUT_CH 0  
OUTPUT_CH 0  
INPUT_CH 0  
10pF  
OUTPUT_CH 0  
4.7pF  
0pF  
4.7pF  
0pF  
FIGURE 1. FREQUENCY RESPONSE - VARIOUS C , A = 1,  
FIGURE 2. FREQUENCY RESPONSE - VARIOUS C , A = 2,  
L V  
L
V
MUX MODE  
MUX MODE  
V
=+5V  
= 2  
= 0  
S
V
=+5V  
= 1  
= 0pF  
S
A
V
A
V
C
L
C
L
INPUT_CH 0  
OUTPUT_CH 0  
150Ω  
INPUT_CH 0  
OUTPUT_CH 0  
150Ω  
50Ω  
50Ω  
500Ω  
1.03kΩ  
500Ω  
1.03kΩ  
FIGURE 3. FREQUENCY RESPONSE - VARIOUS R , A = 1,  
FIGURE 4. FREQUENCY RESPONSE - VARIOUS R , A = 2,  
L V  
L
V
MUX MODE  
MUX MODE  
OVERLAY MODE  
OVERLAY MODE  
A
= 1  
= 100Ω  
A
R
= 2  
= 100Ω  
V
V
L
L
R
L
C =0pF  
C =0pF  
INPUT_CH 0  
L
INPUT_CH 0  
OUTPUT_CH 15  
OUTPUT_CH 15  
FIGURE 5. FREQUENCY RESPONSE - OVERLAY INPUT,  
= 1  
FIGURE 6. FREQUENCY RESPONSE - OVERLAY INPUT,  
= 2  
A
A
V
V
FN6220.3  
February 7, 2007  
6
ISL59530  
Typical Performance Curves (Continued)  
V
=+5V  
= 2  
15pF  
10pF  
S
15pF  
10pF  
A
V
R
= 100Ω  
L
INPUT_CH 0  
OUTPUT_CH 0  
4.7pF  
4.7pF  
V
=+5V  
= 1  
S
A
V
0pF  
0pF  
R
= 100Ω  
L
INPUT_CH 0  
OUTPUT_CH 0  
FIGURE 7. FREQUENCY RESPONSE - VARIOUS C , A = 1,  
FIGURE 8. FREQUENCY RESPONSE - VARIOUS C , A = 2,  
L V  
L
V
BROADCAST MODE  
BROADCAST MODE  
V
A
=+5V  
= 2  
= 0pF  
V
=+5V  
= 1  
S
V
S
A
V
50Ω  
C
C
= 0pF  
L
L
150Ω  
INPUT_CH 0  
INPUT_CH 0  
OUTPUT_CH 0  
150Ω  
50Ω  
OUTPUT_CH 0  
503Ω  
503Ω  
1.03kΩ  
1.03kΩ  
FIGURE 9A. FREQUENCY RESPONSE - VARIOUS R , A = 1,  
FIGURE 10. FREQUENCY RESPONSE - VARIOUS R , A = 2,  
L
V
L
V
BROADCAST MODE  
BROADCAST MODE  
A
= 2  
= 100Ω  
= 0  
A
= 1  
= 100Ω  
= 0  
ADJACENT  
INPUT_CH14  
OUTPUT_CH15  
V
V
ADJACENT  
INPUT_CH14  
OUTPUT_CH15  
R
R
C
L
L
L
L
C
ALL HOSTILE  
INPUT_CH0  
OUTPUT_CH15  
ALL HOSTILE  
INPUT_CH0  
OUTPUT_CH15  
FIGURE 11. CROSSTALK - A = 1  
V
FIGURE 12. CROSSTALK - A = 2  
V
FN6220.3  
February 7, 2007  
7
ISL59530  
Typical Performance Curves (Continued)  
THD  
THD  
V
=+5V  
S
A =2  
V
R =100Ω  
L
INPUT_CH 1  
OUTPUT_CH1  
F
= 1MHz  
IN  
2nd HD  
V
=+5V  
S
2nd HD  
A =2  
V
R =100Ω  
L
INPUT_CH 1  
3rd HD  
OUTPUT_CH 1  
3rd HD  
V
=2V  
OP-P  
FIGURE 13. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 14. HARMONIC DISTORTION vs V  
OUT_P-P  
FIGURE 15. DISABLED OUTPUT IMPEDANCE  
FIGURE 16. ENABLED OUTPUT IMPEDANCE  
MUX MODE  
A
R
= 1  
= 100Ω  
V
L
INPUT_CH 0  
OUTPUT_CH 0  
FALL TIME  
2.44ns  
RISE TIME  
2.42ns  
MUX MODE  
A
= 1  
= 100Ω  
V
R
L
INPUT_CH 0  
OUTPUT_CH 0  
TIME (ns)  
TIME (ns)  
FIGURE 17. RISE TIME - A = 1  
V
FIGURE 18. FALL TIME - A = 1  
V
FN6220.3  
February 7, 2007  
8
ISL59530  
Typical Performance Curves (Continued)  
MUX MODE  
A
= 2  
= 100Ω  
V
R
L
INPUT_CH 0  
FALL TIME  
2.40ns  
OUTPUT_CH 0  
RISE TIME  
2.32ns  
MUX MODE  
A
= 2  
= 100Ω  
V
R
L
INPUT_CH 0  
OUTPUT_CH 0  
TIME (ns)  
TIME (ns)  
FIGURE 19. RISE TIME - A = 2  
FIGURE 20. FALL TIME - A = 2  
V
V
MUX MODE  
= 1  
A
V
R =100Ω  
L
INPUT_CH 0  
OUTPUT_CH 0  
SLEW RATE  
-395V/µs  
SLEW RATE  
405V/µs  
MUX MODE  
= 1  
A
V
R =100Ω  
L
INPUT_CH 0  
OUTPUT_CH 0  
TIME (ns)  
TIME (ns)  
FIGURE 21. RISING SLEW RATE - A = 1  
V
FIGURE 22. FALLING SLEW RATE - A = 1  
V
MUX MODE  
A
= 2  
V
R =100Ω  
L
INPUT_CH 0  
OUTPUT_CH 0  
SLEW RATE  
-420V/µs  
SLEW RATE  
430V/µs  
MUX MODE  
A
= 2  
V
R =100Ω  
L
INPUT_CH 0  
OUTPUT_CH 0  
TIME (ns)  
TIME (ns)  
FIGURE 23. RISING SLEW RATE - A = 2  
V
FIGURE 24. FALLING SLEW RATE - A = 2  
V
FN6220.3  
February 7, 2007  
9
ISL59530  
Typical Performance Curves (Continued)  
OUTPUT  
OUTPUT  
OVERLAY  
LOGIC  
INPUT  
OVERLAY  
LOGIC  
INPUT  
FIGURE 25. OVERLAY SWITCH TURN-ON DELAY TIME  
FIGURE 26. OVERLAY SWITCH TURN-OFF DELAY TIME  
A
= 2  
= 100Ω  
V
R
L
INPUT_CH 1  
OUTPUT_CH 1  
OSC = 40mV  
A
= 2  
= 100Ω  
V
R
L
INPUT_CH 1  
OUTPUT_CH 1  
OSC = 40mV  
FIGURE 27. DIFFERENTIAL GAIN, A = 2  
V
FIGURE 28. DIFFERENTIAL PHASE, A = 2  
V
A
= 2  
= 100Ω  
A
= 2  
= 100Ω  
V
V
R
R
L
L
INPUT_CH 1  
OUTPUT_CH 1  
OSC = 40mV  
INPUT_CH 1  
OUTPUT_CH 1  
OSC = 40mV  
FIGURE 29. DIFFERENTIAL GAIN, A = 2  
V
FIGURE 30. DIFFERENTIAL PHASE, A = 2  
V
FN6220.3  
February 7, 2007  
10  
ISL59530  
Typical Performance Curves (Continued)  
A
= 1  
= 100Ω  
V
R
L
INPUT_CH 1  
OUTPUT_CH1  
OSC = 40mV  
A
= 1  
= 100Ω  
V
R
L
INPUT_CH 1  
OUTPUT_CH 1  
OSC = 40mV  
FIGURE 31. DIFFERENTIAL GAIN, A = 1  
V
FIGURE 32. DIFFERENTIAL PHASE, A = 1  
V
A
R
= 1  
= 100Ω  
A
= 1  
= 100Ω  
V
L
V
R
L
INPUT_CH 1  
OUTPUT_CH 1  
OSC = 40mV  
INPUT_CH 1  
OUTPUT_CH 1  
OSC = 40mV  
FIGURE 33. DIFFERENTIAL GAIN, A = 1  
V
FIGURE 34. DIFFERENTIAL GAIN, A = 1  
V
A
= 2  
= 100Ω  
A
= 2  
= 100Ω  
V
V
R
R
L
L
INPUT_CH 01  
OUTPUT_CH 15  
OSC = 40mV  
INPUT_CH 01  
OUTPUT_CH 15  
OSC = 40mV  
FIGURE 35. DIFFERENTIAL GAIN, A = 2  
V
FIGURE 36. DIFFERENTIAL PHASE, A = 2  
V
FN6220.3  
February 7, 2007  
11  
ISL59530  
Typical Performance Curves (Continued)  
A
= 2  
= 100Ω  
V
R
L
INPUT_CH 01  
OUTPUT_CH 15  
OSC = 40mV  
A
= 2  
= 100Ω  
V
R
L
INPUT_CH 01  
OUTPUT_CH 15  
OSC = 40mV  
FIGURE 37. DIFFERENTIAL GAIN, A = 2  
FIGURE 38. DIFFERENTIAL PHASE, A = 2  
V
V
A
= 1  
= 100Ω  
V
R
L
INPUT_CH 01  
OUTPUT_CH 15  
OSC = 40mV  
A
= 1  
= 100Ω  
V
R
L
INPUT_CH 01  
OUTPUT_CH 15  
OSC = 40mV  
FIGURE 39. DIFFERENTIAL GAIN, A = 1  
FIGURE 40. DIFFERENTIAL PHASE, A = 1  
V
V
A
= 1  
= 100Ω  
A
R
= 1  
= 100Ω  
V
V
L
R
L
INPUT_CH 01  
OUTPUT_CH 15  
OSC = 40mV  
INPUT_CH 01  
OUTPUT_CH 15  
OSC = 40mV  
FIGURE 41. DIFFERENTIAL GAIN, A = 1  
V
FIGURE 42. DIFFERENTIAL PHASE, A = 1  
V
FN6220.3  
February 7, 2007  
12  
ISL59530  
Typical Performance Curves (Continued)  
A
= 2  
= 100Ω  
V
R
L
INPUT_CH 01  
OUTPUT_CH 01  
OSC = 40mV  
A
R
= 2  
= 100Ω  
V
L
INPUT_CH 01  
OUTPUT_CH 01  
OSC = 40mV  
FIGURE 43. DIFFERENTIAL GAIN, OVERLAY, A = 2  
FIGURE 44. DIFFERENTIAL PHASE, OVERLAY, A = 2  
V
V
A
= 1  
= 100Ω  
V
R
L
INPUT_CH 01  
OUTPUT_CH 01  
OSC = 40mV  
A
= 1  
= 100Ω  
V
R
L
INPUT_CH 01  
OUTPUT_CH 01  
OSC = 40mV  
FIGURE 45. DIFFERENTIAL GAIN, OVERLAY, A = 1  
V
FIGURE 46. DIFFERENTIAL PHASE, OVERLAY, A = 1  
V
FN6220.3  
February 7, 2007  
13  
ISL59530  
3dB Bandwidth, MUX Mode, A = 1, R = 100Ω [MHz]  
V
L
INPUT CHANNELS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
255  
244  
257  
264  
255  
253  
247  
253  
255  
241  
235  
223  
220  
211  
199  
193  
229  
217  
229  
210  
222  
221  
224  
190  
180  
186  
183  
174  
176  
171  
174  
175  
169  
168  
164  
161  
160  
160  
222  
169  
168  
171  
175  
177  
177  
178  
184  
187  
188  
186  
188  
192  
192  
194  
197  
152  
233  
190  
212  
189  
207  
193  
166  
160  
169  
171  
167  
173  
170  
178  
183  
182  
185  
186  
185  
189  
193  
238  
2
235  
204  
3
217  
219  
4
220  
202  
5
218  
237  
6
226  
230  
231  
210  
157  
163  
168  
165  
7
227  
236  
235  
240  
218  
239  
223  
223  
228  
236  
240  
241  
223  
242  
219  
222  
217  
235  
211  
213  
8
9
10  
11  
12  
13  
14  
15  
236  
230  
207  
185  
225  
217  
209  
202  
205  
198  
214  
207  
224  
223  
212  
217  
197  
197  
216  
186  
177  
225  
3dB Bandwidth, MUX Mode, A = 2, R = 100Ω [MHz]  
V
L
INPUT CHANNELS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
