RF1K49221 [INTERSIL]

2.5A, 60V, 0.130 Ohm, ESD Rated, Dual N-Channel LittleFET⑩ Power MOSFET; 2.5A , 60V , 0.130欧姆,额定ESD ,双N沟道LittleFET⑩功率MOSFET
RF1K49221
型号: RF1K49221
厂家: Intersil    Intersil
描述:

2.5A, 60V, 0.130 Ohm, ESD Rated, Dual N-Channel LittleFET⑩ Power MOSFET
2.5A , 60V , 0.130欧姆,额定ESD ,双N沟道LittleFET⑩功率MOSFET

晶体 晶体管 开关 光电二极管
文件: 总8页 (文件大小:113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF1K49221  
Data Sheet  
August 1999  
File Number 4314.1  
2.5A, 60V, 0.130 Ohm, ESD Rated, Dual  
N-Channel LittleFET™ Power MOSFET  
Features  
• 2.5A, 60V  
• r = 0.130Ω  
The RF1K49221 Dual N-Channel power MOSFET is  
manufactured using an advanced MegaFET process. This  
process, which uses feature sizes approaching those of LSI  
integrated circuits, gives optimum utilization of silicon,  
resulting in outstanding performance. It is designed for use  
in applications such as switching regulators, switching  
converters, motor drivers, relay drivers, and low voltage bus  
switches. This device can be operated directly from  
integrated circuits.  
DS(ON)  
• 2kV ESD Protected  
®
Temperature Compensating PSPICE Model  
• Thermal Impedance PSPICE Model  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
The RF1K49221 incorporates ESD protection and is  
designed to withstand 2kV (Human Body Model) of ESD.  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly developmental type TA49221.  
Symbol  
Ordering Information  
D1(8)  
D1(7)  
PART NUMBER  
PACKAGE  
BRAND  
RF1K49221  
RF1K49221  
MS-012AA  
S1(1)  
G1(2)  
NOTE: When ordering, use the entire part number. For ordering in  
tape and reel, add the suffix 96 to the part number, i.e. RF1K4922196.  
D2(6)  
D2(5)  
S2(3)  
G2(4)  
Packaging  
JEDEC MS-012AA  
BRANDING DASH  
5
1
2
3
4
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
LittleFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
8-136  
RF1K49221  
o
Absolute Maximum Ratings T = 25 C Unless Otherwise Specified  
A
RF1K49221  
UNITS  
Drain to Source Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
60  
60  
V
V
V
DSS  
DGR  
Drain to Gate Voltage (R  
GS  
= 20kΩ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
GS  
Drain Current  
Continuous (Pulse Width = 5s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
2.5  
A
D
Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
Refer to Peak Current Curve  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
Refer to UIS Curve  
AS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
0.016  
2
W
W/ C  
D
o
o
Electrostatic Discharge Rating MIL-STD-883, Category B(2) . . . . . . . . . . . . . . . . . . . . . ESD  
kV  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 125 C.  
J
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V, (Figure 12)  
MIN  
TYP  
-
MAX  
UNITS  
V
Drain to Source Breakdown Voltage  
Gate to Source Threshold Voltage  
Zero Gate Voltage Drain Current  
I
60  
1
-
-
DSS  
GS(TH)  
D
GS  
V
V
= V , I = 250µA, (Figure 11)  
-
3
V
GS  
DS D  
o
I
V
V
= 60V,  
= 0V  
T
T
= 25 C  
-
1
50  
10  
25  
0.130  
0.350  
50  
-
µA  
µA  
µA  
µA  
DSS  
DS  
GS  
A
o
= 150 C  
-
-
A
o
Gate to Source Leakage Current  
Drain to Source On Resistance  
I
V
V
= ±20V, T = 25 C  
-
-
GSS  
GS  
GS  
A
o
= ±10V, T = 85 C  
-
-
A
r
I
= 2.5A,  
(Figures 9, 10)  
V
V
= 10V  
-
-
DS(ON)  
D
GS  
GS  
= 4.5V  
-
-
Turn-On Time  
t
V
R
R
= 30V, I  
2.5A,  
-
-
ns  
ON  
DD  
D
= 12, V  
= 10V,  
L
GS  
Turn-On Delay Time  
Rise Time  
t
-
10  
25  
68  
32  
-
ns  
d(ON)  
= 25Ω,  
GS  
t
(Figure 14)  
-
-
ns  
r
Turn-Off Delay Time  
Fall Time  
t
-
-
ns  
d(OFF)  
t
-
-
ns  
f
Turn-Off Time  
t
-
150  
29  
16  
1.0  
-
ns  
OFF  
Total Gate Charge  
Gate Charge at 10V  
Threshold Gate Charge  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Thermal Resistance Junction to Ambient  
Q
V
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
R
= 48V, I  
D
= 19.2Ω  
2.5A,  
-
24  
13  
0.8  
365  
140  
40  
-
nC  
nC  
nC  
pF  
pF  
pF  
g(TOT)  
GS  
GS  
GS  
DS  
DD  
L
Q
-
g(10)  
g(TH)  
I
= 1.0mA  
g(REF)  
Q
(Figure 14)  
-
C
= 25V, V  
GS  
= 0V,  
-
ISS  
OSS  
RSS  
f = 1MHz  
(Figure 13)  
C
C
-
-
-
-
o
R
Pulse Width = 1s  
-
62.5  
C/W  
θJA  
Device mounted on FR-4 material  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
58  
UNITS  
V
V
I
I
= 2.5A  
-
-
-
-
SD  
SD  
t
= 2.5A, dI /dt = 100A/µs  
SD  
ns  
rr  
SD  
8-137  
RF1K49221  
Typical Performance Curves  
1.2  
3.0  
1.0  
0.8  
2.5  
2.0  
1.5  
1.0  
0.6  
0.4  
0.2  
0
0.5  
0
75  
100  
125  
150  
50  
0
25  
50  
75  
100  
125  
150  
25  
o
o
T , AMBIENT TEMPERATURE ( C)  
T , AMBIENT TEMPERATURE ( C)  
A
A
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
10  
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
0.1  
0.05  
1
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
0.01  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
J
x Z  
x R  
+ T  
JA A  
DM  
JA  
θ
θ
SINGLE PULSE  
0.001  
-4  
10  
-5  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
50  
10  
100  
o
= 25 C  
T
= MAX RATED  
V
= 20V  
= 10V  
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
T
J
GS  
A
o
o
T
= 25 C  
A
150 - T  
I = I  
A
25  
V
125  
GS  
1
0.1  
5ms  
10ms  
10  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100ms  
OPERATION IN THIS  
AREA MAY BE  
1s  
LIMITED BY r  
V
= 60V  
10  
DS(ON)  
DSS(MAX)  
DC  
0.01  
1
10  
-5  
-4  
-3  
10  
-2  
-1  
0
1
0.1  
1
100 200  
10  
10  
10  
10  
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
t, PULSE WIDTH (s)  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. PEAK CURRENT CAPABILITY  
8-138  
RF1K49221  
Typical Performance Curves (Continued)  
15  
20  
16  
12  
8
PULSE DURATION = 80µs  
V
= 20V  
= 10V  
If R = 0  
GS  
DUTY CYCLE = 0.5% MAX  
t
= (L)(I )/(1.3*RATED BV  
- V )  
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV - V ) +1]  
DSS DD  
AS  
DSS  
o
V
GS  
T = 25 C  
A
10  
V
= 8V  
GS  
t
AV  
AS  
V
= 7V  
GS  
V
GS  
= 6V  
= 5V  
o
STARTING T = 25 C  
J
V
GS  
4
V
= 4.5V  
GS  
o
STARTING T = 150 C  
J
0
1
0
1.5  
3.0  
4.5  
6.0  
7.5  
0.1  
1
10  
100  
t
, TIME IN AVALANCHE (ms)  
V , DRAIN TO SOURCE VOLTAGE (V)  
DS  
AV  
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
FIGURE 7. SATURATION CHARACTERISTICS  
20  
500  
400  
300  
200  
100  
0
o
V
= 15V  
PULSE TEST  
PULSE DURATION = 250µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 250µs, V  
= 15V  
25 C  
DD  
DD  
DUTY CYCLE = 0.5% MAX  
16  
12  
8
I
I
= 5.0A  
= 2.5A  
D
o
o
150 C  
-55 C  
D
D
I
= 1.25A  
I
= 0.625A  
D
4
0
4
5
6
7
8
9
10  
3
0
2
4
6
8
10  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
GS  
FIGURE 8. TRANSFER CHARACTERISTICS  
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
2.0  
1.5  
1.0  
0.5  
0
1.2  
PULSE DURATION = 250µs  
DUTY CYCLE = 0.5% MAX  
V
= V , I = 250µA  
GS  
DS  
D
V
= 10V, I = 2.5A  
GS  
D
1.0  
0.8  
0.6  
0.4  
-80  
-80  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
8-139  
RF1K49221  
Typical Performance Curves (Continued)  
500  
1.2  
I
= 250µA  
D
C
ISS  
400  
300  
200  
1.1  
1.0  
0.9  
0.8  
V
= 0V, f = 1MHz  
GS  
ISS  
C
C
C
= C  
+ C  
GS  
= C  
GD  
RSS  
OSS  
GD  
= C  
+ C  
GD  
DS  
C
C
OSS  
100  
0
RSS  
0
5
10  
15  
20  
25  
-80  
-40  
0
40  
80  
120  
160  
o
V
, DRAIN TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
DS  
J
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
60  
10.0  
V
= BV  
DSS  
V
= BV  
DSS  
DD  
DD  
45  
30  
15  
0
7.5  
5.0  
R
= 24W  
L
I
= 0.30mA  
g(REF)  
V
= 10V  
GS  
PLATEAU VOLTAGES IN  
DESCENDING ORDER:  
V
V
V
V
= BV  
DD  
DD  
DD  
DD  
DSS  
2.5  
0
= 0.75 BV  
= 0.50 BV  
= 0.25 BV  
DSS  
DSS  
DSS  
I
I
g(REF)  
g(REF)  
t, TIME (ms)  
20-----------------------  
80-----------------------  
I
I
g(ACT)  
g(ACT)  
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.  
FIGURE 14. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
t
L
P
V
DS  
I
AS  
VARY t TO OBTAIN  
P
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS  
8-140  
RF1K49221  
Test Circuits and Waveforms (Continued)  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
r
R
L
V
DS  
90%  
90%  
+
-
V
GS  
10%  
10%  
0
0
0V  
90%  
50%  
DUT  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
FIGURE 17. SWITCHING TIME TEST CIRCUIT  
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS  
V
DS  
V
Q
R
DD  
g(TOT)  
L
V
DS  
V
= 20V  
GS  
V
GS  
Q
g(10)  
+
-
V
DD  
V
= 10V  
V
GS  
GS  
DUT  
V
= 2V  
GS  
I
G(REF)  
Q
g(TH)  
I
g(REF)  
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
Soldering Precautions  
o
The soldering process creates a considerable thermal stress  
on any semiconductor component. The melting temperature  
of solder is higher than the maximum rated temperature of  
the device. The amount of time the device is heated to a high  
temperature should be minimized to assure device reliability.  
Therefore, the following precautions should always be  
observed in order to minimize the thermal stress to which  
the devices are subjected.  
3. Themaximumtemperaturegradientshouldbelessthan5 C  
per second when changing from preheating to soldering.  
4. The peak temperature in the soldering process should be  
o
at least 30 C higher than the melting point of the solder  
chosen.  
5. The maximum soldering temperature and time must not  
o
exceed 260 C for 10 seconds on the leads and case of  
the device.  
6. After soldering is complete, the device should be allowed  
to cool naturally for at least three minutes, as forced cool-  
ing will increase the temperature gradient and may result  
in latent failure due to mechanical stress.  
1. Always preheat the device.  
2. Thedeltatemperaturebetweenthepreheatandsoldering  
o
should always be less than 100 C. Failure to preheat the  
device can result in excessive thermal stress which can  
damage the device.  
7. During cooling, mechanical stress or shock should be  
avoided.  
8-141  
RF1K49221  
PSPICE Electrical Model  
SUBCKT RF1K49221 2 1 3 ;  
rev 4/8/97  
CA 12 8 5.60e-10  
CB 15 14 5.30e-10  
CIN 6 8 3.40e-10  
LDRAIN  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DESD1 91 9 DESD1MOD  
DESD2 91 7 DESD2MOD  
DPLCAP 10 5 DPLCAPMOD  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
+
RSLC2  
DBREAK  
11  
EBREAK 11 7 17 18 67.29  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
5
51  
ESLC  
ESG 6 10 6 8 1  
50  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
+
RDRAIN  
16  
DBODY  
6
8
ESG  
EBREAK  
17  
18  
+
EVTHRES  
IT 8 17 1  
+
21  
19  
8
MWEAK  
LGATE  
EVTEMP  
GATE  
1
LDRAIN 2 5 1e-9  
LGATE 1 9 1.12e-9  
LSOURCE 3 7 4.50e-10  
RGATE  
+
6
18  
MMED  
22  
9
20  
MSTRO  
8
RLGATE  
DESD1  
LSOURCE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
91  
DESD2  
RIN  
CIN  
RSOURCE  
SOURCE  
3
7
RLSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 28.58e-3  
RGATE 9 20 15.34  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RLDRAIN 2 5 10  
RLGATE 1 9 11.2  
RLSOURCE 3 7 4.5  
RSOURCE 8 7 RSOURCEMOD 28.85e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
S1A  
12  
S2A  
RBREAK  
15  
14  
13  
13  
8
18  
17  
S1B  
CA  
S2B  
RVTEMP  
19  
13  
CB  
+
IT  
14  
+
VBAT  
6
8
5
8
EDS  
EGS  
+
8
22  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*30),2.5))}  
.MODEL DBODYMOD D (IS = 1.95e-13 RS = 2.58e-2 TRS1 = 2.00e-3 TRS2 =-4.39e-7 CJO = 5.15e-10 TT = 5.23e-8 M=0.5)  
.MODEL DBREAKMOD D (RS = 6.24e-1 TRS1 =-3.03e-4 TRS2 = 4.27e-6  
.MODEL DESD1MOD D (BV=32.3 TBV1=0 TBV2=0 RS=0 TRS1=0 TRS2=0  
.MODEL DESD2MOD D (BV=32.5 TBV1=0 TBV2=0 RS=25 TRS1=5.18e-4 TRS2=-1.52e-6)  
.MODEL DPLCAPMOD D (CJO = 1.80e-10 IS = 1e-30 N = 10 M=0.5)  
.MODEL MMEDMOD NMOS (VTO=2.755 KP=0.21 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=15.34)  
.MODEL MSTROMOD NMOS (VTO=3.165 KP=3.75 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MWEAKMOD NMOS (VTO=2.520 KP=0.040 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=153.4 RS=0.1)  
.MODEL RBREAKMOD RES (TC1 = 1.10e-3 TC2 = -1.09e-6)  
.MODEL RDRAINMOD RES (TC1 = 1.15e-2 TC2 = 4.09e-5  
.MODEL RSLCMOD RES (TC1=3.03e-3 TC2=4.52e-6)  
.MODEL RSOURCEMOD RES (TC1=0 TC2=0)  
.MODEL RVTHRESMOD RES (TC=-7.20e-4 TC2=-7.11e-6)  
.MODEL RVTEMPMOD RES (TC1 = -3.01e-3 TC2 = 1.81e-6)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.80 VOFF= -4.80)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.80 VOFF= -7.80)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 1.10 VOFF= 4.10)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 4.10 VOFF= 1.10)  
.ENDS  
NOTE:For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options;IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
8-142  
RF1K49221  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
8-143  

相关型号:

RF1K4922196

TRANSISTOR | MOSFET | MATCHED PAIR | N-CHANNEL | 60V V(BR)DSS | 2.5A I(D) | SO
ETC

RF1K49223

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
FAIRCHILD

RF1K49223

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
INTERSIL

RF1K4922396

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
FAIRCHILD

RF1K4922396

2.5A, 30V, 0.36ohm, 2 CHANNEL, P-CHANNEL, Si, POWER, MOSFET, MS-012AA
RENESAS

RF1K49224

3.5A/2.5A, 30V, 0.060/0.150 Ohms, Complementary LittleFET⑩ Power MOSFET
INTERSIL

RF1K4922496

TRANSISTOR | MOSFET | PAIR | COMPLEMENTARY | 30V V(BR)DSS | 3.5A I(D) | SO
ETC

RF1S0CA137KFT

Fixed Resistor, Metal Film, 1W, 137000ohm, 350V, 1% +/-Tol, 100ppm/Cel, Surface Mount, 3916, CHIP
OHMITE

RF1S0CA16R5F

Fixed Resistor, Metal Film, 1W, 16.5ohm, 350V, 1% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S0CA1R10JT

Fixed Resistor, Metal Film, 1W, 1.1ohm, 350V, 5% +/-Tol, 200ppm/Cel, Surface Mount, 3916, CHIP
OHMITE

RF1S0CA357RF

Fixed Resistor, Metal Film, 1W, 357ohm, 350V, 1% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S0CA680RJ

Fixed Resistor, Metal Film, 1W, 680ohm, 350V, 5% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE