ISL70003SEHX [INTERSIL]

Acceptance tested to 50krad;
ISL70003SEHX
型号: ISL70003SEHX
厂家: Intersil    Intersil
描述:

Acceptance tested to 50krad

文件: 总32页 (文件大小:1934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
Radiation Hardened and SEE Hardened 3V to 13.2V, 6A  
Buck Regulator  
ISL70003SEH  
Features  
The ISL70003SEH is a radiation and SEE hardened  
synchronous buck regulator capable of operating over an  
input voltage range of 3.0V to 13.2V. With integrated  
MOSFETs, this highly efficient single chip power solution  
provides a tightly regulated output voltage that is externally  
adjustable from 0.6V to ~90% of the input voltage.  
Continuous output load current capability is 6A for  
T +125°C and 3A for T +150°C.  
• Acceptance tested to 50krad(Si) (LDR) wafer-by-wafer  
• ±1% reference voltage over line, temperature and radiation  
Integrated MOSFETs 31mΩPFET/21mΩ NFET  
- 95% peak efficiency  
• Externally adjustable loop compensation  
• Supports DDR applications (V tracks V  
/2)  
voltage  
TT DDQ  
J
J
- Buffer amplifier for generating V  
- 3A current sinking capability  
REF  
The ISL70003SEH uses voltage mode control architecture  
with feed-forward and switches at a selectable frequency of  
500kHz or 300kHz. Loop compensation is externally  
adjustable to allow for an optimum balance between stability  
and output dynamic performance. The internal synchronous  
power switches are optimized for high efficiency and  
excellent thermal performance.  
• Grounded lid eliminates charge build up  
• IMON pin for output current monitoring  
• Adjustable analog soft-start  
• Diode emulation for increased efficiency at light loads  
• 500kHz or 300kHz operating frequency synch wording  
• Monotonic start-up into prebiased load  
• Full military temperature range operation  
The chip features two logic-level disable inputs that can be  
used to inhibit pulses on the phase (LXx) pins in order to  
maximize efficiency based on the load current. The  
ISL70003SEH also supports DDR applications and contains a  
buffer amplifier for generating the V  
voltage.  
REF  
- T = -55°C to +125°C  
A
High integration, best in class radiation performance and a  
feature filled design make the ISL70003SEH an ideal choice  
to power many of todays small form factor applications.  
- T = -55°C to +150°C  
J
• Radiation tolerance  
- High dose rate (50-300rad(Si)/s). . . . . . . . . . . 100krad(Si)  
Applications  
• FPGA, CPLD, DSP, CPU core and I/O supply voltages  
- Low dose rate (0.01rad(Si)/s) . . . . . . . . . . . . 100krad(Si)*  
* Limit established by characterization.  
• DDR memory supply voltages  
• SEE hardness  
2
- SEB and SEL LET . . . . . . . . . . . . . . . . 86.4MeV•cm /mg  
TH  
- SET at LET 86.4MeV•cm /mg . . . . . . . . . . . < ±3% ΔV  
• Low-voltage, high-density distributed power systems  
2
OUT  
Related Literature  
AN1897, ISL70003SEHEV1Z Evaluation Board  
2
- SEFI LET . . . . . . . . . . . . . . . . . . . . . . . . . 60MeV•cm /mg  
TH  
• Electrically screened to DLA SMD 5962-14203  
AN1915, ISL70003SEH iSim:PE Model  
AN1913, Single Event Effects Testing of the ISL70003SEH,  
3V to 13.2V, 6A Synchronous Buck Regulator  
AN1924, Total Dose Testing of the ISL70003SEH Radiation  
Hardened Point Of Load Regulator  
100  
95  
90  
85  
9V  
80  
75  
70  
5V  
2.5V  
65  
3.3V  
60  
55  
50  
0
1
2
3
4
5
6
LOAD CURRENT (A)  
FIGURE 1. POWER DISTRIBUTION SOLUTION FOR RAD HARD LOW  
POWER FPGA’s  
FIGURE 2. EFFICIENCY vs LOAD, V = 12V, f  
IN  
= 300kHz  
SW  
ALL OUTPUTS ACTIVE  
May 12, 2016  
FN8604.5  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2013-2016. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL70003SEH  
Table of Contents  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Typical Application Schematics. . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . 9  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . .12  
DDR Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Derating Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . 23  
General Design Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Feedback Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Modulator Break Frequency Equations . . . . . . . . . . . . . . . . . 25  
Compensation Break Frequency Equations . . . . . . . . . . . . . 25  
PCB Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PCB Plane Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PCB Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
LX Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Thermal Management for Ceramic Package . . . . . . . . . . . . 26  
Lead Strain Relief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Heatsink Mounting Guidelines . . . . . . . . . . . . . . . . . . . . . . . . 26  
Heatsink Electrical Potential. . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Heatsink Mounting Materials . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Soft -Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power-Good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Weight of Packaged Device . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Lid Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Fault Monitoring and Protection . . . . . . . . . . . . . . . . . . . . . .18  
Die Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Undervoltage and Overvoltage Monitor. . . . . . . . . . . . . . . . . . 18  
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Die Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Interface Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Layout Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Step and Repeat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Voltage Feed-forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Switching Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . 20  
Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Setting the Overcurrent Protection Level . . . . . . . . . . . . . . . . 20  
Disabling the Power Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
IMON Current Sense Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Diode Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DDR Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
About Intersil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
R64.A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
R64.C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
2
ISL70003SEH  
Functional Block Diagram  
AVDD  
DVDD  
POR and ON/OFF  
CONTROL  
LINEAR  
REGULATORs  
POR_VIN  
RT/CT  
SEL1  
SEL2  
RAMP  
IMON  
CURRENT  
SENSE  
PVINx  
SOFT  
START  
SS_CAP  
PWM  
CONTROL  
LOGIC  
NI  
GATE  
DRIVE  
LXx  
EA  
COMP  
FB  
VERR  
VOUT  
MONITOR  
SGND  
PGOOD  
REF  
PGNDx  
PWM  
REFERENCE  
0.6V  
OCSETA  
OCSETB  
OVERCURRENT  
ADJUST  
BUFIN-  
BUFIN+  
DDR VREF  
BUFFER AMP  
DGND  
AGND  
PGNDx  
BUF  
BUFOUT  
SYNC  
FSEL  
DE  
FIGURE 3. FUNCTIONAL BLOCK DIAGRAM  
Ordering Information  
ORDERING SMD  
NUMBER (Note 1)  
PART NUMBER  
(Note 2)  
TEMPERATURE  
RANGE (°C)  
PACKAGE  
(RoHS Compliant)  
PACKAGE  
DRAWING  
5962R1420301VXC  
ISL70003SEHVF  
ISL70003SEHVFE  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
64 Ld CQFP  
R64.A  
5962R1420301VYC  
64 Ld CQFP with Heatsink  
R64.C  
5962R1420301V9A  
ISL70003SEHVX  
Die  
N/A  
N/A  
ISL70003SEHF/PROTO  
ISL70003SEHFE/PROTO  
ISL70003SEHX/SAMPLE  
ISL70003SEHEV1Z  
64 Ld CQFP  
R64.A  
R64.C  
64 Ld CQFP with Heatsink  
Die  
N/A  
N/A  
Evaluation Board  
NOTES:  
1. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed must be  
used when ordering.  
2. These Intersil Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations.  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
3
ISL70003SEH  
Pin Configuration  
ISL70003SEH  
(64 LD CQFP)  
TOP VIEW  
BOTTOM SIDE DETAIL  
FOR PIN 1 LOCATION  
53 52 51 50 49  
64 63 62 61 60 59 58 57 56 55 54  
1
2
3
4
5
6
7
8
9
LX3  
NI  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1 (NI)  
PGND3  
PGND4  
LX4  
FB  
VERR  
POR_VIN  
VREFA  
AVDD  
PVIN4  
(Note 3)  
PVIN5  
LX5  
AGND  
DGND  
PGND5  
PGND6  
LX6  
VREF_OUTS  
DVDD  
10  
11  
12  
13  
14  
15  
16  
VREFD  
ENABLE  
RT/CT  
PVIN6  
PVIN7  
LX7  
FSEL  
PGND7  
PGND8  
LX8  
HEATSINK OUTLINE *  
SYNC  
SS_CAP  
28 29 30 31 32  
17 18 19 20 21 22 23 24 25 26 27  
* Indicates heatsink package R64.C  
NOTE:  
3. The ESD triangular mark is indicative of pin #1 location. It is part of the device marking and is  
placed on the lid in the quadrant where pin #1 is located.  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
4
ISL70003SEH  
Pin Descriptions  
PIN NUMBER  
PIN NAME ESD CIRCUIT  
DESCRIPTION  
1
NI  
1
This pin is the non-inverting input to the internal error amplifier. Connect this pin to the REF pin for  
typical applications or the BUFOUT pin for DDR memory power applications.  
2
FB  
1
This pin is the inverting input to the internal error amplifier. An external type III compensation network  
should be connected between this pin and the VERR pin. The connection between the FB resistor divider  
and the output inductor should be a Kelvin connection to optimize performance.  
3
4
VERR  
1
1
This pin is the output of the internal error amplifier. An external compensation network should be  
connected between this pin and the FB pin.  
POR_VIN  
This pin is the power-on reset input to the IC. This is a comparator-type input with a rising threshold of  
0.6V and programmable hysteresis. Driving this pin above 0.6V enables the IC. Bypass this pin to AGND  
with a 10nF ceramic capacitor to mitigate SEE.  
5
VREFA  
3
This pin is the output of the internal linear regulator and the bias supply input to the internal analog  
control circuitry. Locally filter this pin to AGND using a 0.47µF ceramic capacitor as close as possible to  
the IC.  
6
7
AVDD  
AGND  
5
1, 3  
2, 4  
4
This pin provides the supply for internal linear regulator of the ISL70003SEH. The supply to AVDD  
should be locally bypassed using a ceramic capacitor. Tie AVDD to the PVINx pins.  
This pin is the analog ground associated with the internal analog control circuitry. Connect this pin  
directly to the PCB ground plane.  
8
DGND  
This pin is the ground associated with the internal digital control circuitry. Connect this pin directly to  
the PCB ground plane.  
9
VREF_OUTS  
DVDD  
This pin is the output of the internal linear regulator and the supply input to the internal reference  
circuit. Locally filter this pin to AGND using a 0.47µF ceramic capacitor as close as possible to the IC.  
10  
11  
6
This pin provides the supply for the internal linear regulator of the ISL70003SEH. The supply to DVDD  
should be locally bypassed using a ceramic capacitor. Tie DVDD to the PVINx pin.  
VREFD  
4
This pin is the output of the internal linear regulator and the bias supply input to the internal digital  
control circuitry. Locally filter this pin to DGND using a 0.47µF ceramic capacitor as close as possible  
to the IC.  
12  
13  
14  
15  
16  
ENABLE  
RT/CT  
FSEL  
6
6
2
2
2
This pin is a logic-level enable input. Pulling this pin low powers down the chip by placing it into a very  
low power sleep mode.  
A resistor to VIN and a capacitor to GND provide feed-forward to keep a constant modulator gain of 4.8  
as VIN varies.  
This pin is the oscillator frequency select input. Tie this pin to 5V to select a 300kHz nominal oscillator  
frequency. Tie this pin to the PCB ground plane to select a 500kHz nominal oscillator frequency.  
SYNC  
This pin is the frequency synchronization input to the IC. This pin should be tied to GND to free-run from  
the internal oscillator or connected to an external clock for external frequency synchronization.  
SS_CAP  
This pin is the soft-start input. Connect a ceramic capacitor from this pin to the PCB ground plane to set  