295  
268  
277  
279  
269  
263  
259  
263  
262  
253  
253  
246  
241  
236  
233  
227  
316  
290  
290  
397  
384  
405  
395  
220  
211  
216  
213  
201  
201  
196  
201  
203  
194  
194  
187  
184  
182  
178  
183  
288  
183  
192  
196  
192  
196  
196  
205  
212  
210  
215  
213  
216  
220  
220  
223  
240  
299  
250  
385  
234  
396  
291  
188  
183  
196  
196  
192  
200  
200  
211  
216  
214  
216  
217  
225  
225  
230  
293  
2
300  
289  
3
408  
392  
4
391  
402  
5
407  
298  
6
404  
398  
394  
388  
283  
407  
411  
410  
7
411  
407  
307  
308  
402  
402  
387  
383  
412  
412  
307  
300  
402  
403  
387  
385  
413  
415  
398  
394  
8
9
10  
11  
12  
13  
14  
15  
417  
293  
385  
367  
412  
400  
412  
396  
391  
379  
272  
244  
419  
413  
279  
274  
396  
385  
407  
230  
324  
276  
FN6220.3  
February 7, 2007  
14  
ISL59530  
3dB Bandwidth, Broadcast Mode, A = 1, R = 100Ω [MHz]  
V
L
INPUT CHANNELS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
215  
214  
210  
212  
206  
203  
201  
204  
204  
202  
196  
194  
193  
191  
189  
187  
198  
195  
195  
183  
184  
188  
172  
178  
174  
171  
171  
169  
165  
163  
167  
167  
164  
160  
157  
156  
151  
151  
153  
151  
152  
153  
157  
157  
159  
159  
167  
171  
170  
169  
171  
171  
174  
175  
178  
145  
157  
145  
140  
146  
144  
144  
158  
158  
159  
164  
164  
164  
164  
170  
175  
174  
178  
174  
178  
178  
178  
181  
2
188  
147  
3
178  
143  
4
174  
150  
5
177  
161  
6
156  
160  
161  
157  
151  
156  
160  
160  
7
187  
187  
182  
183  
170  
172  
170  
171  
175  
176  
168  
172  
157  
160  
151  
155  
158  
161  
154  
159  
8
9
10  
11  
12  
13  
14  
15  
170  
169  
161  
155  
160  
167  
162  
157  
156  
160  
170  
167  
164  
166  
172  
173  
162  
164  
161  
149  
167  
179  
3dB Bandwidth, Broadcast Mode, A = 2, R = 100Ω [MHz]  
V
L
INPUT CHANNELS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
234  
232  
228  
229  
223  
219  
217  
220  
220  
218  
220  
212  
211  
209  
208  
205  
216  
215  
209  
199  
204  
205  
190  
196  
193  
189  
191  
186  
183  
181  
183  
184  
181  
176  
174  
174  
170  
167  
166  
169  
169  
171  
175  
177  
177  
178  
184  
187  
188  
186  
188  
192  
192  
194  
197  
160  
172  
162  
158  
163  
161  
161  
178  
178  
178  
182  
183  
183  
183  
189  
193  
193  
192  
192  
195  
195  
196  
198  
2
204  
164  
3
196  
163  
4
193  
168  
5
192  
177  
6
174  
175  
177  
174  
167  
173  
178  
178  
7
204  
205  
198  
199  
189  
190  
190  
191  
192  
193  
184  
188  
174  
178  
169  
173  
174  
178  
172  
178  
8
9
10  
11  
12  
13  
14  
15  
185  
187  
179  
171  
177  
184  
179  
172  
176  
179  
187  
184  
181  
185  
191  
191  
181  
182  
176  
160  
185  
195  
FN6220.3  
February 7, 2007  
15  
ISL59530  
Block Diagram  
VS  
VOVERn  
OVERn  
16 OVERLAY  
VIDEO INPUTS  
16 OVERLAY  
CHANNEL  
ENABLES  
VREF  
CLAMP  
16 VIDEO  
OUTPUTS  
OUT0 – OUT15  
16 VIDEO  
INPUTS  
IN0 – IN15  
16x16  
SWITCH  
MATRIX  
CLAMP  
AV  
X1, X2  
OUTPUT  
ENABLE  
CLAMP  
ENABLE  
SDI  
SCLK  
VSDO  
SDO  
SPI INTERFACE AND  
CONTROL REGISTERS  
SLATCH  
first and the MSB (bit 15) is loaded last (see the Serial  
Timing Diagram). After all 16 bits of data have been loaded  
into the shift register, the rising edge of SLATCH updates the  
internal registers.  
General Description  
The ISL59530 is a 16x16 integrated video crosspoint switch  
