IRF7749L2PBF [INFINEON]

RoHS Compliant, Halogen Free;
IRF7749L2PBF
型号: IRF7749L2PBF
厂家: Infineon    Infineon
描述:

RoHS Compliant, Halogen Free

文件: 总11页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97434  
IRF7749L2TRPbF  
IRF7749L2TR1PbF  
DirectFET™ Power MOSFET ‚  
Typical values (unless otherwise specified)  
l RoHS Compliant, Halogen Free   
l Lead-Free (Qualified up to 260°C Reflow)  
l Ideal for High Performance Isolated Converter  
Primary Switch Socket  
l Optimized for Synchronous Rectification  
VDSS  
VGS  
RDS(on)  
1.1mΩ@ 10V  
Vgs(th)  
60V min ±20V max  
Qg tot  
Qgd  
l Low Conduction Losses  
l High Cdv/dt Immunity  
200nC  
71nC  
2.9V  
l Low Profile (<0.7mm)  
l Dual Sided Cooling Compatible   
l Compatible with existing Surface Mount Techniques   
l Industrial Qualified  
S
S
S
S
S
S
S
S
G
D
D
DirectFET™ ISOMETRIC  
L8  
Applicable DirectFET Outline and Substrate Outline   
SB  
SC  
M2  
M4  
L4  
L6  
L8  
Description  
The IRF7749L2TR/TR1PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to  
achieve the lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The DirectFET package  
is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection  
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package  
allows dual sided cooling to maximize thermal transfer in power systems.  
The IRF7749L2TR/TR1PbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses  
in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system  
reliability improvements, and makes this device ideal for high performance power converters.  
Absolute Maximum Ratings  
Max.  
60  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
±20  
200  
140  
33  
V
GS  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
I
I
I
I
I
@ TC = 25°C  
D
D
D
D
A
@ TC = 100°C  
@ TA = 25°C  
@ TC = 25°C  
375  
800  
260  
120  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy  
mJ  
A
Avalanche Current  
1.60  
1.40  
1.20  
1.00  
0.80  
12.0  
10.0  
8.0  
V
V
V
V
= 6.0V  
= 8.0V  
= 10V  
= 14V  
T
= 25°C  
I
= 120A  
GS  
GS  
GS  
GS  
C
D
6.0  
T
T
= 25°C  
J
4.0  
= 125°C  
J
2.0  
0.0  
4.0  
6.0  
V
8.0  
10.0 12.0 14.0 16.0  
40  
80  
120  
160  
200  
, Gate-to-Source Voltage (V)  
GS  
I , Drain Current (A)  
D
Fig 1. Typical On-Resistance vs. Gate Voltage  
Fig 2. Typical On-Resistance vs. Drain Current  
Notes:  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 0.035mH, RG = 25Ω, IAS = 120A.  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
www.irf.com  
1
11/17/09  
IRF7749L2TR/TR1PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250μA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
60  
–––  
0.03  
1.1  
2.9  
-10  
–––  
–––  
–––  
–––  
–––  
200  
36  
–––  
–––  
1.50  
4.0  
V
V/°C  
mΩ  
V
Reference to 25°C, ID = 2mA  
VGS = 10V, ID = 120A i  
VDS = VGS, ID = 250μA  
ΔΒVDSS/ΔTJ  
RDS(on)  
–––  
–––  
2.0  
VGS(th)  
ΔVGS(th)/ΔTJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
280  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
––– mV/°C  
VDS = 60V, VGS = 0V  
VDS = 48V, VGS = 0V, TJ = 125°C  
VGS = 20V  
20  
250  
100  
-100  
–––  
300  
–––  
–––  
110  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
μA  
nA  
S
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
VDS = 10V, ID = 120A  
gfs  
Qg  
VDS = 30V  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
VGS = 10V  
ID = 120A  
See Fig. 9  
12  
nC  
71  
100  
83  
VDS = 16V, VGS = 0V  
67  
nC  
Gate Resistance  
1.1  
17  
Ω
VDD = 30V, VGS = 10Vꢁi  
ID = 120A  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
Rise Time  
43  
RG=1.8Ω  
Turn-Off Delay Time  
78  
ns  
Fall Time  
39  
VGS = 0V  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
––– 12320 –––  
––– 1810 –––  
VDS = 25V  
Output Capacitance  
pF  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
Output Capacitance  
–––  
850  
–––  
VGS = 0V, VDS = 1.0V, f=1.0MHz  
VGS = 0V, VDS = 120V, f=1.0MHz  
––– 8060 –––  
––– 1310 –––  
Output Capacitance  
Diode Characteristics  
Conditions  
MOSFET symbol  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
IS  
–––  
–––  
200  
showing the  
A
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)ꢁg  
–––  
–––  
800  
p-n junction diode.  
TJ = 25°C, IS = 120A, VGS = 0V i  
TJ = 25°C, IF = 120A, VDD = 30V  