the soft-start output ramp time in accordance with Equation 1:  
t
= C  
V I  
REF SS  
(EQ. 1)  
SS  
SS  
where:  
t
C
= soft-start output ramp time  
= soft-start capacitance  
SS  
SS  
V
= reference voltage (0.6V typical)  
REF  
I
= soft-start charging current (23µA typical)  
SS  
Soft-start time is adjustable from approximately 2ms to 200ms. The range of the soft-start capacitor  
should be 82nF to 8.2µF, inclusive.  
17, 18, 19, 20, 21  
22  
GND  
2
6
Connect this pin to the PCB ground plane.  
PGOOD  
This pin is the power-good output. This pin is an open-drain logic output that is pulled to DGND when  
the output voltage is outside a ±11% typical regulation window. This pin can be pulled up to any voltage  
from 0V to 13.2V, independent of the supply voltage. A nominal 1kΩ to 10kΩ pull-up resistor is  
recommended. Bypass this pin to the PCB ground plane with a 10nF ceramic capacitor to mitigate SEE.  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
5
ISL70003SEH  
Pin Descriptions(Continued)  
PIN NUMBER  
PIN NAME ESD CIRCUIT  
DESCRIPTION  
23, 28, 32, 37,  
38, 43, 44, 49,  
53, 58  
PVINx  
7
These pins are the power supply inputs to the corresponding internal power blocks. These pins must be  
connected to a common power supply rail, which should fall in the range of 3V to 13.2V. Bypass these  
pins directly to PGNDx with ceramic capacitors located as close as possible to the IC. When sinking  
current or at a no load condition, the inductor valley current will be negative. During any time when the  
inductor valley current is negative and the ISL70003 is exposed to a heavy ion environment, the abs  
max PVIN voltage must be 13.7V.  
29  
SEL1  
2
This pin is a logic-level disable (high) input working in conjunction with SEL2. These pins form a two-bit  
logic input that set the number of active power blocks. This allows the ISL70003SEH current capability  
to be tailored to the load current level the application requires and achieve the highest possible  
efficiency.  
30  
31  
SEL2  
DE  
2
2
This pin is a logic-level disable input. Pulling this pin high inhibits pulses on the LXx outputs. See  
description of Pin 29, SEL1, for more information.  
The DE pin enables or disables Diode Emulation. When it is HIGH, diode emulation is allowed.  
Otherwise, continuous conduction mode is forced.  
24, 27, 33, 36,  
39, 42, 45, 48,  
54, 57  
LXx  
These pins are the switch node connections to the internal power blocks and should be connected to  
the output filter inductor. Internally, these pins are connected to the synchronous MOSFET power  
switches.  
50  
51  
52  
NC/HS  
IMON  
N/A  
1
This is a No Connect pin that is not connected to anything internally. In the R64.C package (heatsink  
option) this pin is electrically connected to the heatsink on the underside of the package. Connect this  
pin and/or the heatsink to a thermal plane.  
IMON is a current source output that is proportional to the sensed current through the regulator. If not  
used it is recommended to tie IMON to VREFA. It is also acceptable to tie IMON to GND through a  
resistor.  
SGND  
1
7
This pin is connected to an internal metal trace that serves as a noise shield. Connect this pin to the  
PCB ground plane.  
25, 26, 34, 35,  
40, 41, 46, 47,  
55, 56  
PGNDx  
These pins are the power grounds associated with the corresponding internal power blocks. Connect  
these pins directly to the PCB ground plane. These pins should also connect to the negative terminals  
of the input and output capacitors. The package lid is internally connected to PGNDx  
59  
60  
61  
62  
63  
64  
OCSETA  
OCSETB  
BUFIN+  
BUFIN-  
BUFOUT  
REF  
3
3
1
1
3
1
This pin is the redundant output overcurrent set input. Connect a resistor from this pin to the PCB  
ground plane to set the output overcurrent threshold.  
This pin is the primary output overcurrent set input. Connect a resistor from this pin to the PCB ground  
plane to set the output overcurrent threshold.  
This pin is the input to the internal unity gain buffer amplifier. For DDR memory power applications,  
connect the VTT voltage to this pin.  
This pin is the inverting input to the buffer amplifier. For DDR memory power applications, connect  
BUFOUT to this pin. Bypass this pin to the PCB ground plane with a 0.1µF ceramic capacitor.  
This pin is the output of the buffer amplifier. In DDR power applications, connect this pin to the  
reference input of the DDR memory. The buffer needs a minimum of 1.0µF load capacitor for stability.  
This pin is the output of the internal reference voltage. Bypass this pin to the PCB ground plane with a  
220nF ceramic capacitor located as close as possible to the IC. The bypass capacitor is needed to  
mitigate SEE.  
VREFA  
PIN #  
VREFD  
PIN #  
PIN #  
PIN #  
AVDD  
PVINx  
PIN #  
7V  
CLAMP  
12V  
CLAMP  
12V  
CLAMP  
7V  
CLAMP  
12V  
CLAMP  
PGNDx  
CIRCUIT 7  
AGND  
AGND  
CIRCUIT 3  
DGND  
AGND  
CIRCUIT 5  
DGND  
CIRCUIT 4  
DGND  
CIRCUIT 6  
CIRCUIT 1  
CIRCUIT 2  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
6
ISL70003SEH  
Typical Application Schematics  
VIN = 12V  
100k  
+
5 x 1µF  
4x100µF  
22k  
51k  
3k  
7.15k  
10nF  
370pF  
PGOOD  
10nF  
VIMON  
22  
51  
PGOOD  
LX10  
IMON  
10k  
24  
27  
5
9
11  
LX9  
VREFA  
VREFOUTS  
VREFD  
3.3µH  
33  
36  
39  
42  
45  
48  
54  
57  
LX8  
LX7  
LX6  
LX5  
LX4  
LX3  
LX2  
VOUT = 3.3V  
1µF  
0.47µF  
0.47µF  
0.47µF  
150µF  
x3  
+
10  
15  
16  
ISL70003SEH  
SYNC  
SS  
1nF  
LX1  
357  
0.1µF  
51.1k  
59  
60  
OCA  
25k  
1nF  
6.8nF  
6.8nF  
4.02k  
4.02k  
2
3
1
FB  
VERR  
NI  
REF  
OCB  
12pF  
5.49k  
64  
2.7nF  
0.22µF  
FIGURE 4. ISL70003SEH SINGLE UNIT OPERATION  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
7
ISL70003SEH  
Typical Application Schematics (Continued)  
VIN = 5V  
25k  
4k  
+
5 x 1µF  
4x100µF  
22k  
3k  
10nF  
370pF  
PGOOD  
10nF  
VIMON  
22  
51  
PGOOD  
LX10  
IMON  
10k  
24  
27  
5
9
11  
LX9  
LX8  
LX7  
LX6  
LX5  
LX4  
LX3  
LX2  
LX1  
VREFA  
VREFOUTS  
VREFD  
1.5µH  
33  
36  
39  
42  
45  
48  
54  
57  
VDDQ = 2.5V  
0.47µF  
0.47µF  
0.47µF  
1µF  
3 x 150µF  
+
10  
15  
16  
ISL70003SEH  
SYNC  
SS  
1nF  
715  
59  
60  
OCA  
OCB  
25k  
0.1µF  
1nF  
6.8nF  
6.8nF  
4.02k  
4.02k  
2
3
FB  
VERR  
NI  
REF  
1
31.2k  
68pF  
7.87k  
64  
4nF  
0.33µF  
VREF = 1.25V  
1µF  
25k  
+
5 x 1µF  
4x100µF  
22k  
3k  
4k  
10nF  
370pF  
PGOOD  
10nF  
64  
REF  
22  
PGOOD  
51  
0.22µF  
IMON  
10k  
24  
27  
LX10  
LX9  
5
VREFA  
9
2.2µH  
33  
36  
39  
42  
45  
48  
54  
57  
LX8  
LX7  
LX6  
LX5  
LX4  
LX3  
LX2  
LX1  
VREFOUTS  
11  
VTT = 1.25V  
1µF  
0.47µF  
0.47µF  
0.47µF  
VREFD  
3 x 150µF  
+
10  
1nF  
15  
16  
ISL70003SEH  
SYNC  
SS  
400  
59  
60  
OCA  
OCB  
25k  
0.1µF  
6.8nF  
6.8nF  
8.2k  
1.6nF  
2
3
FB  
VERR  
22.9k  
82pF  
22.9k  
8.2k  
1
NI  
15nF  
25k  
7.87k  
FIGURE 5. ISL70003SEH DDR MEMORY POWER SOLUTION  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
8
ISL70003SEH  
Absolute Maximum Ratings  
Thermal Information  
LXx, PVINx . . . . . . . . . . . . . . . . . . . . . . . . . . . .PGNDx - 0.3V to PGNDx + 16V  
LXx, PVINx (Note 4). . . . . . . . . . . . . . . . . . . PGNDx - 0.3V to PGNDx + 14.7V  
LXx, PVINx (Note 5). . . . . . . . . . . . . . . . . . . PGNDx - 0.3V to PGNDx + 13.7V  
AVDD - AGND, DVDD - DGND . . . . . . . . . . . . . . . . . . . . . . . . . . PVINx to -0.3V  
VREFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GNDA - 0.3V to GNDA + 5.5V  
VREFD, VREF_OUTS . . . . . . . . . . . . . . . . . . . . .GNDD - 0.3V to GNDD + 5.5V  
Signal Pins (Note 10) . . . . . . . . . . . . . . . . . . . GNDA - 0.3V to VREFA + 0.3V  
Digital Control Pins (Note 11) . . . . . . . . . . . . .GNDD - 0.3V to VREFD+ 0.3V  
SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DGND - 0.3V to DGND + 2.5V  
PGOOD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GNDD - 0.3V to DVDD  
RTCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GNDD - 0.3V to DVDD  
ESD Rating  
Thermal Resistance (Typical)  
CQFP Package R64.A (Notes 6, 7) . . . . . . .  
CQFP Package R64.C (Notes 8, 9) . . . . . . .  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
JA (°C/W)  
JC (°C/W)  
34  
17  
1.5  
0.7  
Recommended Operating Conditions  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
PVINx, AVDD, DVDD . . . . . . . . . . . . . . . . . . . . . . . . 3.3V ±10% to 12V ±10%  
Human Body Model (Tested per MIL-STD-883 TM3015.7) . . . . . . . . 2kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . 200V  
Charge Device Model (Tested per JESD22-C101D) . . . . . . . . . . . . 750V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
2
4. For operation in a heavy ion environment at LET = 86.4 MeV•cm /mg at 125°C (T ) and sourcing 7A load current.  
C
5. For operation in a heavy ion environment at LET = 86.4 MeV•cm /mg at 125°C (T ) with any negative inductor current to sinking -4A load current.  
2
C
6. is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
7. For , the “case temp” location is the center of the package underside.  
JC  
8. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
9. For , the “case temp” location is the center of the exposed metal heatsink on the package underside.  
JC  
10. POR_VIN, FB, NI, VERR, OCSETA, OCSETB, BUFOUT, BUFIN-, BUFIN+, IMON and REF pins.  
11. FSEL, EN, SYNC, SEL1, SEL2, and DE pins.  
Electrical Specifications Unless otherwise noted, V = AVDD = DVDD = PVINx = EN = 3V - 13.2V; GND = AGND = DGND = PGNDx =  
IN  
GNDx = 0V; POR_V = FB = 0.65V; SYNC = LXx = Open Circuit; PGOOD is pulled up to VREFD with a 3k resistor; REF is bypassed to GND with a 220nF  
IN  
capacitor; SS is bypassed to GND with a 100nF capacitor; I  
= 0A; T = TJ = +25°C. (Note 4). Boldface limits apply across the operating temperature  
OUT  
A
range, -55°C to +125°C; over a total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 - 300rad(Si)/s; or over a total ionizing dose of  
50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s.  
MIN  
MAX  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
(Note 15)  
TYP  
(Note 15)  
UNITS  
Operating Supply Current  
Standby Supply Current  
Shutdown Supply Current  
PV = 13.2V, FSEL = 1  
INx  
80  
80  
30  
30  
20  
20  
10  
10  
1.5  
0.4  
125  
125  
60  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
PV = 13.2V, FSEL = 0  
INx  
PV = 3.0V, FSEL = 1  
INx  
PV = 3.0V, FSEL = 0  
INx  
60  
PV = 13.2V, SEL1 = SEL2 = GND, FSEL = 1  
INx  
30  
PV = 13.2V, SEL1 = SEL2 = GND, FSEL = 0  
INx  
30  
PV = 3.0V, SEL1 = SEL2 = GND, FSEL = 1  
INx  
15  
PV = 3.0V, SEL1 = SEL2 = GND, FSEL = 0  
INx  
15  
PV = 13.2V, EN = GND  
INx  
3.0  
1.0  
PV = 3.0V, EN = GND  
INx  
LINEAR REGULATORS  
Output Voltage  
AVDD, DVDD = 13.2V  
AVDD, DVDD = 13.2V  
4.5  
50  
5.0  
5.5  
V
Current Limit  
190  
mA  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
9
ISL70003SEH  
Electrical Specifications Unless otherwise noted, V = AVDD = DVDD = PVINx = EN = 3V - 13.2V; GND = AGND = DGND = PGNDx =  
IN  
GNDx = 0V; POR_V = FB = 0.65V; SYNC = LXx = Open Circuit; PGOOD is pulled up to VREFD with a 3k resistor; REF is bypassed to GND with a 220nF  
IN  
capacitor; SS is bypassed to GND with a 100nF capacitor; I  
= 0A; T = TJ = +25°C. (Note 4). Boldface limits apply across the operating temperature  
OUT  
A
range, -55°C to +125°C; over a total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 - 300rad(Si)/s; or over a total ionizing dose of  
50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s. (Continued)  
MIN  
MAX  
PARAMETER  
POWER-ON RESET  
TEST CONDITIONS  
(Note 15)  
TYP  
(Note 15)  
UNITS  
POR Pin Input Voltage  
POR Sink Current  
ENABLE  
0.56  
9.6  
0.6  
12  
0.64  
14.4  
V
µA  