matrix with input and output buffers and On-Screen Display  
(OSD) insertion. This device operates from a single +5V  
supply. Any output can be generated from any of the 16 input  
video signal sources, and each output can have OSD  
information inserted through a dedicated, fast 2:1 mux  
located before the output buffer. There is also a Broadcast  
mode allowing any one input to be broadcast to all 16  
outputs. A DC restore clamp function enables the ISL59530  
to AC-couple incoming video.  
While the ISL59530 has an SDO (Serial Data Out) pin, it  
does not have a register readback feature. The data on the  
SDO pin is an exact replica of the incoming data on the SDI  
pin, delayed by 15.5 SCLKs (an input bit is latched on the  
rising edge of SLCK, and is output on SDO on the falling  
edge of SLCK 15.5 SCLKs later). Multiple ISL59530’s can be  
daisy-chained by connecting the SDO of one to the SDI of  
the other, with SCLK and SLATCH common to all the daisy-  
chained parts. After all the serial data is transmitted (16 bits *  
n devices = 16*n SCLKs), the rising edge of SLATCH will  
update the configuration registers of all n devices  
simultaneously.  
The ISL59530 offers a -3dB signal bandwidth of 300MHz.  
Differential gain and differential phase of 0.025% and 0.05°  
respectively, along with 0.1dB flatness out to 50MHz make  
this ideal for multiplexing composite NTSC and PAL signals.  
The switch matrix configuration and output buffer gain are  
programmed through an SPI/QSPI™-compatible, three-wire  
serial interface. The ISL59530 interface is designed to  
facilitate both fast initialization and configuration changes.  
On power-up, all outputs are initialized to the disabled state  
to avoid output conflicts in the user’s system.  
The Serial Timing Diagram and the Serial Timing  
Parameters table on page 17show the timing requirements  
for the serial interface.  
Digital Interface  
The ISL59530 uses a serial interface to program the  
configuration registers. The serial interface uses three  
signals (SCLK, SDI, and SLATCH) for programming the  
ISL59530, while a fourth signal (SDO) enables optional  
daisy-chaining of multiple devices. The serial clock can run  
at up to 5MHz (5Mbits/s).  
Serial Interface  
The ISL59530 is programmed through a simple serial  
interface. Data on the SDI (serial data input) pin is shifted  
into a 16-bit shift register on the rising edge of the SCLK  
(serial clock) signal. (This is continuously done regardless of  
the state of the SLATCH signal.) The LSB (bit 0) is loaded  
FN6220.3  
February 7, 2007  
16  
ISL59530  
Serial Timing Diagram  
SLATCH  
SLATCH falling edge timing/placement is a “don’t care.”  
Serial data is latched only on rising edge of SLATCH.  
t
SL  
T
SCLK  
t
HD  
t
w
t
SD  
B15  
(MSB)  
B0  
(LSB)  
SDI  
B1  
B1  
B2  
B2  
B0  
(LSB)  
B0  
B15  
(previous)  
B1  
B2  
SDO  
(previous) (previous) (previous)  
SDO = SDI delayed by 15.5 SCLKs to allow daisy-chaining of multiple ISL59530s. SDO changes on the falling edge of SCLK.  
TABLE 1. SERIAL TIMING PARAMETERS  
PARAMETER  
RECOMMENDED OPERATING RANGE  
DESCRIPTION  
T
200ns  
0.50 * T  
20ns  
SCLK period  
t
Clock Pulse Width  
Data Setup Time  
Data Hold Time  
W
t
SD  
HD  
t
20ns  
t
20ns  
Final SLCK rising edge (latching B15) to SLATCH rising edge  
SL  
Programming Model  
The ISL59530 is configured by a series of 16-bit serial control words. The three MSBs (B15-13) of each serial word determine the  
basic command:  
TABLE 2. COMMAND FORMAT  
B15  
0
B14  
0
B13  
0
COMMAND  
INPUT/OUTPUT: Maps input channels to output channels  
