IXDD408CI [IXYS]

8 Amp Low-Side Ultrafast MOSFET Driver; 8安培低端超快MOSFET驱动器
IXDD408CI
型号: IXDD408CI
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

8 Amp Low-Side Ultrafast MOSFET Driver
8安培低端超快MOSFET驱动器

驱动器
文件: 总10页 (文件大小:273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDD408PI / 408SI / 408YI / 408CI  
8 Amp Low-Side Ultrafast MOSFET Driver  
General Description  
Features  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes.  
• Latch Up Protected  
TheIXDD408isahighspeedhighcurrentgatedriver  
specifically designed to drive the largest MOSFETs and  
IGBTs to their minimum switching time and maximum  
practical frequency limits. The IXDD480 can source and  
sink 8A of peak current while producing voltage rise and  
fall times of less than 30ns. The input of the driver is  
compatible with TTL or CMOS and is fully immune to  
latch up over the entire operating range. Designed with  
small internal delays, cross conduction/current shoot-  
through is virtually eliminated in the IXDD408. Its features  
and wide safety margin in operating voltage and power  
maketheIXDD408unmatchedinperformanceandvalue.  
• High Peak Output Current: 8A Peak  
• Operates from 4.5V to 25V  
• Ability to Disable Output under Faults  
• High Capacitive Load  
Drive Capability: 2500pF in <15ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
• LowSupplyCurrent  
Applications  
The IXDD408 incorporates a unique ability to disable the  
output under fault conditions. When a logical low is  
forced into the Enable input, both final output stage  
MOSFETs (NMOS and PMOS) are turned off. As a  
result, the output of the IXDD408 enters a tristate mode  
andachievesaSoftTurn-OffoftheMOSFET/IGBTwhen  
a short circuit is detected. This helps prevent damage  
that could occur to the MOSFET/IGBT if it were to be  
switchedoffabruptlyduetoadv/dtover-voltagetran-  
sient.  
• DrivingMOSFETsandIGBTs  
• Limiting di/dt under Short Circuit  
• MotorControls  
• LineDrivers  
• PulseGenerators  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Class D Switching Amplifiers  
TheIXDD408isavailableinthestandard8-pinP-DIP(PI),  
SOP-8 (SI), 5-pin TO-220 (CI) and in the TO-263 (YI)  
surface-mountpackage.  
Figure 1 - Functional Diagram  
Copyright © IXYS CORPORATION 2001 Patent Pending  
First Release  
IXDD408PI/408SI//408YI/408CI  
Absolute Maximum Ratings (Note 1)  
Operating Ratings  
Parameter  
Value  
Parameter  
Value  
Supply Voltage  
All Other Pins  
25 V  
-0.3 V to V  
Maximum Junction Temperature  
o
150  
C
+ 0.3 V  
CC  
Operating Temperature Range  
o
o
-40 C to 85 C  
o
Power Dissipation, TAMBIENT 25  
8 Pin PDIP (PI)  
C
Thermal Impedance (Junction To Case)  
975mW  
1055mW  
17W  
o
TO220 (CI), TO263 (YI) (θJC  
)
0.95 C/W  
8 Pin SOIC (SI)  
TO220 (CI), TO263 (YI)  
Derating Factors (to Ambient)  
8 Pin PDIP (PI)  
o
7.6mW/ C  
8 Pin SOIC (SI)  
o
8.2mW/ C  
TO220 (CI), TO263 (YI)  
Storage Temperature  
Lead Temperature (10 sec)  
o
0.14W/ C  
o
o
C
-65 C to 150  
o
300  
C
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC, 4.5V VCC 25V .  
All voltage measurements with respect to GND. IXDD408 configured as described in Test Conditions.  
Symbol  
VIH  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
High input voltage  
Low input voltage  
Input voltage range  
Input current  
3.5  
VIL  
0.8  
V
VIN  
-5  
VCC + 0.3  
10  
V
IIN  
-10  
0V VIN VCC  
µA  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
1.5  
Output resistance  
@ Output high  
Output resistance  
@ Output Low  
IOUT = 10mA, VCC = 18V  
IOUT = 10mA, VCC = 18V  
VCC is 18V  
0.8  
0.8  
8
ROL  
IPEAK  
IDC  
1.5  
A
A
Peak output current  
Continuous output  
current  
Limited by package power  
dissipation  
2
VEN  
VENH  
VENL  
tR  
Enable voltage range  
- .3  
Vcc + 0.3  
V
V
High En Input Voltage  
Low En Input Voltage  
Rise time  
2/3 Vcc  
1/3 Vcc  
18  
V
CL=2500pF Vcc=18V  
CL=2500pF Vcc=18V  
CL=2500pF Vcc=18V  
12  
13  
37  
14  
15  
38  
ns  
ns  
ns  
tF  
Fall time  
19  
tONDLY  