Enable VIH Voltage  
Enable VIL Voltage  
Enable (EN) Leakage  
SELECT PHASE  
2
V
V
0.8  
10  
EN = 4.5V  
1.0  
µA  
SEL 1, 2 VIH Voltage  
SEL 1, 2 VIL Voltage  
SEL 1, 2 Leakage Current  
PWM CONTROL LOGIC  
Switching Frequency  
2
V
V
0.8  
10  
SEL1, 2 = VREFD  
1.0  
µA  
FSEL = 1  
255  
425  
300  
500  
250  
160  
200  
5
345  
575  
320  
220  
270  
kHz  
kHz  
ns  
FSEL = 0  
Minimum On Time  
Minimum On Time  
Minimum Off Time  
SS = GND (Note 14)  
(Note 14)  
ns  
(Note 14)  
ns  
Modulator Gain (V ΔV  
)
R = 22kΩ, C = 370pF, FSEL = 0  
V/V  
V/V  
kHz  
kHz  
V
IN / OSC  
T
T
R = 36kΩ, C = 370pF, FSEL = 1  
4.8  
T
T
External Synchronization Frequency Range FSEL = 1, PV = 3.0V  
INx  
255  
425  
2
300  
500  
345  
575  
FSEL = 0, PV = 3.0V  
INx  
SYNC VIH Voltage  
SYNC VIL Voltage  
0.8  
4
V
Synchronization Input Leakage Current  
SOFT-START  
SYNC = VREFD  
SS = GND  
1.0  
µA  
Soft-start Source Current  
Soft-start Discharge ON-Resistance  
Soft-start Discharge Time  
REFERENCE VOLTAGE  
Reference Voltage Tolerance  
ERROR AMPLIFIER  
20  
23  
3.0  
256  
27  
µA  
Ω
6.0  
(Note 14)  
Clock Cycles  
VREF + Error Amplifier V  
0.594  
0.6  
0.606  
V
IO  
DC Gain  
(Note 14)  
(Note 14)  
80  
7
dB  
MHz  
V
Gain-bandwidth Product  
Maximum Output Voltage  
Slew Rate  
V
= 5.5V  
3.5  
-3  
4.2  
8.5  
IN  
(Note 14)  
= 0.6V, PV = 13.2V  
V/µs  
nA  
Feedback (FB) Input Leakage Current  
V
250  
3
FB  
INx  
Offset Voltage (V  
)
0
mV  
IO  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
10  
ISL70003SEH  
Electrical Specifications Unless otherwise noted, V = AVDD = DVDD = PVINx = EN = 3V - 13.2V; GND = AGND = DGND = PGNDx =  
IN  
GNDx = 0V; POR_V = FB = 0.65V; SYNC = LXx = Open Circuit; PGOOD is pulled up to VREFD with a 3k resistor; REF is bypassed to GND with a 220nF  
IN  
capacitor; SS is bypassed to GND with a 100nF capacitor; I  
= 0A; T = TJ = +25°C. (Note 4). Boldface limits apply across the operating temperature  
OUT  
A
range, -55°C to +125°C; over a total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 - 300rad(Si)/s; or over a total ionizing dose of  
50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s. (Continued)  
MIN  
MAX  
PARAMETER  
POWER BLOCKS  
TEST CONDITIONS  
(Note 15)  
TYP  
(Note 15)  
UNITS  
Upper Device r  
PV = 3.0V  
INx  
170  
120  
90  
420  
310  
240  
210  
1
700  
600  
455  
425  
3
mΩ  
mΩ  
mΩ  
mΩ  
µA  
DS(ON)  
PV = 5.5V  
INx  
Lower Device r  
PV = 3.0V  
INx  
DS(ON)  
PV = 5.5V  
INx  
60  
LXx Output Leakage  
Dead Time  
EN = LXx = GND, Single LXx Output  
EN = GND, LXx = PV , Single LXx Output  
INx  
1
3
µA  
Within a Single Power Block or between Power  
Blocks (Note 14)  
4
ns  
POWER-GOOD SIGNAL  
Rising Threshold  
V
V
V
V
as a % of V  
as a % of V  
as a % of V  
as a % of V  
107  
2
111  
3.5  
89  
115  
5
%
%
FB  
FB  
FB  
FB  
REF  
REF  
REF  
REF  
Rising Hysteresis  
Falling Threshold  
85  
2
93  
5
%
Falling Hysteresis  
3.5  
%
Power-good Drive  
PV = 3V, PGOOD = 0.4V, EN = GND  
IN  
7.2  
mA  
µA  
Power-good Leakage  
PROTECTION FEATURES  
Undervoltage Protection  
Undervoltage Trip Threshold  
Undervoltage Recovery Threshold  
Overcurrent Protection  
Overcurrent Accuracy  
BUFFER AMPLIFIER  
PV = PGOOD = 13.2V  
IN  
1
V
V
as a % of V , Test mode  
REF  
71  
86  
75  
90  
79  
94  
%
%
FB  
as a % of V , Test mode  
REF  
FB  
ROCSETA, B = 6kΩ (IOC = 0.6A/LX) V = 12V  
IN  
0.43  
0.6  
0.77  
A/LX  
kHz  
Gain Bandwidth Product  
C
= 1µF, I  
SOURCE  
= 1mA, A = 1, V  
OUT  
= 1.25V  
200  
L
V
(Note 14)  
Source Current Capability  
Sink Current Capability  
Offset Voltage  
20  
4
mA  
µA  
250  
-4  
400  
0
mV  
IMON CURRENT MONITOR  
IMON Sense Time  
145  
-14  
215  
100  
300  
14  
ns  
µA/A  
µA  
IMON Output Current Gain  
IMON Gain Accuracy  
NOTES:  
I
I
= 1A/Power Stage, LXx Off Time >300ns  
= 1A/Power Stage, LXx Off Time >300ns  
LOAD  
LOAD  
12. Typical values shown are not guaranteed.  
13. The 0A to 6A output current range may be reduced by Minimum LXx On Time and Minimum LXx Off Time specifications.  
14. Limits established by characterization or analysis and are not production tested.  
15. Parameters with MIN and/or MAX limits are 100% tested at -55°C, +25°C and +125°C, unless otherwise specified.  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
11  
ISL70003SEH  
Typical Performance Curves Unless otherwise noted, V = 12V, V = 3.3V, I = 3A, f = 500kHz,  
IN  
OUT  
OUT  
SW  
C
= 4x 100µF + 5x1µF, L  
= 3.3µH, C = 3x 150µF + 1µF, T = +25°C, All outputs active.  
IN  
100  
OUT  
OUT A  
100  
95  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
9V  
9V  
80  
5V  
75  
70  
65  
60  
55  
50  
3.3V  
2.5V  
5V  
2.5V  
3.3V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 6. EFFICIENCY vs LOAD, V = 12V, 300kHz  
IN  
FIGURE 7. EFFICIENCY vs LOAD, V = 12V, 500kHz  
IN  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1.5V  
2.5V  
1.8V  
2.5V  
1.8V  
1.2V  
3.3V  
1.5V  
3.3V  
1.2V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 9. EFFICIENCY vs LOAD, V = 5V, 500kHz  
IN  
FIGURE 8. EFFICIENCY vs LOAD, V = 5V, 300kHz  
IN  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1.8V  
1.2V  
1.8V  
1.5V  
1.5V  
1.2V  
2.5V  
2.5V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 11. EFFICIENCY vs LOAD, V = 3.3V, 500kHz  
IN  
FIGURE 10. EFFICIENCY vs LOAD, V = 3.3V, 300kHz  
IN  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
12  
ISL70003SEH  
Typical Performance Curves Unless otherwise noted, V = 12V, V = 3.3V, I = 3A, f = 500kHz,  
IN  
OUT  
OUT  
SW  
C
= 4x 100µF + 5x1µF, L  
= 3.3µH, C  
= 3x 150µF + 1µF, T = +25°C, All outputs active. (Continued)  
IN  
OUT  
OUT  
A
4.5  
4.0  
3.5  
4.0  
9V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
9V  
3.0  
5V  
2.5  
2.0  
1.5  
5V  
3.3V  
1.0  
3.3V  
2.5V  
0.5  
2.5V  
0.0  
0.0  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 12. POWER LOSS, V = 12V, 300kHz  
IN  
FIGURE 13. POWER LOSS, V = 12V, 500kHz  
IN  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.3V  
3.3V  
2.5V  
2.5V  
1.8V  
1.5V  
1.5V  
1.8V  
1.2V  
1.2V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 15. POWER LOSS, V = 5V, 500kHz  
IN  
FIGURE 14. POWER LOSS, V = 5V, 300kHz  
IN  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.2V  
2.5V  
1.5V  
1.8V  
1.2V  
1.8V  
1.5V  
1.2V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 16. POWER LOSS, V = 3.3V, 300kHz  
IN  
FIGURE 17. POWER LOSS, V = 3.3V, 500kHz  
IN  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
13  
ISL70003SEH  
Typical Performance Curves Unless otherwise noted, V = 12V, V = 3.3V, I = 3A, f = 500kHz,  
IN  
OUT  
OUT  
SW  
C
= 4x 100µF + 5x1µF, L  
= 3.3µH, C  
= 3x 150µF + 1µF, T = +25°C, All outputs active. (Continued)  
IN  
OUT  
OUT  
A
3.35  
1.818  
1.812  
1.806  
1.800  
1.794  
1.788  
1.782  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
0
1
2
3
4
5
6
2
4
6
8
10  
12  
14  
LOAD CURRENT (A)  
INPUT VOLTAGE (V)  
FIGURE 19. LINE REGULATION, V  
= 1.8V, LOAD = 3A  
FIGURE 18. LOAD REGULATION  
OUT  
606  
604  
602  
600  
598  
596  
594  
606  
604  
602  
600  
598  
596  
594  
-55°C  
PV = 13.2V  
IN  
PV = 3V  
IN  
+25°C  
+125°C  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
2
4
6
8
10  
12  
14  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 20. REFERENCE VOLTAGE vs TEMPERATURE  
FIGURE 21. REFERENCE VOLTAGE vs V  
IN  
6.00  
5.75  
5.50  
5.25  
5.00  
4.75  
4.50  
4.25  
4.00  
545  
495  
445  
395  
345  
295  
245  
500kHz  
PV = 13.2V  
IN  
PV = 3V  
IN  
PV = 3V  
IN  
300kHz  
PV = 13.2V  
IN  
2
4
6
8
10  
12  
14  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 23. SWITCHING FREQUENCY vs TEMPERATURE  
FIGURE 22. MODULATOR GAIN vs V  
IN  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
14  
ISL70003SEH  
Typical Performance Curves Unless otherwise noted, V = 12V, V = 3.3V, I = 3A, f = 500kHz,  
IN  
OUT  
OUT  
SW  
C
= 4x 100µF + 5x1µF, L  
= 3.3µH, C  
= 3x 150µF + 1µF, T = +25°C, All outputs active. (Continued)  
IN  
OUT  
OUT  
A
ENABLE, 5V/DIV  
ENABLE, 5V/DIV  
LXx VOLTAGE, 5V/DIV  
INDUCTOR CURRENT, 2A/DIV  
OUTPUT VOLTAGE, 2V/DIV  
OUTPUT VOLTAGE, 2V/DIV  
PGOOD, 10V/DIV  
PGOOD, 10V/DIV  
FIGURE 25. MONOTONIC SOFT-START WITH 6A LOAD, CCM  
FIGURE 24. MONOTONIC SOFT-START WITH NO LOAD, CCM  
ENABLE, 5V/DIV  
ENABLE, 5V/DIV  
LXx VOLTAGE, 5V/DIV  
LXx VOLTAGE, 5V/DIV  
OUTPUT VOLTAGE, 2V/DIV  
PGOOD, 10V/DIV  
OUTPUT VOLTAGE, 2V/DIV  
PGOOD, 10V/DIV  
FIGURE 26. MONOTONIC SOFT-START WITH 1.5V PREBIASED LOAD  
FIGURE 27. MONOTONIC SOFT-START WITH NO LOAD, DEM  
LXx VOLTAGE, 5V/DIV  
LXx VOLTAGE, 5V/DIV  
INDUCTOR CURRENT, 2A/DIV  
INDUCTOR CURRENT, 1A/DIV  
OUTPUT VOLTAGE, 20mV/DIV  
OUTPUT VOLTAGE, 20mV/DIV  
FIGURE 28. STEADY STATE OPERATION NO LOAD, CCM  
FIGURE 29. STEADY STATE OPERATION FULL LOAD, CCM  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
15  
ISL70003SEH  
Typical Performance Curves Unless otherwise noted, V = 12V, V = 3.3V, I = 3A, f = 500kHz,  
IN  
OUT  
OUT  
SW  
C
= 4x 100µF + 5x1µF, L  
= 3.3µH, C  
= 3x 150µF + 1µF, T = +25°C, All outputs active. (Continued)  
IN  
OUT  
OUT A  
INDUCTOR CURRENT, 2A/DIV  
LXx VOLTAGE, 5V/DIV  
INDUCTOR CURRENT, 0.5A/DIV  
OUTPUT VOLTAGE, 20mV/DIV  
OUTPUT VOLTAGE, 200mV/DIV  
FIGURE 30. DIODE EMULATION OPERATION, V  
OUT  
= 1.2V, 125mA LOAD  
FIGURE 31. 6A LOAD TRANSIENT RESPONSE, DIODE EMULATION  
INDUCTOR CURRENT, 2A/DIV  
INDUCTOR CURRENT, 2A/DIV  
OUTPUT VOLTAGE, 50mV/DIV  
OUTPUT VOLTAGE, 50mV/DIV  
FIGURE 33. 6A LOAD TRANSIENT RESPONSE  
FIGURE 32. 3A LOAD TRANSIENT RESPONSE  
LXx VOLTAGE, 5V/DIV  
LXx VOLTAGE, 5V/DIV  
INDUCTOR CURRENT, 10A/DIV  
INDUCTOR CURRENT, 5A/DIV  
OUTPUT VOLTAGE, 2V/DIV  
OUTPUT VOLTAGE, 2V/DIV  
SS VOLTAGE, 2V/DIV  
PGOOD, 10V/DIV  
FIGURE 34. OVERCURRENT RESPONSE  
FIGURE 35. HICCUP RESPONSE IN OCP  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
16  
ISL70003SEH  
Functional Description  
Initialization  
The ISL70003SEH is a monolithic synchronous buck regulator IC  
with integrated power MOSFETs. The device utilizes voltage-mode  
control with feed-forward and switches at a nominal frequency of  
500kHz or 300kHz. It is fabricated on a 0.6μm BiCMOS junction  
isolated process optimized for power management applications.  
With this chip and a handful of external components, a complete  
synchronous buck DC/DC converter can be readily implemented.  
The converter accepts an input voltage ranging from 3V to 13.2V  
and provides a tightly regulated output voltage ranging from 0.6V  
to ~90% of the input voltage at output currents ranging from 0A  
to 6A. Typical applications include Point Of Load (POL) regulation  
for FPGAs, CPLDs, DSPs, DDR memory and microprocessors.  
The ISL70003SEH initializes based on the state of the EN input  
and POR input. Successful initialization prompts a soft-start  
interval and the regulator begins slowly ramping the output  
voltage. Once the commanded output voltage is within the  
proper window of operation, the power-good signal changes state  
from low to high indicating proper regulator operation.  
Enable  
The EN pin accepts TTL/CMOS logic input as described in the  
Electrical Specifications” table on page 9. When the voltage on  
the EN pin exceeds its logic rising threshold, the controller  
monitors the POR voltage before initiating the soft-start function  
for the PWM regulator. When EN is pulled low, the device enters  
shutdown mode and the supply current drops to a typical value of  
1.5mA. All internal power devices are held in a high-impedance  
state while in shutdown mode. Due to the internal 5V clamp, the  
EN pin should be driven no higher than 5V or excessive leakage  
current may be seen on the pin. In standalone applications the  