OUTPUT ENABLE: Output enable for individual channels  
GAIN SET: Gain (x1 or x2) for each channel  
NUMBER OF WRITES  
16 (1 channel per write)  
4 (4 channels per write)  
4 (4 channels per write)  
1
0
0
1
0
1
0
0
1
1
BROADCAST: Enables broadcast mode and selects the input channel to be  
broadcast to all output channels  
1
1
1
CONTROL: Clamp on/off, operational/standby mode, and global output  
enable/disable  
1
Mapping Inputs to Outputs  
Inputs are mapped to their desired outputs using the input/output control word. Its format is:  
TABLE 3. INPUT/OUTPUT WORD  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
0
I
I
I
I
0
0
0
0
O
O
O
O
0
0
3
2
1
0
3
2
1
I :I form the 4-bit word indicating the input channel (0 to 15), and O :O determine the output channel which that input channel  
3 0  
3
0
will map to. One input can be mapped to one or multiple outputs. To fully program the ISL59530, 16 INPUT/OUTPUT words must  
be transmitted - one for each input channel.  
FN6220.3  
February 7, 2007  
17  
ISL59530  
Enabling Outputs  
The output enable control word is used to enable individual outputs. There are 16 channels to configure, so this is accomplished by  
writing 4 serial words, each controlling a bank of four outputs at a time. The bank is selected by bits B9 and B8. The output enable  
control word format is:  
TABLE 4. OUTPUT ENABLE FORMAT  
B15 B14 B13 B12 B11 B10  
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
O
O
O
O
O
O
O
O
O
O
3
7
2
1
5
9
0
4
8
0
1
6
1
0
O
O
O
11  
15  
10  
14  
1
1
O
O
O
12  
13  
Setting the O bit = 0 tri-states the output. Setting the O bit = 1 enables the output if the Global Output Enable bit is also set (the  
N
N
individual output enable bits are ANDed with the Global Output Enable bit before they are sent to the output stage).  
Setting the Gain  
The gain of each output may be set to x1 or x2 using the Gain Set word. It is in the same format as the output enable control word:  
TABLE 5. GAIN SET FORMAT  
B15 B14 B13 B12 B11 B10  
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
G
G
G
G
G
G
G
G
G
G
3
7
2
6
1
5
9
0
4
8
0
1
1
0
G
G
G
11  
15  
10  
14  
1
1
G
G
G
12  
13  
Set G = 0 for a gain of x1 or 1 for a gain of x2.  
N
Broadcast Mode  
The Broadcast Mode routes one input to all 16 outputs. The broadcast control word is:  
TABLE 6. BROADCAST FORMAT  
B15 B14 B13 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Enable Broadcast  
0
1
1
I
I
I
I
0
0
0
0
0
0
0
0
0
3
2
1
0: Broadcast Mode Disabled  
1: Broadcast Mode Enabled  
I :I form the 4 bit word indicating the input channel (0 to 15) to be sent to all 16 outputs. Set the Enable Broadcast bit (B0) = 1 to  
3 0  
enable Broadcast Mode, or to 0 to disable Broadcast Mode. When Broadcast Mode is disabled, the previous channel assignments  
are restored.  
Control Word  
The ISL59530’s power-on reset disables all outputs and places the part in a low-power standby mode. To enable the device, the  
following control word should be sent:  
TABLE 7. CONTROL WORD FORMAT  
B15 B14 B13 B12 B11 B10  
B9  
B8 B7 B6 B5 B4 B3 B2  
B1  
B0  
1
1
1
0
0
0
Clamp  
0
0
0
0
0
0
0
Power  
Global Output Enable  
0: Clamp Disabled  
1: Clamp Enabled  
0: Standby  
0: All outputs tristated  
1: Operational 1: Individual Output Enable bits control outputs  
The Clamp bit enables the input clamp function, forcing the AC-coupled signal’s most negative point to be equal to V  
.
REF  
Note: The Clamp bit turns the DC-Restore clamp function on or off for all channels - there is no DC-Restore on/off control for  
