IRFB7446PBF [INFINEON]

HEXFETPower MOSFET; ?? HEXFET功率MOSFET
IRFB7446PBF
型号: IRFB7446PBF
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
?? HEXFET功率MOSFET

文件: 总9页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96435A  
StrongIRFET™  
IRFB7446PbF  
Applications  
HEXFET® Power MOSFET  
l Brushed Motor drive applications  
l BLDC Motor drive applications  
l Battery powered circuits  
l Half-bridge and full-bridge topologies  
l Synchronous rectifier applications  
l Resonant mode power supplies  
l OR-ing and redundant power switches  
l DC/DC and AC/DC converters  
l DC/AC Inverters  
VDSS  
40V  
D
S
RDS(on) typ.  
max.  
2.6m  
3.3m  
123A  
Ω
Ω
G
ID  
(Silicon Limited)  
120A  
ID  
(Package Limited)  
D
Benefits  
S
D
l Improved Gate, Avalanche and Dynamic dV/dt  
G
Ruggedness  
TO-220AB  
IRFB7446PbF  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
G
Gate  
D
Drain  
S
Source  
Ordering Information  
Standard Pack  
Form  
Tube  
Base part number  
Package Type  
Complete Part Number  
Quantity  
IRFB7446PbF  
TO-220  
50  
IRFB7446PbF  
125  
100  
75  
50  
25  
0
8
6
4
2
0
I
= 70A  
D
T
T
= 125°C  
J
J
= 25°C  
25  
50  
75  
100  
125  
150  
175  
2
4
6
8
10 12 14 16 18 20  
T
, Case Temperature (°C)  
C
V
Gate -to -Source Voltage (V)  
GS,  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
www.irf.com  
1
09/11/12  
IRFB7446PbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
123  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current  
87  
A
120  
492  
99  
PD @TC = 25°C  
Maximum Power Dissipation  
W
W/°C  
V
0.66  
Linear Derating Factor  
± 20  
VGS  
TJ  
Gate-to-Source Voltage  
-55 to + 175  
Operating Junction and  
°C  
TSTG  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Mounting torque, 6-32 or M3 screw  
10lbf in (1.1N m)  
Avalanche Characteristics  
111  
160  
EAS (Thermally limited) Single Pulse Avalanche Energy  
mJ  
EAS (tested)  
Single Pulse Avalanche Energy Tested Value  
IAR  
Avalanche Current  
A
See Fig. 14, 15 , 22a, 22b  
EAR  
Repetitive Avalanche Energy  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
1.52  
–––  
62  
Units  
RθJC  
Junction-to-Case  
°C/W  
Rθ  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient  
0.50  
–––  
CS  
RθJA  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250μA  
Symbol  
V(BR)DSS  
Parameter  
Min.  
40  
Typ.  
–––  
0.033  
2.6  
Max. Units  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
–––  
–––  
3.3  
V
–––  
–––  
V/°C Reference to 25°C, ID = 5mA  
Δ
Δ
V(BR)DSS/ TJ  
mΩ VGS = 10V, ID = 70A  
RDS(on)  
3.9  
–––  
3.9  
mΩ  
V
V
GS = 6.0V, ID = 35A  
Gate Threshold Voltage  
2.2  
–––  
–––  
–––  
–––  
–––  
3.0  
VDS = VGS, ID = 100μA  
VGS(th)  
IDSS  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
1.6  
1.0  
V
DS = 40V, VGS = 0V  
μA  
150  
100  
-100  
–––  
VDS = 40V, VGS = 0V, TJ = 125°C  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = 20V  
GS = -20V  
IGSS  
RG  
nA  
V
Ω
Notes:  
† Coss eff. (TR) is a fixed capacitance that gives the same charging  
time as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
 Calculated continuous current based on maximum allowable junction  
temperature. Bond wire current limit is 120A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements. (Refer to AN-1140)  
‚ Repetitive rating; pulse width limited by max. junction temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.046mH,RG = 50Ω,  
IAS = 70A, VGS =10V.  
.
Coss while VDS is rising from 0 to 80% VDSS  
.
ˆ Rθ is measured at TJ approximately 90°C.  
‰ This value determined from sample failure population,  
starting TJ = 25°C, L=0.046mH, RG = 50Ω, IAS = 70A, VGS =10V.  
„ ISD 70A, di/dt 1174A/μs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400μs; duty cycle 2%.  
2
www.irf.com  
IRFB7446PbF  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol Parameter  
Min.  
269  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Typ.  
–––  
62  
Max. Units  
Conditions  
VDS = 10V, ID = 70A  
gfs  
Forward Transconductance  
–––  
S
Qg  
Total Gate Charge  
93  
ID = 70A  
Qgs  
Qgd  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd  
Turn-On Delay Time  
Rise Time  
16  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS =20V  
nC  
20  
VGS = 10V  
Qsync  
td(on)  
tr  
)
42  
ID = 70A, VDS =0V, VGS = 10V  
VDD = 20V  
11  
34  
ID = 30A  
ns  
Ω
RG = 2.7  
VGS = 10V  
VGS = 0V  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
33  
23  
Ciss  
Coss  
Crss  
Input Capacitance  
3183  
475  
331  
596  
688  
Output Capacitance  
Reverse Transfer Capacitance  
V
DS = 25V  
ƒ = 1.0 MHz, See Fig. 5  
GS = 0V, VDS = 0V to 32V , See Fig. 11  
VGS = 0V, VDS = 0V to 32V  
pF  
C
oss eff. (ER)  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
V
Coss eff. (TR)  
Diode Characteristics  
Symbol Parameter  
Min.  
Typ.  
Max. Units  
Conditions  
MOSFET symbol  
D
S
IS  
Continuous Source Current  
–––  
–––  
120  
(Body Diode)  
showing the  
integral reverse  
A
G
ISM  
VSD  
Pulsed Source Current  
–––  
–––  
492  
(Body Diode)  
Diode Forward Voltage  
p-n junction diode.  
TJ = 25°C, IS = 70A, VGS = 0V  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
0.9  
7.6  
22  