EN pin may be tied to an input voltage >5V through a 50kΩ  
resistor to minimize the current into the EN pin. The current  
should not be allowed to exceed 160µA at any operating voltage.  
Power Blocks  
PVIN1  
LX1  
PGND1  
PVIN6  
LX6  
PGND6  
POWER BLOCK 6  
OCPB and IMON  
POWER BLOCK 1  
POWER BLOCK 2  
POWER BLOCK 3  
PVIN2  
LX2  
PGND2  
PVIN7  
LX7  
PGND7  
POWER BLOCK 7  
POWER BLOCK 8  
PVIN3  
LX3  
PVIN8  
LX8  
PGND8  
V
> 5.0V  
PGND3  
IN  
PVINx  
PVIN9  
LX9  
PGND9  
PVIN4  
LX4  
PGND4  
POWER BLOCK 9  
POWER BLOCK 10  
POWER BLOCK 4  
R1  
51kΩ  
PVIN5  
LX5  
PGND5  
PVIN10  
LX10  
PGND10  
ENABLE  
POWER BLOCK 5  
and OCPA  
COMPARATOR  
EN  
+
V
R
Note: Shaded blocks indicate pilot current and current sensors.  
-
POR  
LOGIC  
FIGURE 36. POWER BLOCK DIAGRAM  
The power output stage of the regulator consists of ten power  
blocks that are paralleled to provide full 6A output current  
capability at T = +125°C. The block diagram in Figure 36 shows  
J
a top level view of the individual power blocks.  
FIGURE 37. ENABLE TO V FOR >5.0 INPUT VOLTAGE  
IN  
SEL1 and SEL2 pins allow users to disable power blocks in order  
to reduce switching losses in light load applications. Depending  
on the state of these pins the ISL70003SEH can operate with 2,  
4, or 10 active power blocks and also be placed in a sleep mode.  
Power-On Reset  
After the EN input requirements are met, the ISL70003SEH  
remains in shutdown until the voltage at the POR pin rises above  
its threshold. The POR circuitry prevents the controller from  
attempting to soft-start before sufficient bias is present at the  
PVINx pins.  
Each power block has a power supply input pin, PVINx, a phase  
output pin, LXx and a power supply ground pin, PGNDx. All PVINx  
pins must be connected to a common power supply rail and all  
PGNDx pins must be connected to a common ground. LXx pins  
should be connected to the output inductor based on the  
required load current and the state of the SEL1, SEL2 pins, but  
must include the LX5 and LX6 pins. The unused LXx pins should  
be left unconnected.  
As shown in Figure 38 on page 18, the POR circuit features a  
comparator type input. The POR circuit allows the level of the  
input voltage to precisely gate the turn-on/turn-off of the  
regulator. An internal I  
current sink with a typical value of  
POR  
12µA is only active when the voltage on the POR pin is below the  
enable threshold so it can pull the POR pin low. As V rises, the  
Scaled pilot devices associated with power blocks 5 and 6  
provide current feedback for overcurrent detection and the IMON  
current monitor feature. Power blocks 5 and 6 must be  
connected to the output inductor at all times for proper  
operation.  
IN  
POR enable level is set by the resistor divider (R and R ) from  
1
2
V
and the internal sink current source, I .  
IN  
POR  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
17  
ISL70003SEH  
output load current does not exceed the overcurrent trip level of  
the regulator.  
V
I
C
= 0.6V  
R
V
REF  
V
--------------  
= 12µA  
t
= C  
(EQ. 4)  
IN  
POR  
SS  
SS  
I
SS  
= 10nF  
POR  
PVINx  
V
OUT  
---------------  
I
= C  
(EQ. 5)  
INRUSH  
OUT  
t
SS  
The soft-start capacitor is immediately discharged by a 3.0Ω  
resistor whenever POR conditions are not met or EN is pulled low.  
The soft-start discharge time is equal to 256 clock cycles.  
V
IN  
POR  
COMPARATOR  
R
R
1
POR  
+
V
OUT  
V
I
R
= 0.6V  
REF  
SS  
V
R
C
POR  
2
= 23µA  
= 2.2Ω  
-
POR  
LOGIC  
R
T
D
FB  
I
POR  
R
B
ERROR  
AMPLIFIER  
SS  
NI  
-
C
SS  
+
+
FIGURE 38. POR CIRCUIT  
V
REF  
PWM  
R
D
LOGIC  
Equation 2 defines the relationship between the resistor divider,  
I
SS  
sink current and POR rising level (V  
).  
PORR  
R
1
R
2
------  
V
= V  
1 +  
+ I  
R  
POR 1  
(EQ. 2)  
PORR  
R
REF  
V
REF  
Once the voltage at the POR pin reaches the enable threshold,  
the I current sink turns off.  
C
REF  
POR  
With the part enabled and the I  
FIGURE 39. SOFT-START CIRCUIT  
current sink off, the falling level  
POR  
(V  
) is set by the resistor divider network and is defined by  
Equation 3.  
PORF  
Power-Good  
R
1
A power-good indicator is the final step of initialization. After a  
successful soft-start, the PGOOD pin releases and the voltage  
rises with an external pull-up resistor. The power-good signal  
transitions low immediately when the EN pin is pulled low.  
(EQ. 3)  
------  
V
= V  
R
1 +  
PORF  
R
2
The difference between the POR rising and falling levels provides  
adjustable hysteresis so that noise on V does not interfere with  
the enabling or disabling of the regulator.  
IN  
The PGOOD pin is an open-drain logic output and can be pulled  
up to any voltage from 0V to 13.2V. The pull-up resistor should  
have a nominal value from 1kΩ to 10kΩ. The PGOOD pin should  
be bypassed to DGND with a 10nF ceramic capacitor to mitigate  
SEE.  
Soft -Start  
The ISL70003SEH soft-start function uses an internal current  
source and an external capacitor to reduce stresses and surge  
current during start-up.  
Fault Monitoring and Protection  
Once the POR and enable circuits are satisfied, the regulator  
waits 32 clock cycles and then initiates a soft-start. Figure 39  
shows that the soft-start circuit clamps the error amplifier  
reference voltage to the voltage on an external soft-start  
capacitor connected to the SS pin. The soft-start capacitor is  
The ISL70003SEH actively monitors the output voltage and  
current to detect fault conditions. Fault conditions trigger  
protective measures to prevent damage to the regulator and the  
external load device. One common power-good indication signal  
is provided for linking to external system monitors. The  
schematic in Figure 40 on page 19 outlines the interaction  
between the fault monitors and the power-good signal.  
charged by an internal I current source. As the soft-start  
SS  
capacitor is charged, the output voltage slowly ramps to the set  
point determined by the reference voltage and the feedback  
network. Once the voltage on the SS pin is equal to the internal  
reference voltage, the soft-start interval is complete. The  
soft-start output ramp interval is defined in Equation 4 and is  
adjustable from approximately 2ms to 200ms. The value of the  
Undervoltage and Overvoltage Monitor  
The power-good pin (PGOOD) is an open-drain logic output which  
indicates that the converter is operating properly and the output  
voltage is within a set window. The Undervoltage (UV) and  
Overvoltage (OV) comparators create the output voltage window.  
soft-start capacitor, C , should range from 82nF to 8.2µF,  
SS  
inclusive. The peak in-rush current can be computed from  
Equation 5. The soft-start interval should be selected long  
enough to insure that the peak in-rush current plus the peak  
The power-good circuitry monitors the FB pin and compares it to  
the rising and falling thresholds shown in the “Electrical  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
18  
ISL70003SEH  
Specifications” table on page 11. If the feedback voltage  
Upon detection of an overcurrent condition, the upper MOSFET  
will be immediately turned off and will not be turned on again  
until the next switching cycle. Upon detection of the initial  
overcurrent condition, the overcurrent fault counter is set to 1. If,  
on the subsequent cycle, another overcurrent condition is  
detected, the OC fault counter will increment, however, if the  
sampled current falls below the threshold the counter is reset. If  
there are 4 sequential OC fault detections, the counter will  
overflow and the regulator will be shutdown under an overcurrent  
fault condition, pulling PGOOD low.  
exceeds the typical rising limit of 111% of the reference voltage,  
the PGOOD pin pulls low. The PGOOD pin continues to pull low  
until the feedback voltage falls to a typical of 107.5% of the  
reference voltage. If the feedback voltage drops below a typical  
of 89% of the reference voltage, the PGOOD pin pulls low. The  
PGOOD pin continues to pull low until the feedback voltage rises  
to a typical 92.5% of the reference voltage. The PGOOD pin then  
releases and signals the return of the output voltage within the  
power-good window  
ꢆꢇ  
0.666V  
PGOOD  
LOAD CURRENT, 5A/DIV  
+
OV  
-
0A  
OUTPUT VOLTAGE, 1V/DIV  
+
-
UV  
FB  
COUNTER/  
POR/ ON-OFF  
CONTROL  
0.534V  
0V  
I
SEN  
SOFT-START VOLTAGE, 1V/DIV  
-
OCP  
+
UVP  
OCSETB  
OCSETA  
+
0V  
-
I
5ms/DIV  
SEN  
-
0.45V  
OCP  
FIGURE 1. OVERCURRENT BEHAVIOR IN HICCUP MODE  
+
After the regulator shuts down, it enters a delay interval, allowing  
the device to cool. The delay interval is approximately equal to  
512 clock cycles plus 1 soft-start intervals. The overcurrent  
counter is reset entering the delay interval. The protection logic  
initiates a normal soft-start once the delay interval ends. If the  
output successfully soft-starts, the power-good signal goes high  
and normal operation continues. If overcurrent conditions  
continue to exist during the soft-start interval, the overcurrent  
counter must overflow before the regulator shutdowns the output  
again. This hiccup mode continues indefinitely until the output  
soft-starts successfully (see Figure 1).  
FIGURE 40. POWER-GOOD AND PROTECTION CIRCUITRY  
Undervoltage Protection  
A hysteretic comparator monitors the FB pin of the regulator. The  
feedback voltage is compared to an undervoltage threshold that  
is a fixed percentage of the reference voltage, typically 75%.  
Once the comparator trips, indicating a valid undervoltage  
condition, an undervoltage counter increments. The counter is  
reset if the feedback voltage rises back above the undervoltage  
threshold plus a specified amount of hysteresis outlined in the  
“Electrical Specifications” table on page 11. If there are 4  
consecutive undervoltage detections the counter will overflow  
and the undervoltage protection logic shuts down the regulator,  
pulling PGOOD low.  
Application Information  
Voltage Feed-forward  
Feed-forward is used to maintain a constant modulator gain and  
achieve optimum loop response over a wide input voltage range.  
A resistor from PVINx to RTCT and a capacitor from RTCT to  
PGNDx are used to adjust the amplitude of the sawtooth ramp  
proportional to the input voltage. The capacitor value must be  
chosen so that it is large enough for mitigation of single event  
transients but low enough for the internal MOSFET device to pull  
the pin to ground. The following table gives the recommended  
After the regulator shuts down, it enters a delay interval,  
approximately equivalent to 512 clock cycles plus 1 soft-start  
intervals, allowing the device to cool. The undervoltage counter is  
reset entering the delay interval. The protection logic initiates a  
normal soft-start once the delay interval ends. If the output  
successfully soft-starts, the power-good signal goes high and  
normal operation continues. If undervoltage conditions continue  
to exist during the soft-start interval, the undervoltage counter  
must overflow before the regulator shuts down again. This hiccup  
mode continues indefinitely until the output soft-starts  
successfully.  
values for R and C for a given switching frequency. These  
T
T
values will achieve a constant modulator gain across the  
complete input voltage range.  
MODULATOR  
GAIN (TYP)  
Overcurrent Protection  
FSEL STATE  
f
(kHz)  
R (kΩ)  
C (pF)  
T
SW  
500  
300  
T
A pilot device integrated into the PMOS transistor of Power Blocks  
5 and 6 sample the current each cycle. This current feedback is  
scaled and compared to an overcurrent threshold based on the  
resistor value tied from pins OCSETA and OCSETB to AGND.  
0
1
22  
36  