On-time propagation  
delay  
42  
tOFFDLY  
tENOH  
tDOLD  
Off-time propagation  
delay  
Enable to output high  
delay time  
Disable to output low  
Disable delay time  
Power supply voltage  
CL=2500pF Vcc=18V  
Vcc=18V  
32  
34  
38  
52  
30  
25  
ns  
ns  
ns  
V
Vcc=18V  
VCC  
ICC  
4.5  
18  
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
10  
10  
mA  
µA  
µA  
Specifications Subject To Change Without Notice  
2
IXDD408PI/408SI/408YI/408CI  
Pin Configurations  
1 VCC  
VCC 8  
I
Vc c  
OUT  
GND  
IN  
1
2
3
4
X
D
D
4
0
8
2 IN  
OUT  
OUT  
GND  
7
6
5
3 EN  
4 GND  
EN  
5
TO220(CI)  
TO263(YI)  
8 PIN DIP (PI)  
SO8 (SI)  
Pin Description  
SYMBOL  
VCC  
IN  
FUNCTION  
DESCRIPTION  
Positive power-supply voltage input. This pin provides power to the  
entire chip. The range for this voltage is from 4.5V to 25V.  
Input signal-TTL or CMOS compatible.  
Supply Voltage  
Input  
The system enable pin. This pin, when driven low, disables the chip,  
forcing high impedance state to the output.  
EN  
Enable  
Driver Output. For application purposes, this pin is connected,  
through a resistor, to Gate of a MOSFET/IGBT.  
The system ground pin. Internally connected to all circuitry, this pin  
provides ground reference for the entire chip. This pin should be  
connected to a low noise analog ground plane for optimum  
performance.  
OUT  
GND  
Output  
Ground  
Note 1: Operating the device beyond parameters with listed “absolute maximum ratings” may cause permanent  
damage to the device. Typical values indicate conditions for which the device is intended to be functional, but do not  
guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed.  
Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD procedures  
when handling and assembling this component.  
Figure 2 - Characteristics Test Diagram  
V
IN  
3
IXDD408PI/408SI//408YI/408CI  
Typical Performance Characteristics  
Fig. 4  
100  
Fall Time vs. Supply Voltage  
Fig. 3  
50  
Rise Time vs. Supply Voltage  
80  
60  
40  
20  
40  
30  
20  
10  
CL=10,000 pF  
4700 pF  
CL=10,000 pF  
4700 pF  
2200 pF  
2200 pF  
0
8
0
8
10  
12  
14  
16  
18  
10  
12  
14  
16  
18  
Supply Voltage (V)  
SupplyVoltage(V)  
Fig. 5  
Rise And Fall Times vs. Junction Temperature  
C = 2500pF, V = 18V  
Fig. 6  
50  
Rise Time vs. Load Capacitance  
L
CC  
25  
20  
15  
10  
5
8V  
40  
30  
20  
10  
10V  
12V  
tF  
18V  
14V  
16V  
tR  
0
2k  
0
4k  
6k  
8k  
10k  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Load Capacitance (pF)  
Temperature (°C)  
Fall Time vs. Load Capacitance  
Max / Min Input vs. Junction Temperature  
Fig. 8  
Fig. 7  
C =2500pF VCC = 18V  
L
90  
3.2  
8V  
80  
70  
60  
50  
40  
30  
20  
10  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
Minimum Input High  
10V  
12V  
18V  
Maximum Input Low  
16V  
14V  
1.6  
-60  
0
2k  
4k  
6k  
8k  
10k  
-40  
-20  
0
20  
40  
60  
80  
100  
Load Capacitance (pF)  
o
Temperature ( C)  
4
IXDD408PI/408SI/408YI/408CI  
Fig. 9  
Supply Current vs. Load Capacitance  
Vcc=18V  
Fig. 10  
Supply Current vs. Frequency  
Vcc=18V  
100  
10  
1
100  
CL= 5000 pF  
1 MHz  
2500 pF  
10  
1
1000 pF  
500 KHz  
100 kHz  
50 kHz  
0.1  
10 kHz  
0.1  
1
10  
100  
1000  
0.1k  
1.0k  
10.0k  
10.0k  
10.0k  
Frequency (kHz)  
Load Capacitance (pF)  
Supply Current vs. Frequency  
Vcc=12V  
Fig. 11  
Supply Current vs. Load Capacitance  
Vcc=12V  
Fig. 12  
100  
100  
CL= 5000 pF  
10  
1
2500 pF  
10  
1
1 MHz  
1000 pF  
500 KHz  
100 kHz  
50 kHz  
0.1  
10 kHz  
0.1  
1
10  
100  
1000  
0.1k  
1.0k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 14  
Fig. 13  
Supply Current vs. Frequency  
Vcc=8V  
Supply Current vs. Load Capacitance  
Vcc=8V  
100  
100  
CL= 5000 pF  
10  
1
2 MHz  
10  
1
2500 pF  
1 MHz  
1000 pF  
500 KHz  
100 kHz  
50 kHz  
0.1  
0.1  
10 kHz  
1
10  
100  
1000  
0.1k  
1.0k  
Frequency (kHz)  
Load Capacitance (pF)  
5
IXDD408PI/408SI//408YI/408CI  
Fig. 15  
Fig. 16  
Propagation Delay vs. Input Voltage  