individual channels. The DC-Restore function only works with signals with sync tips (composite video). Signals that do not have  
sync tips (the Chroma/C signal in s-video and the Pb, Pr signals in Component video), will be severely distorted if run through a  
DC-Restore/clamp function.  
FN6220.3  
February 7, 2007  
18  
ISL59530  
For this reason, the ISL59530 must be in DC-coupled  
mode (Clamp Disabled) to be compatible with s-video  
and component video signals.  
Linear Operating Region  
In addition to bandwidth optimization, to get the best linearity  
the ISL59530 should be configured to operate in its most  
linear operating region. Figure 48 shows the differential gain  
curve. The ISL59530 is a single supply 5V design with its  
most linear region between 0.1 and 2V. This range is fine for  
most video signals whose nominal signal amplitude is 1V.  
The most negative input level (the sync tip for composite  
video) should be maintained at 0.3V or above for best  
operation.  
Bandwidth Considerations  
Wide frequency response (high bandwidth) in a video  
system means better video resolution. Four sets of  
frequency response curves are shown in Figure 47.  
Depending on the switch configurations, and the routing (the  
path from the input to the output), bandwidth can vary  
between 100MHz and 350MHz. A short discussion of the  
trade-offs — including matrix configuration, output buffer  
gain selection, channel selection, and loading — follows.  
2
MUX, A = 2  
V
0
MUX, A = 1  
V
BROADCAST,  
= 1  
-2  
A
V
BROADCAST,  
= 2  
-4  
-6  
A
V
-8  
FIGURE 48. DIFFERENTIAL GAIN RESPONSE  
-10  
1
10  
100  
1000  
In a DC-coupled application, it is the system designer’s  
responsibility to ensure that the video signal is always in the  
optimum range.  
FREQUENCY (MHz)  
FIGURE 47. FREQUENCY RESPONSE FOR VARIOUS MODES  
In multiplexer mode, one input typically drives one output  
channel, while in broadcast mode, one input drives all 16  
outputs. As the number of outputs driven increases, the  
parasitic loading on that input increases. Broadcast Mode is  
the worst-case, where the capacitance of all 16 channels  
loads one input, reducing the overall bandwidth. In addition,  
due to internal device compensation, an output buffer gain of  
x2 has higher bandwidth than a gain of x1. Therefore, the  
highest bandwidth configuration is multiplexer mode (with  
each input mapped to only one output) and an output buffer  
gain of x2.  
When AC coupling, the ISL59530’s Clamp (also called “DC  
restore”) function automatically and continuously adjusts the  
DC level so that the most negative portion of the video is  
always equal to V  
.
REF  
A discussion of the benefits of the DC restoration function  
begins by understanding the Clamp circuit shown in  
Figure 49. The incoming video signal is typically terminated  
into 75Ω, then AC coupled through C , at which point it is  
1
connected to the base of the buffer’s diff pair. These  
components form the video path.  
The Clamp function consists of Q , D , Q , D , the two  
The relative locations of the input and output channels also  
have significant impact on the device bandwidth (due to the  
layout of the ISL59530 silicon). When the input and output  
channels are further away, there are additional parasitics as  
a result of the additional routing, resulting in lower  
bandwidth.  
1
1
2
2
current sources, and the 3 switches controlled by the Clamp  
Enable signal. The V voltage is level-shifted up two  
REF  
diode drops (Q and D ) to the base of Q . If the voltage at  
1
1
2
the cathode of D goes below V  
, Q and D will turn on,  
2
REF  
2
2
keeping the IN voltage at V  
. If the voltage at IN is  
x
REF  
x
greater than V  
, Q and D are off and the IN node is  
REF  
2
2
x
The bandwidth does not change significantly with resistive  
loading as shown in the typical performance curves.  
However several of the curves demonstrate that frequency  
response is sensitive to capacitance loading. This is most  
significant when laying out the PCB. If the PCB trace length  
between the output of the crosspoint switch and the back-  
termination resistor is not minimized, the additional parasitic  
capacitance will result in some peaking and eventually a  
reduction in overall bandwidth.  
high impedance. This is how the clamp function forces the  
lowest portion of the video signal (the sync tip) to always be  
equal to or greater than V  
.
REF  
To make sure that the sync tip is always equal to (not equal  
to or greater than) V , i is constantly sinking ~2µA of  
current from C . This causes each sync tip to be slightly  
lower voltage than the previous sync tip, causing Q and D  
2
to turn on at each sync tip and raise the voltage to V  
REF 1  
1
2
. The  
REF  
2µA pulldown with a 0.1uF capacitor and a 15kHz HSYNC  
frequency results in 1.3mV of “droop” across every line, or  
FN6220.3  
February 7, 2007  
19  
ISL59530  
0.2% of the video signal. Because 1.3mV is only 0.2% of a  
0.7V video signal, this droop is imperceptible to the human  
eye.  
0.086µF. Figure 50 shows the result of C = 0.1µF  
IN  
delivering acceptable droop and C = 0.001µF producing  
IN  
excessive droop.  
When the clamp function is disabled in the CONTROL  
register (Clamp = 0) to allow DC-coupled operation, the  
I
current sinks/sources are disabled and the input  
CLAMP  
passes through the DC Restore block unaffected. In this  
application V may be tied to GND.  
REF  
Overlay Operation  
The ISL59530 features an overlay feature, that allows an  
external video signal or DC level to be inserted in place of  
Q2  
D1  
that output channel’s video. When the OVER signal is  
N
D2  
taken high, the output signal on the OUT pin is replaced  
N
VREF  
~0.4V  
Q1  
with the signal on the VOVER pin.  
N
(110µA)  
C2  
D3  
There are several ways the overlay feature can be used.  
0.1µF  
SS12  
Toggling the OVER signal at the frame rate or slower will  
N
INPUT  
TO  
BUFFER  
INx  
VIDEOIN  
replace the video frame(s) on the OUT pin with the video  
N
C1  
0.1µF  
supplied on the VOVER pin.  
N
R1  
75  
Another option (for OSD displays, for example), is to put a  
DC level on the VOVER line and toggle the OVER signal  
N
N
at the pixel rate to create a monocolor image “overlaid” on  
channel N’s output signal.  
i1  
CLAMP  
ENABLE  
Finally, by enabling the OVER signal for some portion of  
N
each line over a certain amount of lines, a picture-in-picture  
function can be constructed.  
FIGURE 49. DC RESTORE BLOCK DIAGRAM  
This is how the video is “DC-restored” after being AC  
coupled into the ISL59530. The sync tip voltage will be equal  
to V on the right side of C , regardless of the DC level of  
It’s important to note that the overlay inputs do not have the  
DC Restore function previously described - the overlay  
signal is DC coupled into the output. It is the system  
designer’s responsibility to ensure that the video levels are  
in the ISL59530’s linear region and matching the output  
channel’s offset and amplitude. One easy way to do this is to  
run the video to be overlaid through one of the ISL59530’s  
REF  
1
the video on the left side of C . Due to various sources of  
1
offset in the actual clamp function, the actual sync tip level is  
typically about 75mV higher than V  
REF  
(for V = 0.4V).  
REF  
unused channels and then into the VOVER input.  
N
The OVER pins all have weak pulldowns, so if they are  
N
unused, they can either be left unconnected or tied to GND.  
Power Dissipation and Thermal Resistance  
With a large number of switches, it is possible to exceed the  
+150°C absolute maximum junction temperature under  
certain load current conditions. Therefore, it is important to  
calculate the maximum junction temperature for an  
application to determine if load conditions or package types  
need to be modified to assure operation of the crosspoint  
switch in a safe operating area.  
FIGURE 50. DC RESTORE VIDEO WAVEFORMS  
The maximum power dissipation allowed in a package is  
determined according to:  
It is important to choose the correct value for C . Too small  
IN  
a value will generate too much droop, and the image will be  
visibly darker on the right than on the left. A C value that is  
too large may cause the clamp to fail to converge. The droop  
T
T  
JMAX AMAX  
IN  
--------------------------------------------  
PD  
=
MAX  
Θ
JA  
(EQ. 1)  
rate (dV/dt) is i /C volts/second. In general, the droop  
1
IN  
voltage should be limited to <1 IRE over a period of one line  
of video; so for 1 IRE = 7mV, I = 10µA maximum, and an  
B
NTSC waveform we will set C > 10µA*60µs/7mV =  
IN  
FN6220.3  
February 7, 2007  
20  
ISL59530  
Where:  
• T  
• T  
= Maximum junction temperature = +125°C  
= Maximum ambient temperature = +85°C  
JMAX  
AMAX  
θ = Thermal resistance of the package  
JA  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the load, or:  
n
V
OUTi  
R
Li  
-----------------  
PD  
= V × I  
+
(V V ) ×  
OUTi  
MAX  
S
SMAX  
S
(EQ. 2)  
i = 1  
Where:  
• V = Supply voltage = 5V  
S
• I  
SMAX  
= Maximum quiescent supply current = 360mA  
= Maximum output voltage of the application = 2V  
• V  
• R  
OUT  
= Load resistance tied to ground = 150  
LOAD  
• n = 1 to 16 channels  
n
V
OUTi  
R
Li  
-----------------  
= 2.44W  
PD  
= V × I  
+
(V V ) ×  
OUTi  
MAX  
S
SMAX  
S
(EQ. 3)  
i = 1  
The required θ to dissipate 2.44W is:  
JA  
T
T  
AMAX  
JMAX  
--------------------------------------------  
= 16.4C/W)  
Θ
=
JA  
PD  
MAX  
(EQ. 4)  
Table 8 shows θ thermal resistance results with a  
JA  
Wakefield heatsink and without heatsink and various airflow.  
At the thermal resistance equation shows, the required  
thermal resistance depends on the maximum ambient  
temperature.  
TABLE 8. θ THERMAL RESISTANCE [°C/W]  
JA  
Airflow [LFM]  
0
250  
14.3  
7.0  
500  
13.0  
6.0  
750  
12.6  
4.7  
No Heatsink  
18  
Wakefield  
658-25AB  
Heatsink  
16.0  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6220.3  
February 7, 2007  
21  
356 Ld PBGA Package  

相关型号:

ISL59530_0708

16x16 Video Crosspoint
INTERSIL

ISL59530_11

16x16 Video Crosspoint
INTERSIL

ISL59531

16x16 Video Crosspoint with Differential Inputs
INTERSIL

ISL59531IKZ

16x16 Video Crosspoint with Differential Inputs
INTERSIL

ISL59532

32x32 Video Crosspoint
INTERSIL

ISL59532IKEZ

32x32 Video Crosspoint
INTERSIL

ISL59532_07

32x32 Video Crosspoint
INTERSIL

ISL59532_0708

32x32 Video Crosspoint
INTERSIL

ISL59533

32x32 Video Crosspoint with Differential Inputs
INTERSIL

ISL59533IKEZ

32x32 Video Crosspoint with Differential Inputs
INTERSIL

ISL59534

32x16 Video Crosspoint
INTERSIL

ISL59534IKEZ

32x16 Video Crosspoint
INTERSIL