370  
370  
5
4.8  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
19  
ISL70003SEH  
Switching Frequency Selection  
R
0.6V  
1
(EQ. 6)  
R
= ------------------------------------------  
4
There are a number of variables to consider when choosing the  
switching frequency. A high switching frequency increases the  
switching losses but may lead to a decrease in output filter size.  
A lower switching frequency may increase efficiency but may  
lead to more output voltage ripple and increased output filter  
size.  
V
0.6V  
OUT  
If the output voltage desired is 0.6V, then R is left unpopulated.  
4
Setting the Overcurrent Protection Level  
The ISL70003SEH features dual redundancy in the overcurrent  
detection circuitry, which helps avoid false overcurrent triggering  
due to single event effects. Two external resistors from pins  
OCSETA and OCSETB to AGND set the level of the over current  
protection (OCP) trip point. The OCP circuit senses the peak  
current across a pilot device not the average current so it is  
On the ISL70003SEH the switching frequency is determined by  
the state of the TTL/CMOS compatible FSEL pin. A logic low will  
set the regulator to operate with a 500kHz switching frequency,  
while a logic high sets a 300kHz switching frequency.  
important to determine the overcurrent trip point (I  
) greater  
) plus half  
OCP  
Synchronization  
than the maximum output continuous current (I  
MAX  
The ISL70003SEH can be synchronized to an external clock with  
a frequency range of 500kHz ±15% or 300kHz ±15%, depending  
on the state of the FSEL pin.  
the maximum inductor ripple current (ΔI).  
Use Equation 7 to determine the inductor ripple current:  
V
V  
OUT  
IN  
f
The SYNC pin accepts the external clock signal and the regulator  
will be synchronized in phase with the external clock. During  
start-up the regulator will use its internal oscillator to regulate  
the output voltage. Once soft-start is complete and PGOOD is  
released, the regulator will synchronize to the external clock  
signal. This feature allows the ISL70003SEH regulator to be the  
power source to the external components that will be providing  
the external clock without the requirement that a signal must be  
present at the SYNC pin before start-up.  
-------------------------------  
I =  
D  
(EQ. 7)  
L  
SW  
Where f  
is the switching frequency, L is the output inductor  
SW  
value and D is duty cycle. Once an I  
satisfies Equation 8:  
value is chosen that  
OCP  
I  
2
-----  
I
I  
+
MAX  
(EQ. 8)  
OCP  
Equation 9 may be used to determine the value of R  
and  
OCSETA  
Output Voltage Selection  
R
with all 10 power blocks active.  
OCSETB  
36024  
----------------  
R
=
(EQ. 9)  
OCSETAB  
I
OCP  
L
V
O
OUT  
LXx  
The minimum value for R  
equivalent to a 12.25A I  
is 2.94kΩ which is  
OCSET(A,B)  
level.  
C
OCP  
O
R
1
ERROR  
AMPLIFIER  
Disabling the Power Blocks  
The ISL70003SEH offers two TTL/CMOS compatible power block  
select pins, SEL1 and SEL2, which form a two-bit logic input that  
are used to turn off the internal power blocks. Depending on the  
state of the SEL1 and SEL2 pins, the ISL70003SEH can operate  
with 2, 4 or 10 power blocks on or have all the outputs in a  
tr-state mode. This allows the designer to reduce switching  
losses in low current applications, where all power blocks are not  
needed to supply the load current. Table 1 on page 20 compares  
the logic state of SEL1 and SEL2 with the current capability of the  
regulator and the number of active LXx pins.  
FB  
NI  
-
R
4
+
REF  
V
REF  
C
REF  
FIGURE 41. OUTPUT VOLTAGE SELECTION  
The output voltage of the regulator can be programmed via an  
external resistor divider that is used to scale the output voltage  
relative to the reference voltage. The reference voltage and the  
non-inverting input to the error amplifier are not internally  
connected, therefore, for standalone applications the REF pin  
must be tied to the NI pin (see Figure 41). The REF pin should be  
bypassed to AGND with a 220nF ceramic capacitor to mitigate  
SEE. It should be noted that no current (sourcing or sinking) is  
available from the REF pin.  
TABLE 1. LOGIC STATE COMPARISON  
SEL2  
SEL1  
LOAD CAPABILITY  
STATE  
STATE  
ACTIVE LXx PINS  
(T = +125°C)  
J
0
0
1
1
0
1
0
1
All  
5, 6, 7, 8  
5, 6  
6A  
2.4A  
1.2A  
N/A  
None  
The output voltage programming resistor, R , will depend on the  
4
value chosen for the feedback resistor R and the desired output  
voltage of the regulator. The value for the feedback resistor is  
typically between 5kΩ and 25kΩ.  
1
With both SEL pins in a logic high state, the ISL70003SEH is in a  
low power sleep mode where all outputs are tri-stated. Once the  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
20  
ISL70003SEH  
logic activates the power blocks, the regulator ramps the output  
voltage to its set value within a soft-start interval, however, the  
device no longer goes through the preinitialization phase.  
Transitions between the number of active LXx pins through the  
use of SEL1 and SEL2 should not be done while the part is  
operating. On the fly transitions will cause glitches on the output  
voltage which may exceed transient requirements. It is  
recommended to place the ISL70003SEH in standby mode, by  
pulling SEL1 and SEL2 HIGH, and then change the number of  
active LXx pins.  
VIMON VOLTAGE  
200mV/DIV  
INDUCTOR  
CURRENT  
2A/DIV  
The overcurrent trip point scales depending on the number of  
active power blocks. Equation 10 may be used to determine the  
value of R  
and R  
when less than 10 power blocks  
OCSETA  
OCSETB  
TIME (5µs/DIV)  
are active:  
FIGURE 42. IMON RESPONSE TO 6A LOAD STEP  
3602.4 N  
----------------------------  
R
=
(EQ. 10)  
OCSETAB  
I
OCP  
Where N is the number of active phases.  
VIMON VOLTAGE  
IMON Current Sense Output  
200mV/DIV  
The ISL70003SEH provides a current monitor function through  
IMON. Current monitoring informs designers if down steam loads  
are operating as expected. It is also useful in the prototype and  
debug phase of the design and during normal operation to  
measure the overall performance of a system. The IMON pin  
outputs a high speed analog current source that is proportional  
to the sensed peak current through the ISL70003SEH. In typical  
INDUCTOR  
CURRENT  
2A/DIV  
applications, a resistor R  
convert the sensed current to voltage, V  
IMON  
is connected to the IMON pin to  
, which is  
proportional to the peak current, as shown in Equation 11:  
IMON  
TIME (5µs/DIV)  
FIGURE 43. IMON RESPONSE TO 6A LOAD RELEASE  
I
R  
IMON  
N
6  
SAMPLE  
--------------------------------------------------  
V
= 100 10  
(EQ. 11)  
IMON  
It is important to note that if the on time of the lower NMOS FET  
is shorter than the IMON current sense time (300ns max), the  
IMON output is tri-stated after 4 consecutive failed sense  
occurrences.  
where V  
is the voltage at the IMON pin, R  
IMON  
is the resistor  
is the current through  
IMON  
between the IMON pin and AGND, I  
SAMPLE  
the converter at the time IMON samples the current, and N is the  
number of active power blocks. I  
Equation 12.  
may be calculated from  
SAMPLE  
Diode Emulation  
Diode Emulation (DE) allows for higher converter efficiency under  
light load situations. In DE mode, the low-side MOSFET conducts  
when the current is flowing from source to drain and does not  
allow reverse current, emulating a diode. As shown in Figure 44,  
when the LGATE signal is HIGH, the low-side MOSFET carries  
current, creating negative voltage on the phase node due to the  
voltage drop across the ON-resistance. When the DE pin is pulled  
HIGH, the ISL70003SEH will be in diode emulation mode and  
detect the zero current crossing of the inductor current and turn  
off the lower MOSFET to prevent the inductor current from  
reversing direction and creating unnecessary power loss. This  
ensures that Discontinuous Conduction Mode (DCM) is achieved.  
Since diode emulation prevents the low-side MOSFET from  
sinking current, no negative spike at the output is generated  
during pre-biased startup when DE mode is active.  
t
f  
I  
2
SAMPLE  
SW  
-----  
-----------------------------------------  
I
= I  
+
LOAD  
I   
(EQ. 12)  
SAMPLE  
1 D  
Where t  
is the time it takes the IMON circuitry to sample  
SAMPLE  
the current (300ns, max.), I  
is the load current and ΔI is the  
LOAD  
inductor peak-to-peak ripple current as calculated in Equation 7.  
A small capacitor should be placed between the IMON pin and  
AGND to reduce the noise impact and mitigate single event  
transients. If this pin is not used, it is best connected to VREFA. It  
is also acceptable to tie to GND through a resistor.  
Figures 42 and 43 show the response of the IMON current  
monitor due to a load step with a R  
ceramic capacitor in parallel.  
= 10kΩ and 100pF  
IMON  
After a significantly fast load release transient, diode emulation  
will not allow the converter to bring the output voltage back down  
following the hump created by the inductor energy dump into the  
output capacitor bank. The ISL70003SEH overcomes this issue  
by monitoring the output of the error amplifier and allowing the  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
21  
ISL70003SEH  
low-side MOSFET to turn on and sink the necessary current  
DDR Configuration  
needed to properly regulate the output voltage. The same  
mechanism allows the converter to properly regulate the output  
voltage when starting into a prebiased condition where the  
prebias level is greater than the desired output voltage.  
V
DDQ  
R
ISL70003SEH 1/2  
V
IN  
T1  
ERROR  
PVIN  
x
FB  
NI  
AMPLIFIER  
-
R
B1  
L
O
V
LX  
DDQ  
+
x
LXx  
C
O1  
V
DDQ  
REF  
PGND  
x
V
UGATE  
LGATE  
REF  
R
R
T1  
B1  
ISL70003SEH 2/2  
ERROR  
V
IN  
I
L
V
TT  
PVIN  
NI  
x
AMPLIFIER  
+
R
T2  
FIGURE 44. DIODE EMULATION  
FB  
L
O
-
V
TT  
LX  
x
BUFFER  
AMPLIFIER  
+
R
The DE pin is not intended to actively change states while the  
regulator is operating. If any part of the inductor current is below  
zero and the DE pin changes state there will be a glitch on the  
output voltage. However, if the state of the DE pin changes state  
when the inductor current is positive, no change in the operation  
of the regulator will be seen.  
B2  
B
C
+
O2  
PGND  
x
-
B
V
DDQ  
-
R
OUTB  
V
REF  
C
R
O3  
DDR Application  
High through put Double Data Rate (DDR) memory ICs are  
replacing traditional memory ICs in space applications. A novel  
feature associated with this type of memory are the referencing  
and data bus termination techniques. These techniques employ  
FIGURE 45. SIMPLIFIED DDR APPLICATION SCHEMATIC  
In the DDR application presented in Figure 45, an independent  
architecture is implemented to generate the voltages needed for  
a reference voltage, V , that tracks the center point of V  
REF DDQ  
DDR memory applications. Consequently, both V  
and V are  
DDQ  
TT  
and V voltages, and an additional V power source where all  
SS TT  
derived independently from the main power source. The first  
regulator supplies the 2.5V for the V voltage. The output  
terminating resistors are connected. Despite the additional  
power source, the overall memory power consumption is reduced  
compared to traditional termination.  
DDQ  
voltage is set by external dividers R and R . The second  
T1  
regulator generates the V rail typically = V  
B1  
DDQ  
/2. The resistor  
TT  
divider network R and R are used to set the output voltage to  
The added power source has a cluster of requirements that  
should be observed and considered. Due to the reduced  
differential thresholds of DDR memory, the termination power  
T2 B2  
1.25V. The V  
DDQ  