CL=2500pF VCC=15V  
Propagation Delay vs. Supply Voltage  
CL=2500pF V =5V@1kHz  
IN  
60  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
tONDLY  
tONDLY  
tOFFDLY  
tOFFDLY  
0
2
4
6
8
10  
12  
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Supply Voltage (V)  
Propagation Delay Times vs. Junction Temperature  
Fig. 17  
Quiescent Supply Current vs. Junction Temperature  
Fig. 18  
C = 2500pF VCC = 18V  
L
VCC=18V V =5V@1kHz  
IN  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0.66  
0.64  
0.62  
0.60  
0.58  
0.56  
0.54  
tONDLY  
tOFFDLY  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
o
Temperature (°C)  
Temperature ( C)  
Fig. 19  
P Channel Peak Output Current vs. Case Temperature  
CI and YI Packages, CL=.1uF VCC=18V  
Fig. 20  
N Channel Peak Output Current vs. Case Temperature  
CI and YI Packages, CL=.1uF VCC=18V  
9
12  
11  
10  
9
8
7
6
8
-40  
-20  
0
20  
40  
o
60  
80  
100  
-40  
-20  
0
20  
40  
o
60  
80  
100  
Temperature ( C)  
Temperature ( C)  
6
IXDD408PI/408SI/408YI/408CI  
High State Output Resistance  
vs. Supply Voltage  
Fig. 22  
Fig. 21  
Enable Threshold vs. Supply Voltage  
14  
3
12  
10  
8
2
1
6
4
2
0
4
0
5
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
10  
15  
20  
25  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 23  
Low-State Output Resistance  
vs. Supply Voltage  
Vcc vs. P Channel Output Current  
Fig. 24  
C =15nF  
L
0
-2  
3.0  
-4  
2.0  
1.0  
0.0  
-6  
-8  
-10  
-12  
-14  
-16  
5
10  
15  
20  
25  
30  
8
10  
15  
20  
25  
Supply Voltage (V)  
Vcc  
Fig. 25  
Figure 26 - Typical Application Short Circuit di/dt Limit  
Vcc vs. N Channel Output Current  
C =15nF  
L
10  
8
6
4
2
0
5
10  
15  
20  
25  
30  
Vcc  
7
IXDD408PI/408SI//408YI/408CI  
APPLICATIONS INFORMATION  
Short Circuit di/dt Limit  
A short circuit in a high-power MOSFET module such as the  
VM0580-02F, (580A, 200V), as shown in Figure 26, can cause  
the current through the module to flow in excess of 1500A for  
10µs or more prior to self-destruction due to thermal runaway.  
For this reason, some protection circuitry is needed to turn off  
the MOSFET module. However, if the module is switched off  
too fast, there is a danger of voltage transients occuring on the  
drain due to Ldi/dt, (where L represents total inductance in  
series with drain). If these voltage transients exceed the  
MOSFET's voltage rating, this can cause an avalanche break-  
down.  
ground. (Those glitches might cause false triggering of the  
comparator).  
The comparator's output should be connected to a SRFF(Set  
Reset Flip Flop). The flip-flop controls both the Enable signal,  
andthelowpowerMOSFETgate. PleasenotethatCMOS4000-  
series devices operate with a VCC range from 3 to 15 VDC, (with  
18 VDC being the maximum allowable limit).  
A low power MOSFET, such as the 2N7000, in series with a  
resistor, will enable the VMO580-02F gate voltage to drop  
gradually. The resistor should be chosen so that the RC time  
constant will be 100us, where "C" is the Miller capacitance of  
theVMO580-02F.  
TheIXDD408hastheuniquecapabilitytosoftlyswitchoffthe  
high-power MOSFET module, significantly reducing these  
Ldi/dttransients.  
For resuming normal operation, a Reset signal is needed at  
the SRFF's input to enable the IXDD408 again. This Reset can  
be generated by connecting a One Shot circuit between the  
IXDD408 Input signal and the SRFF restart input. The One Shot  
will create a pulse on the rise of the IXDD408 input, and this  
pulse will reset the SRFF outputs to normal operation.  
Thus, the IXDD408 helps to prevent device destruction from  
both dangers; over-current, and avalanche breakdown due to  
di/dt induced over-voltage transients.  
The IXDD408 is designed to not only provide ±8A under normal  
conditions, but also to allow it's output to go into a high  
impedance state. This permits the IXDD408 output to control  
a separate weak pull-down circuit during detected overcurrent  
shutdown conditions to limit and separately control dVGS/dt gate  
turnoff. This circuit is shown in Figure 27.  
When a short circuit occurs, the voltage drop across the low-  
value, current-sensing resistor, (Rs=0.005 Ohm), connected  
between the MOSFET Source and ground, increases. This  
triggers the comparator at a preset level. The SRFF drives a low  
input into the Enable pin disabling the IXDD408 output. The  
SRFF also turns on the low power MOSFET, (2N7000).  
Referring to Figure 27, the protection circuitry should include  
a comparator, whose positive input is connected to the source  
of the VM0580-02. A low pass filter should be added to the input  
of the comparator to eliminate any glitches in voltage caused  
by the inductance of the wire connecting the source resistor to  
In this way, the high-power MOSFET module is softly turned off  
by the IXDD408, preventing its destruction.  
Figure 27 - Application Test Diagram  
+
VB  
Ld  
-
10uH  
Rd  
IXDD408  
0.1ohm  
VCC  
VCCA  
Rg  
High_Power  
VMO580-02F  
OUT  
IN  
EN  
1ohm  
Rsh  
1600ohm  
+
-
+
-
VCC  
VIN  
GND  
SUB  
Rs  
Low_Power  
2N7002/PLP  
Ls  
R+  
10kohm  
20nH  
One ShotCircuit  
Rcomp  
0
Comp  
LM339  
5kohm  
+
V+  
NAND  
CD4011A  
NOT2  
CD4049A  
C+  
NOT1  
CD4049A  
V-  
-
100pF  
Ccomp  
1pF  
Ros  
+
-
R
1Mohm  
REF  
Cos  
1pF  
Q
NOT3  
CD4049A  
NOR1  
CD4001A  
S
EN  
NOR2  
CD4001A  
SR Flip-Flop  
8
IXDD408PI/408SI/408YI/408CI  
TTL to High Voltage CMOS Level Translation  
Supply Bypassing and Grounding Practices,  
Output Lead inductance  
The enable (EN) input to the IXDD408 is a high voltage  
CMOS logic level input where the EN input threshold is ½ VCC,  
and may not be compatible with 5V CMOS or TTL input levels.  
The IXDD408 EN input was intentionally designed for  
enhanced noise immunity with the high voltage CMOS logic  
levels. In a typical gate driver application, VCC =15V and the  
EN input threshold at 7.5V, a 5V CMOS logical high input  
applied to this typical IXDD408 application’s EN input will be  
misinterpreted as a logical low, and may cause undesirable  
or unexpected results. The note below is for optional  
adaptation of TTL or 5V CMOS levels.  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXDD408, it is very important to keep certain design  
criteria in mind, in order to optimize performance of the driver.  
Particular attention needs to be paid to Supply Bypassing,  
Grounding, and minimizing the Output Lead Inductance.  
Say, for example, we are using the IXDD408 to charge a  
5000pF capacitive load from 0 to 25 volts in 25ns…  
Using the formula: I= V C / t, where V=25V C=5000pF &  
t=25ns we can determine that to charge 5000pF to 25 volts  
in25nswilltakeaconstantcurrentof5A. (Inreality,thecharging  
current won’t be constant, and will peak somewhere around  
8A).  
The circuit in Figure 28 alleviates this potential logic level  
misinterpretation by translating a TTL or 5V CMOS logic input  
to high voltage CMOS logic levels needed by the IXDD408 EN  
input. From the figure, VCC is the gate driver power supply,  
typically set between 8V to 20V, and VDD is the logic power  
supply, typically between 3.3V to 5.5V. Resistors R1 and R2  
form a voltage divider network so that the Q1 base is  
positioned at the midpoint of the expected TTL logic transition  
levels.  
SUPPLYBYPASSING  
In order for our design to turn the load on properly, the IXDD408  
must be able to draw this 5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the  
power supply at the driver with a capacitance value that is a  
magnitude larger than the load capacitance. Usually, this  
would be achieved by placing two different types of bypassing  
capacitors, with complementary impedance curves, very close  
to the driver itself. (These capacitors should be carefully  
selected, low inductance, low resistance, high-pulse current-  
servicecapacitors). Leadlengthsmayradiateathighfrequency  
due to inductance, so care should be taken to keep the lengths  
oftheleadsbetweenthesebypasscapacitorsandtheIXDD408  