di/dt = 100A/μs i  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
45  
1.3  
68  
V
ns  
nC  
Qrr  
78  
120  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
‡ Pulse width 400μs; duty cycle 2%.  
2
www.irf.com  
IRF7749L2TR/TR1PbF  
Absolute Maximum Ratings  
Max.  
125  
Parameter  
Units  
W
Power Dissipation  
Power Dissipation  
Power Dissipation  
P
P
P
@TC = 25°C  
@TC = 100°C  
@TA = 25°C  
D
D
D
P
J
63  
3.3  
270  
Peak Soldering Temperature  
Operating Junction and  
°C  
T
T
T
-55 to + 175  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
Rθ  
Rθ  
Rθ  
Rθ  
Rθ  
Junction-to-Ambient  
JA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Can  
–––  
–––  
1.2  
JA  
°C/W  
JA  
–––  
–––  
J-Can  
J-PCB  
Junction-to-PCB Mounted  
0.5  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.02  
0.01  
0.10804  
0.61403  
0.45202  
0.00001  
0.000171  
0.053914  
0.006099  
0.036168  
τ
τ
J τJ  
τ
Cτ  
0.01  
0.001  
0.0001  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2τ2  
3τ3  
4τ4  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case „  
Notes:  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
„ TC measured with thermocouple incontact with top (Drain) of part.  
ˆ Used double sided cooling, mounting pad with large heatsink.  
Š R is measured at TJ of approximately 90°C.  
θ
ƒ
Surface mounted on 1 in. square Cu  
‰Mounted on minimum footprint full size board with metalized  
board (still air).  
back and with small clip heatsink. (still air)  
www.irf.com  
3
IRF7749L2TR/TR1PbF  
1000  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
TOP  
TOP  
10V  
10V  
7.0V  
5.0V  
4.5V  
4.3V  
4.0V  
3.8V  
7.0V  
5.0V  
4.5V  
4.3V  
4.0V  
3.8V  
100  
10  
1
BOTTOM  
BOTTOM  
60μs PULSE WIDTH  
Tj = 25°C  
3.8V  
3.8V  
60μs PULSE WIDTH  
Tj = 175°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
2.0  
1.5  
1.0  
0.5  
1000  
I
= 120A  
= 10V  
D
V
GS  
100  
T
T
T
= 175°C  
J
J
J
= 25°C  
= -40°C  
10  
1
V
= 25V  
DS  
60μs PULSE WIDTH  
0.1  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 6. Typical Transfer Characteristics  
Fig 7. Normalized On-Resistance vs. Temperature  
100000  
14  
V
C
= 0V,  
f = 1 MHZ  
GS  
I
= 120A  
= C + C , C SHORTED  
D
iss  
gs  
gd ds  
12  
10  
8
V
V
V
= 48V  
= 30V  
= 12V  
C
= C  
DS  
DS  
DS  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
Ciss  
10000  
1000  
100  
6
Coss  
Crss  
4
2
0
0
40  
Q
80  
120 160 200 240 280  
1
10  
100  
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 9. Typical Total Gate Charge vs  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
Gate-to-Source Voltage  
4
www.irf.com  
IRF7749L2TR/TR1PbF  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
1000  
100  
10  
100μsec  
1msec  
T
T
T
= 175°C  
= 25°C  
= -40°C  
J
J
J
DC  
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
1
0
1
10  
100  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
1.4  
V
, Drain-toSource Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig11. Maximum Safe Operating Area  
200  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250μA  
160  
120  
80  
40  
0
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
T
, CaseTemperature (°C)  
T
C
Fig 13. Typical Threshold Voltage vs.  
Fig 12. Maximum Drain Current vs. Case Temperature  
Junction Temperature  
1200  
I
D
TOP  
20A  
31A  
120A  
1000  
800  
600  
400  
200  
0
BOTTOM  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy Vs. Drain Current  
www.irf.com  
5
IRF7749L2TR/TR1PbF  
1000  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
100  
0.01  
0.05  
0.10  
10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 19a, 19b.  
280  
240  
200  
160  
120  
80  
TOP  
BOTTOM 1% Duty Cycle  
= 120A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
40  
0
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
175  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy Vs. Temperature  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·ta  
Driver Gate Drive  
P.W.  
D.U.T  
Period  
D =  
Period  
P.W.  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
Reverse  
Recovery  
Current  
‚
Body Diode Forward  
„
Current  
di/dt  
-
+
-
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Re-Applied  
Voltage  
RG  
+
-
Driver same type as D.U.T.  
Body Diode  
Inductor Current  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs  
6
www.irf.com  
IRF7749L2TR/TR1PbF  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
20K  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 18a. Gate Charge Test Circuit  
Fig 18b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
VGS  
R
G
V
DD  
-
I
A
20V  
0.01  
Ω
t
p
I
AS  
Fig 19b. Unclamped Inductive Waveforms  
Fig 19a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 20a. Switching Time Test Circuit  
Fig 20b. Switching Time Waveforms  
www.irf.com  
7
IRF7749L2TR/TR1PbF  
DirectFET™ Board Footprint, L8 (Large Size Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
D
D
S
S
S
S
S
S
S
S
G
8
www.irf.com  
IRF7749L2TR/TR1PbF  
DirectFET™ Outline Dimension, L8 Outline (LargeSize Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
DIMENSIONS  
IMPERIAL  
MIN  
METRIC  
MAX  
CODE MIN  
MAX  
0.360  
0.280  
0.236  
0.026  
0.024  
0.048  
0.017  
0.030  
0.017  
0.058  
0.106  
0.028  
0.003  
0.007  
9.15  
7.10  
6.00  
0.65  
A
B
C
D
E
F
0.356  
0.270  
0.232  
0.022  
9.05  
6.85  
5.90  
0.55  
0.58  
1.18  
0.98  
0.73  
0.38  
1.34  
2.52  
0.59  
0.03  
0.09  
0.62 0.023  
1.22  
1.02 0.015  
0.77  
0.42 0.015  
0.046  
G
H
J
0.029  
1.47  
2.69  
0.70  
0.08  
0.18  
K
L
0.053  
0.099  
0.023  
0.001  
0.003  
M
N
P
DirectFET™ Part Marking  
GATE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
www.irf.com  
9
IRF7749L2TR/TR1PbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm Std reel  
quantity is 4000 parts. (ordered as IRF7749L2PBF).  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4000)  
METRIC  
MAX  
IMPERIAL  
CODE  
MIN  
MIN  
MAX  
N.C  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
22.4  
18.4  
18.4  
N.C  
0.520  
N.C  
100.0  
N.C  
N.C  
0.889  
0.724  
0.724  
G
H
0.646  
0.626  
16.4  
15.9  
LOADED TAPE FEED DIRECTION  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE  
MIN  
MAX  
0.476  
0.161  
0.642  
0.299  
0.291  
0.398  
NC  
MIN  
MAX  
12.10  
4.10  
16.30  
7.60  
A
B
C
D
E
F
0.469  
0.154  
0.626  
0.291  
0.284  
0.390  
0.059  
0.059  
11.90  
3.90  
15.90  
7.40  
7.20  
9.90  
1.50  
1.50  
7.40  
10.10  
NC  
G
H
0.063  
1.60  
10  
www.irf.com  
IRF7749L2TR/TR1PbF  
Part number  
Package Type  
Standard Pack  
Form  
Tape and Reel  
Tape and Reel  
Note  
Quantity  
4000  
1000  
IRF7749L2TRPbF  
IRF7749L2TR1PbF  
DirectFET2 Large Can  
DirectFET2 Large Can  
"TR" suffix  
"TR1" suffix  
Qualification Information†  
Industrial ††  
(per JEDEC JESD47F††† guidelines)  
Qualification level  
Comments: This family of products has passed JEDEC’s Industrial  
qualification. IR’s Consumer qualification level is granted by extension of the  
higher Industrial level.  
MSL1  
Moisture Sensitivity Level  
RoHS Compliant  
DFET2  
(per JEDEC J-STD-020D†††  
)
Yes  
†
Qualification standards can be found at International Rectifier’s web site  
http://www.irf.com/product-info/reliability  
†† Higher qualification ratings may be available should the user have such requirements.  
Please contact your International Rectifier sales representative for further information:  
http://www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
Data and specifications subject to change without notice.  
This product has been designed and qualified to MSL1 rating for the Industrial market.  
Additional storage requirement details for DirectFET products can be found in application note AN1035 on IR’s Web site.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.11/09  
www.irf.com  
11  

相关型号:

IRF7749L2TR1PBF

RoHS Compliant, Halogen Free
INFINEON

IRF7749L2TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF7750

Power MOSFET(Vdss=-20V, Rds(on)=0.030ohm)
INFINEON

IRF7750GPBF

HEXFET® Power MOSFET Ultra Low On-Resistance Dual P-Channel MOSFET
INFINEON

IRF7750GTRPBF

Transistor
INFINEON

IRF7750PBF

Ultra Low On-Resistance
INFINEON

IRF7750TRPBF

Ultra Low On-Resistance
INFINEON

IRF7751

Power MOSFET(Vdss=-30V)
INFINEON

IRF7751GPBF

HEXFET® Power MOSFET Ultra Low On-Resistance
INFINEON

IRF7751GTRPBF

暂无描述
INFINEON

IRF7751PBF

Small Signal Field-Effect Transistor, 4.5A I(D), 30V, 2-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MO-153AA, LEAD FREE, TSSOP-8
INFINEON

IRF7752

Power MOSFET(Vdss=30V)
INFINEON