rail has an additional voltage divider network  
consisting of R and R , the midpoint is connected to the  
T1 B1  
noninverting input pin of the V regulator’s error amplifier (NI),  
TT  
supply voltage, V , closely tracks V  
/2 voltage.  
TT  
DDQ  
effectively providing a tracking function for the V voltage.  
TT  
Another very important feature of the termination power supply  
is the capability to operate at equal efficiency in sourcing and  
The noninverting input of the buffer amplifier is connected to the  
center point of the external R/R divider from the VDDQ output.  
The output of the buffer is tied back to the inverting input for  
unity gain configuration. The buffer output voltage serves as a  
1.25V reference (VREF) for the DDR memory chips. Sourcing  
capability of the buffer amplifier is 10mA typical (20mA max)  
and needs a minimum of 1µF load capacitance for stability.  
sinking modes. The V supply regulates the output voltage with  
TT  
the same degree of precision when current is flowing from the  
supply to the load, and when the current is diverted back from  
the load into the power supply.  
The ISL70003SEH regulator possesses several important  
enhancements that allow reconfiguration for DDR memory  
applications. Two ISL70003SEH ICs will provide all three voltages  
required in a DDR memory compliant system.  
Diode emulation mode of operation must be disabled on the V  
TT  
regulator to allow sinking capability. In the event both channels  
are enabled simultaneously, the soft-start capacitor on the VDDQ  
regulator should be two to three times larger than the soft-start  
capacitor on the V regulator. This allows the VDDQ regulator  
TT  
voltage to be the lowest input into the error amplifier of the V  
regulator and dominate the soft-start ramp. However, if the V  
TT  
TT  
regulator is enabled later than the VDDQ, the soft-start capacitor  
can be any value based on design goals.  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
22  
ISL70003SEH  
Each regulator has its own fault protections and must be  
General Design Guide  
individually configured. All the sink current on the V regulator is  
TT  
provided by the VDDQ rail, the overcurrent protection on the  
This design guide is intended to provide a high-level explanation  
of the steps necessary to design the power stage and feedback  
compensation network of a single phase power converter. It is  
assumed that the reader is familiar with many of the basic skills  
and techniques in switch mode power supply design. In addition  
to this guide, Intersil provides an evaluation board that includes  
schematic, bills of materials and board layout.  
VDDQ rail will limit the amount of current that the V rail will  
TT  
sink.  
When sinking current or at a no load condition, the inductor  
valley current is negative, see Figure 28. During any time when  
the inductor valley current is negative and the ISL70003 is  
exposed to a heavy ion environment the abs max PVIN voltage  
must be 13.7V, see Note 5 on page 9.  
Output Inductor Selection  
SEL1 and SEL2 may be tied together and used to place the V  
TT  
regulator in sleep mode, common to DDR applications. The  
outputs will be tri-stated, however the buffer amplifier is still  
The output inductor is selected to minimize the converter’s  
response time to a load transient and meet steady state output  
voltage ripple requirements. The inductor value determines the  
converter’s inductor ripple current and the output voltage ripple  
is a function of the inductor ripple current. The output voltage  
ripple and the inductor ripple current are approximated by using  
Equation 13:  
active and the VREF voltage will be present even if the V is in  
TT  
sleep mode. When SEL1 and SEL2 are asserted low, the V  
TT  
regulator will ramp up the voltage. The ramp is controlled and  
timing is based on soft-start capacitor value.  
Refer to Figure 5 on page 8 for complete DDR power solution  
typical application circuit schematic.  
V
V  
V
OUT  
V
IN  
IN  
f
OUT  
------------------------------------------- ---------------  
I =  
V  
= I ESR  
OUT  
L  
SW  
(EQ. 13)  
Derating Current Capability  
Increasing the value of inductance reduces the ripple current and  
output voltage ripple. However, the large inductance values  
reduce the converter’s response time to a load transient.  
Most space programs issue specific derating guidelines for parts,  
but these guidelines take the pedigree of the part into account.  
For instance, a device built to MIL-PRF-38535, such as the  
ISL70003SEH, is already heavily derated from a current density  
standpoint. However, a mil-temp or commercial IC that is  
up-screened for use in space applications may need additional  
current derating to ensure reliable operation because it was not  
built to the same standards as the ISL70003SEH.  
One of the parameters limiting the converter’s response to a  
load transient is the time required to change the inductor  
current. The response time is the time required to slew the  
inductor current from an initial current value to the transient  
current level. During this interval the difference between the  
inductor current and the transient current level must be  
supplied by the output capacitor. Minimizing the response time  
can minimize the output capacitance required.  
The response time to a transient is different for the application of  
load and the removal of load. Equation 14, gives the approximate  
response time interval for application and removal of a transient  
load.  
L x I  
TRAN  
L x I  
TRAN  
OUT  
t
=
t
=
FALL  
RISE  
V
- V  
IN OUT  
V
(EQ. 14)  
Where I  
is the transient load current step, t  
is the  
is the  
TRAN  
RISE  
response time to the application of load, and t  
FALL  
response time to the removal of load. The worst case response  
time can be either at the application or removal of load. Be sure  
to check both Equations 13 and 14 at the minimum and  
maximum output levels for the worst case response time.  
FIGURE 46. CURRENT vs TEMPERATURE  
Figure 46 shows the maximum average output current of the  
ISL70003SEH with respect to junction temperature. These plots  
take into account the worst-case current share mismatch in the  
power blocks and the current density requirement of  
Output Capacitor Selection  
An output capacitor is required to filter the inductor current and  
supply the load transient current. The filtering requirements are a  
function of the switching frequency and the ripple current. The  
load transient requirements are a function of the slew rate (di/dt)  
and the magnitude of the transient load current. These  
requirements are generally met with a mix of capacitors and  
careful layout.  
5
2
MIL-PRF-38535 (< 2 x 10 A/cm ). The plot clearly shows that  
the ISL70003SEH can handle 7A at +150°C from a worst-case  
current density standpoint, but the part is rated to 3A. Therefore,  
no further current derating of the ISL70003SEH is needed.  
High-frequency capacitors initially supply the transient and slow  
the current load rate seen by the bulk capacitors. The bulk filter  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
23  
ISL70003SEH  
capacitor values are generally determined by the ESR (Effective  
Series Resistance) and voltage rating requirements rather than  
actual capacitance requirements.  
In a typical converter design, the ESR of the output capacitor  
bank dominates the transient response. The ESR and the ESL are  
typically the major contributing factors in determining the output  
capacitance. The number of output capacitors can be  
determined by using Equation 16, which relates the ESR and ESL  
of the capacitors to the transient load step and the voltage limit  
(ΔVo).  
High-frequency decoupling capacitors should be placed as close  
to the power pins of the load as physically possible. Be careful  
not to add inductance in the circuit board wiring that could  
cancel the usefulness of these low inductance components.  
The shape of the output voltage waveform during a load transient  
that represents the worst case loading conditions will ultimately  
determine the number of output capacitors and their type. When  
this load transient is applied to the converter, most of the energy  
required by the load is initially delivered from the output  
capacitors. This is due to the finite amount of time required for  
the inductor current to slew up to the level of the output current  
required by the load. This phenomenon results in a temporary dip  
in the output voltage. At the very edge of the transient, the  
Equivalent Series Inductance (ESL) of each capacitor induces a  
spike that adds on top of the existing voltage drop due to the  
Equivalent Series Resistance (ESR).  
ESL ² dI  
tran  
------------------------------------------- + E S R ² I  
(EQ. 16)  
tran  
dt  
Number of Capacitors = --------------------------------------------------------------------------------------------  
V  
o
If ΔV  
SAG  
and/or ΔV are found to be too large for the output  
HUMP  
voltage limits, then the amount of capacitance may need to be  
increased. In this situation, a trade-off between output inductance  
and output capacitance may be necessary.  
The ESL of the capacitors, which is an important parameter in  
the previous equations, is not usually listed in databooks.  
Practically, it can be approximated using Equation 17 if an  
Impedance vs Frequency curve is given for a specific capacitor:  
After the initial spike, attributable to the ESR and ESL of the  
capacitors, the output voltage experiences sag. This sag is a  
direct consequence of the amount of capacitance on the output.  
1
ESL = -----------------------------------------------------  
2
(EQ. 17)  
C2 ² ² f  
res  
Where: f is the frequency where the lowest impedance is  
res  
achieved (resonant frequency).  
ΔV  
HUMP  
The ESL of the capacitors becomes a concern when designing  
circuits that supply power to loads with high rates of change in  
the current.  
V
OUT  
ΔV  
ESR  
ΔV  
ΔV  
SAG  
Input Capacitor Selection  
ESL  
Use a mix of input bypass capacitors to control the voltage  
overshoot across the MOSFETs. Use small ceramic capacitors for  
high-frequency decoupling and bulk capacitors to supply the  
current needed each time the upper MOSFET turns on. Place the  
small ceramic capacitors physically close to the MOSFETs and  
between the drain of the upper MOSFET and the source of the  
lower MOSFET.  
I
OUT  
I
TRAN  
FIGURE 47. TYPICAL TRANSIENT RESPONSE  
The important parameters for the bulk input capacitance are the  
voltage rating and the RMS current rating. For reliable operation,  
select bulk capacitors with voltage and current ratings above the  
maximum input voltage and largest RMS current required by the  
circuit. Their voltage rating should be at least 1.25x greater than  
the maximum input voltage, while a voltage rating of 1.5x is a  
conservative guideline. For most cases, the RMS current rating  
requirement for the input capacitor of a buck regulator is  
approximately 1/2 the DC load current.  
During the removal of the same output load, the energy stored in  
the inductor is dumped into the output capacitors. This energy  
dumping creates a temporary hump in the output voltage. This  
hump, as with the sag, can be attributed to the total amount of  
capacitance on the output. Figure 47 shows a typical response to  
a load transient.  
The amplitudes of the different types of voltage excursions can  
be approximated using Equation 15.  
dI  
The maximum RMS current through the input capacitors may be  
closely approximated using Equation 18:  
tran  
V  
= ESR ² I  
V  
= ESL ² ---------------------  
ESR  
tran  
ESL  
dt  
2
2
L
² I  
VOUT  
---------------  
VIN  
   