to an absolute minimum.  
A TTL or 5V CMOS logic low, VTTLLOW=~<0.8V, input applied to  
the Q1 emitter will drive it on. This causes the level translator  
output, the Q1 collector output to settle to VCESATQ1  
+
VTTLLOW=<~2V, which is sufficiently low to be correctly  
interpreted as a high voltage CMOS logic low (<1/3VCC=5V for  
VCC =15V given in the IXDD408 data sheet.)  
A TTL high, VTTLHIGH=>~2.4V, or a 5V CMOS high,  
V5VCMOSHIGH=~>3.5V, applied to the EN input of the circuit in  
Figure 28 will cause Q1 to be biased off. This results in Q1  
collector being pulled up by R3 to VCC=15V, and provides a  
high voltage CMOS logic high output. The high voltage CMOS  
logical EN output applied to the IXDD408 EN input will enable  
it, allowing the gate driver to fully function as an 8 Amp output  
driver.  
GROUNDING  
In order for the design to turn the load off properly, the IXDD408  
must be able to drain this 5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXDD408  
and it’s load. Path #2 is between the IXDD408 and it’s power  
supply. Path #3 is between the IXDD408 and whatever logic  
is driving it. All three of these paths should be as low in  
resistance and inductance as possible, and thus as short as  
practical. Inaddition, everyeffortshouldbemadetokeepthese  
three ground paths distinctly separate. Otherwise, (for  
instance), the returning ground current from the load may  
develop a voltage that would have a detrimental effect on the  
logic line driving the IXDD408.  
The total component cost of the circuit in Figure 28 is less  
than $0.10 if purchased in quantities >1K pieces. It is  
recommended that the physical placement of the level  
translator circuit be placed close to the source of the TTL or  
CMOS logic circuits to maximize noise rejection.  
Figure 28 - TTL to High Voltage CMOS Level Translator  
C C  
OUTPUTLEADINDUCTANCE  
(Fro m G a te Drive r  
R3  
10K  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and it’s  
load as short and wide as possible. If the driver must be placed  
farther than 2” from the load, then the output leads should be  
treated as transmission lines. In this case, a twisted-pair  
should be considered, and the return line of each twisted pair  
should be placed as close as possible to the ground pin of the  
driver, and connect directly to the ground terminal of the load.  
Po we r Sup p ly)  
Hig h Vo lta g e  
V
DD  
EN  
C MOS  
3.3K  
(Fro m Lo g ic  
Po we r Sup p ly)  
R1  
O utp ut  
Q 1  
2N3904  
(To IXDD408  
EN Inp ut)  
3.3K R2  
o r  
TTL  
Inp ut)  
9
IXDD408PI/408SI//408YI/408CI  
Package Information  
NOTE: Mounting or solder tabs on all packages are connected to ground  
IXYS Corporation  
Ordering Information  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
Part N um ber Package T ype  
Tem p. R ange  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
IX D D 408PI  
IX D D 408SI  
IX D D 408YI  
IX D D 408C I  
8-Pin PD IP  
8-Pin SO IC  
5-Pin TO -263  
5-Pin TO -220  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
Directed Energy, Inc.  
An IXYS Company  
2401 Research Blvd. Ste. 108  
Ft. Collins, CO 80526  
Tel: 970-493-1901; Fax: 970-493-1903  
e-mail: deiinfo@directedenergy.com  
Doc #9200-0227 R7  
10  

相关型号:

IXDD408PI

8 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD408SI

8 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD408YI

8 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD409CI

9 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD409PI

9 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD409SI

9 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD409YI

9 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD414CI

14 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD414PI

14 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD414YI

14 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD415

Dual 15 Ampere Low-Side Ultrafast MOSFET Driver
IXYS

IXDD415SI

Dual 15 Ampere Low-Side Ultrafast MOSFET Driver
IXYS