24  
15  
15  
1.0  
1.3  
–––  
–––  
–––  
–––  
–––  
–––  
V
dv/dt  
trr  
Peak Diode Recovery  
V/ns TJ = 175°C, IS = 70A, VDS = 40V  
Reverse Recovery Time  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 34V,  
ns  
IF = 70A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
Reverse Recovery Current  
nC  
A
IRRM  
www.irf.com  
3
IRFB7446PbF  
1000  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
100  
10  
1
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60μs  
Tj = 25°C  
PULSE WIDTH  
60μs  
Tj = 175°C  
PULSE WIDTH  
0.1  
0.1  
1
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
1000  
100  
10  
2.2  
1.8  
1.4  
1.0  
0.6  
I
= 70A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 10V  
DS  
60μs PULSE WIDTH  
0.1  
2
4
6
8
10  
-60  
-20  
20  
60  
100  
140  
180  
T
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
J
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
14.0  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 70A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
12.0  
10.0  
8.0  
= C  
rss  
oss  
gd  
V
V
= 32V  
= 20V  
DS  
DS  
= C + C  
ds  
gd  
C
iss  
6.0  
C
oss  
4.0  
C
rss  
2.0  
0.0  
100  
0
10 20 30 40 50 60 70 80  
0.1  
1
10  
100  
Q , Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
IRFB7446PbF  
10000  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100μsec  
1msec  
DC  
T
= 25°C  
J
Package Limited  
10msec  
1
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
10  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Source-to-Drain Voltage (V)  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode  
Forward Voltage  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
Id = 5.0mA  
V
= 0V to 32V  
DS  
0
5
10 15 20 25 30 35 40 45  
-60  
-20  
20  
60  
100  
140  
180  
T , Temperature ( °C )  
J
V
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical COSS Stored Energy  
20.0  
VGS = 5.5V  
VGS = 6.0V  
VGS = 7.0V  
VGS = 8.0V  
VGS = 10V  
15.0  
10.0  
5.0  
0.0  
0
100  
200  
300  
400  
500  
I
, Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
www.irf.com  
5
IRFB7446PbF  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart = 25°C (Single Pulse)  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤj = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
120  
80  
40  
0
TOP  
BOTTOM 1.0% Duty Cycle  
= 70A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
25  
50  
75  
100  
125  
150  
175  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
IRFB7446PbF  
4.5  
3.5  
2.5  
1.5  
0.5  
6
5
4
3
2
1
0
I = 46A  
F
V
= 34V  
R
T = 25°C  
J
T = 125°C  
J
ID = 100μA  
ID = 250μA  
ID = 1.0mA  
ID = 1.0A  
-75  
-25  
25  
75  
125  
175  
225  
0
200  
400  
600  
800  
1000  
T , Temperature ( °C )  
di /dt (A/μs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
5
70  
60  
50  
40  
30  
20  
10  
0
I = 70A  
F
I = 46A  
F
V
= 34V  
V
= 34V  
R
R
4
3
2
1
0
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
60  
I = 70A  
F
V
= 34V  
R
50  
40  
30  
20  
10  
0
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
IRFB7446PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
Ω
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
IRFB7446PbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
PART NUMBER  
LOT CODE 1789  
ASSEMBLED ON WW 19, 2000  
IN THE ASSEMBLY LINE "C"  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
YEAR 0 = 2000  
WE EK 19  
Note: "P" in assembly line position  
indicates "Lead - Free"  
AS S E MBL Y  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Qualification information†  
Industrial††  
(per JEDEC JESD47F††† guidelines)  
Qualification level  
N/A  
(per JE DE C J-S TD-020D†††  
Moisture Sensitivity Level  
RoHS compliant  
TO-220AB  
)
Yes  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Higher qualification ratings may be available should the user have such requirements. Please contact your  
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
Revision History  
Date  
9/11/2012  
Comment  
Added Package limit on pg1,2 and updated Fig2 , Fig10  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 09/2012  
www.irf.com  
9

相关型号:

IRFB7530

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB7530PBF

Power Field-Effect Transistor, 195A I(D), 60V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

IRFB7534PBF

Power Field-Effect Transistor,
INFINEON

IRFB7537PBF

Power Field-Effect Transistor, 173A I(D), 60V, 0.0033ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

IRFB7540

N-Channel MOSFET Transistor
ISC

IRFB7545PBF

Power Field-Effect Transistor,
INFINEON

IRFB7546

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. End-applications include cordless power and gardening tools, light electric vehicles and e-bikes demanding a high level of ruggedness and energy efficiency.
INFINEON

IRFB7546PBF

Power Field-Effect Transistor, 75A I(D), 60V, 0.0073ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB,
INFINEON

IRFB7730

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters.
INFINEON

IRFB7730PBF

Power Field-Effect Transistor,
INFINEON

IRFB7734

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB7740PBF

Power Field-Effect Transistor
INFINEON