   
   
V
V
IN VOUT VOUT  
OUT tran  
2
1
-----O-----U----T- x I  
x 1 –  
+ -------- x ----------------------------------- x---------------  
V  
V  
= ----------------------------------------------------------------------------  
SAG  
OUT  
C
² V V  
OUT  
MAX  
VIN  
12 Lxf  
VIN  
OUT  
IN  
OSC  
(EQ. 18)  
2
L
² I  
OUT tran  
For surface mount designs, solid tantalum capacitors can be  
used, but caution must be exercised with regard to the capacitor  
surge current rating. These capacitors must be capable of  
handling the surge current at power-up. Some capacitor series  
available from reputable manufacturers are surge current tested.  
= -------------------------------------------------  
HUMP  
C
² V  
OUT  
(EQ. 15)  
OUT  
Where I  
tran  
Output Capacitance  
= Output Load Current Transient and C  
= Total  
OUT  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
24  
ISL70003SEH  
Feedback Compensation  
Figure 48 highlights the voltage-mode control loop for a  
synchronous rectified buck converter. The output voltage (V  
100  
f
f
f
f
P2  
Z1 Z2  
P1  
80  
60  
40  
20  
0
)
OUT  
OPEN LOOP  
ERROR AMP GAIN  
is regulated to the reference voltage level. The error amplifier  
output (V ) is compared with the oscillator (OSC) triangular  
EA  
wave to provide a Pulse-Width Modulated (PWM) wave with an  
20LOG  
(R /R )  
2
1
20LOG  
(V /DV  
amplitude of V at the PHASE node. The PWM wave is smoothed  
IN  
)
OSC  
IN  
by the output filter (L and C ).  
O
O
COMPENSATION  
GAIN  
CLOSED LOOP  
GAIN  
MODULATOR  
GAIN  
-20  
-40  
-60  
V
IN  
DRIVER  
DRIVER  
OSC  
f
PWM  
LC  
f
ESR  
100k  
FREQUENCY (Hz)  
L
O
COMPARATOR  
V
OUT  
10  
100  
1k  
10k  
1M  
10M  
-
PHASE  
+
C
ΔV  
OSC  
O
FIGURE 49. ASYMPTOTIC BODE PLOT OF CONVERTER GAIN  
ESR  
(PARASITIC)  
Equation 20 relates the compensation network’s poles, zeros  
and gain to the components (R , R , R , C , C and C ) in  
Z
FB  
V
1
2
3
1
2
3
EA  
Figure 48. Use these guidelines for locating the poles and zeros  
of the compensation network:  
Z
-
IN  
+
REFERENCE  
ERROR  
AMP  
1. Pick Gain (R /R ) for desired converter bandwidth.  
2
1
st  
2. Place 1 Zero Below Filter’s Double Pole (~75% F ).  
LC  
DETAILED COMPENSATION COMPONENTS  
nd  
3. Place 2 Zero at Filter’s Double Pole.  
Z
FB  
V
OUT  
C
st  
1
Z
4. Place 1 Pole at the ESR Zero.  
IN  
nd  
C
C
5. Place 2 Pole at Half the Switching Frequency.  
R
R
3
2
3
2
6. Check Gain against Error Amplifier’s Open-Loop Gain.  
7. Estimate Phase Margin - Repeat if Necessary.  
R
1
VERR  
FB  
-
Compensation Break Frequency Equations  
+
R
4
1
1
f
= ----------------------------------------------  
f
= -------------------------------------------------------------------------  
Z1  
P1  
REFERENCE  
R
2x R x C  
C
x C  
2
2
1
2
+ C  
2
---------------------------  
2x R  
x
2
C
1
1
V
= 0.6 ¥ 1 + -------  
1
1
OUT  
f
= ------------------------------------------------------------------------  
2x R + R x C  
f
= ----------------------------------------------  
2x R x C  
R
Z2  
P2  
4
1
3
3
3
3
FIGURE 48. VOLTAGE-MODE BUCK CONVERTER COMPENSATION  
(EQ. 20)  
Figure 49 shows an asymptotic plot of the DC/DC converter’s  
gain vs frequency. The actual Modulator Gain has a high gain  
peak due to the high Q factor of the output filter and is not shown  
in Figure 49. Using the guidelines provided should give a  
Compensation Gain similar to the curve plotted. The open loop  
error amplifier gain bounds the compensation gain. Check the  
The modulator transfer function is the small-signal transfer  
function of V /V . This function is dominated by a DC Gain and  
OUT EA  
the output filter (L and C ), with a double pole break frequency at  
O
O
f
and a zero at f  
. The DC gain of the modulator is simply the  
LC  
ESR  
input voltage (V ) divided by the peak-to-peak oscillator voltage  
IN  
ΔV  
OSC  
. The ISL70003SEH incorporates a feed-forward loop that  
compensation gain at f with the capabilities of the error  
P2  
accounts for changes in the input voltage. This maintains a  
constant modulator gain of 5, typical.  
amplifier. The Closed Loop Gain is constructed on the graph of  
Figure 49 by adding the Modulator Gain (in dB) to the  
Compensation Gain (in dB). This is equivalent to multiplying the  
modulator transfer function to the compensation transfer  
function and plotting the gain. The compensation gain uses  
external impedance networks Z and Z to provide a stable,  
high bandwidth (BW) overall loop. A stable control loop has a  
gain crossing with -20dB/decade slope and a phase margin  
greater than +45°. Include worst case component variations  
when determining phase margin. A more detailed explanation of  
voltage mode control of a buck regulator can be found in Tech  
Brief TB417, entitled “Designing Stable Compensation Networks  
for Single Phase Voltage Mode Buck Regulators”.  
Modulator Break Frequency Equations  
1
1
f
= -----------------------------------------------------  
f
= -----------------------------------------------------  
LC  
ESR  
2x ESR x C  
FB  
IN  
2x  
L
x C  
O
O
O
(EQ. 19)  
The compensation network consists of the error amplifier and  
the impedance networks Z and Z . The goal of the  
IN  
FB  
compensation network is to provide a closed loop transfer  
function with the highest 0dB crossing frequency (f ) and  
0dB  
adequate phase margin. Phase margin is the difference between  
the closed loop phase at f  
and 180°.  
0dB  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
25  
ISL70003SEH  
LX Connection  
PCB Design  
Use a small island of copper to connect the LXx pins of the IC to  
the output inductor on layers 1 and 4. Void the copper on layers 2  
and 3 adjacent to the island to minimize capacitive coupling to  
the power and ground planes. Place most of the island on layer 4  
to minimize the amount of copper that must be voided from the  
ground plane (layer 2).  
PCB design is critical to high-frequency switching regulator  
performance. Careful component placement and trace routing  
are necessary to reduce voltage spikes and minimize  
undesirable voltage drops. Selection of a suitable thermal  
interface material is also required for optimum heat dissipation  
and to provide lead strain relief.  
Keep all other signal traces as short as possible.  
PCB Plane Allocation  
A minimum of four layers of two ounce copper are  
Thermal Management for Ceramic Package  
recommended. Layer 2 should be a dedicated ground plane with  
all critical component ground connections made with vias to this  
layer. Layer 3 should be a dedicated power plane split between  
the input and output power rails. Layers 1 and 4 should be used  
primarily for signals, but can also provide additional power and  
ground islands as required.  
For optimum thermal performance, place a pattern of vias on the  
top layer of the PCB directly underneath the IC. Connect the vias  
to the plane which serves as a heatsink. To ensure good thermal  
contact, thermal interface material such as a Sil-Pad or thermally  
conductive epoxy should be used to fill the gap between the vias  
and the bottom of the IC of the ceramic package.  
PCB Component Placement  
Lead Strain Relief  
Components should be placed as close as possible to the IC to  
minimize stray inductance and resistance. Prioritize the  
placement of bypass capacitors on the pins of the IC in the order  
shown: REF, SS, AVDD, DVDD, PVINx (high-frequency capacitors),  
EN, PGOOD, PVINx (bulk capacitors).  
The package leads protrude from the bottom of the package and  
the leads need forming to provide strain relief. On the ceramic  
bottom package R64.A, the Sil-pad or epoxy maybe be used to fill  
the gap left between the PCB board and the bottom of the  
package when lead forming is completed. On the heatsink option  
of the package R64.C, the lead forming should be made so that  
the bottom of the heatsink and the formed leads are flush.  
Locate the output voltage resistive divider as close as possible to  
the FB pin of the IC. The top leg of the divider should connect  
directly to the output of the inductor via a kelvin trace and the  
bottom leg of the divider should connect directly to AGND. This  
AGND connection should also be a kelvin trace connected to the  
closest ground to the inductor output. The junction of the  
resistive divider should connect directly to the FB pin.  
Heatsink Mounting Guidelines  
The R64.C package option has a heatsink mounted on the  
underside of the package. The following JESD-51x series  
guidelines may be used to mount the package:  
1. Place a thermal land on the PCB under the heatsink.  
If desired place a Schottky clamp diode as close as possible to  
the LXx and PGNDx pins of the IC. A small series R-C snubber  
connected from the LXx pins to the PGNDx pins may be used to  
damp high-frequency ringing on the LXx pins if desired.  
2. The land should be approximately the same size as to 1mm  
larger than the 10.16x10.16mm heatsink.  
3. Place an array of thermal vias below the thermal land.  
- Via array size: ~9x9 = 81 thermal vias.  
L
V
OUT  
OUT  
- Via diameter: ~0.3mm drill diameter with plated copper on  
the inside of each via.  
LXx  
3A  
C
OUT  
R
C
S
- Via pitch: ~1.2mm.  
S
- Vias should drop to and contact as much metal area as  
feasible to provide the best thermal path.  
R
T
PGNDx  
FB  
ERROR  
AMPLIFIER  
Heatsink Electrical Potential  
-
The heatsink is connected to pin 50 within the package; thus the  
PCB design and potential applied to pin 50 will therefore define  
the heatsink potential.  
R
NI  
B
+
REF  
Heatsink Mounting Materials  
C
REF  
In the case of electrically conductive mounting methods  
(conductive epoxy, solder, etc) the thermal land, vias and  
connected plane(s) below must be the same potential as pin 50.  
FIGURE 50. SCHOTTKY DIODE AND R-C SNUBBER  
In the case of electrically non-conductive mounting methods  
(non-conductive epoxy), the heatsink and pin 50 could have  
different electrical potential than the thermal land, vias and  
connected plane(s) below.  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
26  
ISL70003SEH  
TOP METALLIZATION  
Package Characteristics  
Weight of Packaged Device  
Type: AlCu (99.5%/0.5%)  
Thickness: 2.7µm ±0.4µm  
1.43 Grams (typical) - R64.A Package  
2.65 Grams (typical) - R64.C Package  
BACKSIDE FINISH  
Silicon  
Lid Characteristics  
PROCESS  
Finish: Gold  
Lid Potential: PGND  
0.6µM BiCMOS Junction Isolated  
ASSEMBLY RELATED INFORMATION  
Die Characteristics  
Substrate and Lid Potential  
Die Dimensions  
PGND  
8300µm x 8300µm (327 mils x 327 mils)  
Thickness: 300µm ±25.4µm (12 mils ±1 mil)  
ADDITIONAL INFORMATION  
Worst Case Current Density  
Interface Materials  
5
2
<2 x 10 A/cm  
GLASSIVATION  
Transistor Count  
Type: Silicon Oxide and Silicon Nitride  
Thickness: 0.3µm ±0.03µm to 1.2µm ±0.12µm  
26,144  
Metallization Mask Layout  
ISL70003SEH  
DE  
PVIN2  
LX2  
PVIN9  
LX9  
PGND2  
PGND9  
PGND1  
LX1  
PGND10  
LX10  
PVIN1  
PVIN10  
IMON  
SGND  
SEL2  
SEL1  
PGOOD  
OCSETA  
OCSETB  
BUFIN+  
BUFIN-  
BUFOUT  
VREF  
GND  
GND  
GND  
GND  
GND  
ORIGIN  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
27  
ISL70003SEH  
TABLE 2. LAYOUT X-Y COORDINATES  
X
(µm)  
Y
dX  
(µm)  
dY  
(µm)  
BOND WIRES  
SIZE (0.001”)  
PAD NAME  
PAD NUMBER  
(µm)  
NI  
1
0
0
135  
135  
135  
135  
254  
254  
254  
254  
254  
254  
254  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
254  
254  
254  
254  
254  
254  
135  
254  
254  
254  
254  
254  
254  
254  
254  
135  
135  
135  
135  
254  
254  
254  
254  
254  
254  
254  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
254  
254  
254  
254  
254  
254  
135  
254  
254  
254  
254  
254  
254  
254  
254  
1.5  
1.5  
1.5  
1.5  
3
FB  
2
452  
0
Verr  
3
929  
0
POR_VIN  
VrefA  
VDDA  
GNDA  
GNDD  
Vref OUTs  
VDDD  
VrefD  
ENABLE  
RtCt  
4
1371  
1854  
2577  
3104  
3589  
4035  
4713  
5420  
5846  
6274  
6579  
6976  
7201  
7201  
7201  
7201  
7201  
7201  
7201  
7201  
7201  
7140  
6350  
5387  
5387  
6350  
7140  
7220  
7140  
6655  
6247  
5801  
5393  
4908  
4497  
4011  
0
5
58  
6
60  
3
7
60  
3
8
60  
3
9
60  
3
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
60  
3
60  
3
0
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
3
0
F300  
0
Sync  
0
SS Cap  
TDI  
51  
345  
639  
934  
1228  
1522  
1902  
2275  
2569  
3285  
3771  
4179  
4625  
5033  
5518  
6303  
7578  
6788  
5825  
5825  
6788  
7578  
7578  
6788  
Zap  
TDO  
TST Trim  
TCLK  
Pgood  
SEL1  
SEL2  
PVin10  
LX10  
3
PGND10  
PGND9  
LX9  
3
3
3
PVin9  
Deon  
3
1.5  
3
PVin8  
LX8  
3
PGND8  
PGND7  
LX7  
3
3
3
PVin7  
PVin6  
LX6  
3
3
3
FN8604.5  
May 12, 2016  
Submit Document Feedback  
28  
ISL70003SEH  
TABLE 2. LAYOUT X-Y COORDINATES (Continued)  
X
(µm)  
Y
dX  
(µm)  
dY  
(µm)  
BOND WIRES  
SIZE (0.001”)  
PAD NAME  
PAD NUMBER  
40  
(µm)  
PGND6  
PGND5  
LX5  
3603  
3157  
2749  
2264  
1853  
1367  
960  
5825  
5825  
6788  
7578  
7578  
6788  
5825  
254  
254  
254  
254  
254  
254  
254  
254  
254  
254  
254  
254  
254  
254  
3
3
3
3
3
3
3
41  
42  
43  
44  
45  
46  
PVin5  
PVin4  
LX4  
PGND4  
PGND3  
LX3  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
514  
106  
5825  
6788  
7578  
5518  
5033  
4625  
4179  
3771  
3285  
2561  
2201  
1841  
1481  
1121  
761  
254  
254  
254  
254  
254  
254  
254  
254  
254  
135  
135  
135  
135  
135  
135  
135  
135  
254  
254  
254  
254  
254  
254  
254  
254  
254  
135  
135  
135  
135  
135  
135  
135  
135  
3
3
PVin3  
PVIN2  
LX2  
-379  
-379  
411  
3
3
3
PGND2  
PGND1  
LX1  
1374  
1374  
411  
3
3
3
PVin1  
Imon  
-379  
-438  
-438  
-438  
-438  
-438  
-438  
-438  
-438  
3
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
sgnd  
OCSETA  
OCSETB  
Buf IN +  
Buf IN -  
Buf OUT  
Vref  
401  
41  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
29  
ISL70003SEH  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please go to the web to make sure that you have the latest revision.  
DATE  
REVISION  
FN8604.5  
CHANGE  
May 12, 2016  
Updated Ordering information table on page 3.  
Updated Note 1.  
Removed Pb-Free Reflow reference under “Thermal Information” on page 9 as it is not applicable to hermetic  
packages.  
Corrected Equation 20 on page 25.  
February 6, 2015  
FN8604.4  
On page 6, added text in the FB, PVINx, SEL1, SEL2 and IMON pin descriptions.  
On page 7 corrected pin names in Figure 4.  
On page 8 corrected pin names in Figure 5.  
On page 9, updated Note 5 by adding "with any negative inductor current".  
On page 23, added the fifth paragraph under the DDR Configuration section.  
On page 26, added text to the second paragraph under “PCB Component Placement”.  
March 7, 2014  
March 3, 2014  
FN8604.3  
FN8604.2  
FN8604.1  
Added new feedback link, updated Related Literature and updated About Intersil.  
Cosmetic edits throughout file.  
Initial Release.  
December 20, 2013  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
30  
ISL70003SEH  
Package Outline Drawing  
R64.A  
64 CERAMIC QUAD FLATPACK PACKAGE (CQFP)  
Rev 5, 10/13  
1.118 (28.40)  
1.080 (27.43)  
0.567 (14.40)  
0.547 (13.90)  
0.290 (7.37)  
0.255 (6.48)  
64  
49  
0.025 (0.635) BSC  
1
PIN 1  
INDEX AREA  
48  
0.567 (14.40)  
0.547 (13.90)  
1.118 (28.40)  
1.080 (27.43)  
0.010 (0.25)  
0.006 (0.15)  
33  
16  
17  
32  
SEE DETAIL "A"  
TOP VIEW  
0.105 (2.67)  
0.075 (1.91)  
0.008 (0.20)  
REF  
0.0075 (0.188)  
0.005 (0.125)  
SIDE VIEW  
DETAIL “A”  
0.100 (2.537)  
0.085 (2.157)  
0.380 (9.655)  
0.370 (9.395)  
PIN 1  
INDEX AREA  
1
64  
NOTE:  
1. All dimensions are in inches (millimeters).  
BOTTOM VIEW  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
31  
ISL70003SEH  
Package Outline Drawing  
R64.C  
64 CERAMIC QUAD FLATPACK PACKAGE (CQFP) WITH BOTTOM HEATSINK  
Rev 1, 10/13  
1.118 (28.40)  
1.080 (27.43)  
0.567 (14.40)  
0.547 (13.90)  
0.290 (7.37)  
0.255 (6.48)  
64  
49  
0.025 (0.635) BSC  
1
PIN 1  
INDEX AREA  
48  
0.567 (14.40)  
0.547 (13.90)  
1.118 (28.40)  
1.080 (27.43)  
0.010 (0.25)  
0.006 (0.15)  
33  
16  
17  
32  
SEE DETAIL "A"  
TOP VIEW  
0.135 (3.43)  
0.111 (2.82)  
0.0075 (0.188)  
0.005 (0.125)  
SIDE VIEW  
HEATSINK  
0.405 (10.29)  
0.395 (10.03)  
0.100 (2.537)  
0.085 (2.157)  
0.380 (9.655)  
0.370 (9.395)  
0.008 (0.20)  
REF  
0.048 (1.22)  
REF  
0.026 (0.66) MIN.  
DETAIL "A"  
2
HEATSINK  
0.405 (10.29)  
0.395 (10.03)  
PIN 1  
INDEX AREA  
1
64  
NOTES:  
1. All dimensions are in inches (millimeters)  
2. Dimension shall be measured at point of exit  
(beyond the meniscus) of the lead from the body.  
BOTTOM VIEW  
FN8604.5  
May 12, 2016  
Submit Document Feedback  
32  

相关型号:

ISL70005SEHX/SAMPLE

Switching Regulator/Controller
RENESAS

ISL70040SEHL/PROTO

Buffer/Inverter Based Peripheral Driver
RENESAS

ISL70218SEH

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SEHF/PROTO

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SEHVX/SAMPLE

Operational Amplifier
RENESAS

ISL70218SEHX/SAMPLE

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRH

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHF

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHMEVAL1Z

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHMF

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHMF

DUAL OP-AMP, 3.2MHz BAND WIDTH, CDFP10, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT PACK-10
RENESAS

ISL70218SRHMX

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL