LT1969CMS#PBF [Linear]

暂无描述;
LT1969CMS#PBF
型号: LT1969CMS#PBF
厂家: Linear    Linear
描述:

暂无描述

运算放大器
文件: 总20页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1969  
Dual 700MHz, 200mA,  
Adjustable Current Operational Amplifier  
U
FEATURES  
DESCRIPTIO  
The LT®1969 is an adjustable current version of the  
popular LT1886, a 200mA minimum output current, dual  
op amp with outstanding distortion performance. The  
adjustable current feature is highly desirable in applica-  
tions where minimum power dissipation is required while  
still being able to provide adequate line termination.  
700MHz Gain Bandwidth  
±200mA Minimum IOUT  
Adjustable Quiescent Current  
Low Distortion: –72dBc at 1MHz, 4VP-P, 25, AV = 2  
Stable in AV 10, Simple Compensation for AV < 10  
±4.3V Minimum Output Swing, VS = ±6V, RL = 25Ω  
Stable with 1000pF Load  
At nominal supply current, the amplifiers are gain of 10  
stable and can easily be compensated for lower gains. The  
LT1969 features balanced high impedance inputs with  
4µA input bias current and 4mV maximum input offset  
voltage. Single supply applications are easy to implement  
and have lower total noise than current feedback amplifier  
implementations.  
6nV/Hz Input Noise Voltage  
2pA/Hz Input Noise Current  
4mV Maximum Input Offset Voltage  
4µA Maximum Input Bias Current  
400nA Maximum Input Offset Current  
±4.5V Minimum Input CMR, VS = ±6V  
Specified at ±6V, ±2.5V  
The output drives a 25load to ±4.3V with ±6V supplies.  
On ±2.5V supplies, the output swings ±1.5V with a 100Ω  
load. The amplifier is stable with a 1000pF capacitive load  
making it useful in buffer and cable driver applications.  
U
APPLICATIO S  
DSL Modems  
xDSL PCI Cards  
The LT1969 is manufactured on Linear Technology’s  
advancedlowvoltagecomplementarybipolarprocessand  
is available in a thermally enhanced MS10 package  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
USB Modems  
Line Drivers  
U
TYPICAL APPLICATIO  
Single 12V Supply ADSL Modem Line Driver  
12V  
ADSL Modem Line Driver Distortion  
0.1µF  
–60  
+
IN  
+
V
A
= 12V  
= 10  
S
V
12.4Ω  
1/2 LT1969  
f = 200kHz  
100LINE  
1:2 TRANSFORMER  
–70  
–80  
909Ω  
*COILCRAFT X8390-A  
OR EQUIVALENT  
10k 20k  
10k 20k  
HD2  
HD3  
1:2*  
100Ω  
100Ω  
100Ω  
1µF  
1µF  
–90  
909Ω  
I
I
I
ON = 14mA  
Q
Q
Q
CTRL1 CTRL2  
LOW POWER = 2mA  
6
7
STANDBY = 600µA  
–100  
12.4Ω  
0
2
4
6
8
10 12 14 16  
0.1µF  
1/2 LT1969  
+
STANDBY ON  
13k  
49.9k  
LINE VOLTAGE (V  
)
P-P  
LOGIC  
OUTPUT  
IN  
1969 TA01b  
STANDBY  
LOW POWER  
1969 TA01a  
ON  
1
LT1969  
W W U W  
W
U
ABSOLUTE MAXIMUM RATINGS  
/O  
PACKAGE RDER I FOR ATIO  
(Note 1)  
Total Supply Voltage (V+ to V) ........................... 13.2V  
Input Current (Note 2) ....................................... ±10mA  
Input Voltage (Note 2) ............................................ ±VS  
Maximum Continuous Output Current (Note 3)  
DC ............................................................... ±100mA  
AC ............................................................... ±300mA  
Operating Temperature Range (Note 10) 40°C to 85°C  
Specified Temperature Range (Note 9).. 40°C to 85°C  
Maximum Junction Temperature ......................... 150°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
ORDER PART  
NUMBER  
TOP VIEW  
+
V
1
2
3
4
5
10 OUTB  
LT1969CMS  
OUTA  
–INA  
+INA  
9
8
7
6
–INB  
+INB  
CTRL2  
CTRL1  
V
MS10 PACKAGE  
10-LEAD PLASTIC MSOP  
MS10 PART MARKING  
LTTN  
TJMAX = 150°C, θJA = 110°C/W (NOTE 4)  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating temp-  
erature range, otherwise specifications are at TA = 25°C. VS = ±6V, VCM = 0V, nominal mode with a 13k resistor from CTRL1 to Vand  
a 49.9k resistor from CTRL2 to V, pulse power tested unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
(Note 5)  
1
4
5
mV  
mV  
OS  
Input Offset Voltage Drift  
Input Offset Current  
(Note 8)  
3
17  
µV/°C  
I
I
150  
400  
600  
nA  
nA  
OS  
Input Bias Current  
1.5  
4
6
µA  
µA  
B
e
Input Noise Voltage  
Input Noise Current  
Input Resistance  
f = 10kHz  
f = 10kHz  
6
2
nV/Hz  
pA/Hz  
n
i
n
R
V
= ±4.5V  
CM  
5
10  
35  
MΩ  
kΩ  
IN  
Differential  
C
Input Capacitance  
2
pF  
IN  
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
4.5  
77  
5.9  
5.2  
V
V
4.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Minimum Supply Voltage  
V
= ±4.5V  
98  
dB  
V
CM  
Guaranteed by PSRR  
V = ±2V to ±6.5V  
±2  
Power Supply Rejection Ratio  
80  
78  
86  
12  
12  
5
dB  
dB  
S
A
Large-Signal Voltage Gain  
Output Swing  
V
V
= ±4V, R = 100Ω  
5.0  
4.5  
V/mV  
V/mV  
VOL  
OUT  
OUT  
L
= ±4V, R = 25Ω  
4.5  
4.0  
V/mV  
V/mV  
L
V
R = 100, 10mV Overdrive  
4.85  
4.70  
±V  
±V  
OUT  
L
R = 25, 10mV Overdrive  
4.30  
4.10  
4.6  
4.5  
±V  
±V  
L
I
= 200mA, 10mV Overdrive  
4.30  
4.10  
±V  
±V  
OUT  
2
LT1969  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temp-  
erature range, otherwise specifications are at TA = 25°C. VS = ±6V, VCM = 0V, nominal mode with a 13k resistor from CTRL1 to Vand  
a 49.9k resistor from CTRL2 to V, pulse power tested unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Short-Circuit Current (Sourcing)  
Short-Circuit Current (Sinking)  
(Note 3)  
700  
500  
mA  
mA  
SC  
SR  
Slew Rate  
A = –10 (Note 6)  
100  
200  
8
V/µs  
MHz  
MHz  
ns  
V
Full Power Bandwidth  
Gain Bandwidth  
Rise Time, Fall Time  
Overshoot  
4V Peak (Note 7)  
f = 1MHz  
GBW  
700  
4
t , t  
r
A = 10, 10% to 90% of 0.1V, R = 100Ω  
V L  
f
A = 10, 0.1V, R = 100Ω  
1
%
V
L
Propagation Delay  
Settling Time  
A = 10, 50% V to 50% V , 0.1V, R = 100Ω  
2.5  
50  
ns  
V
IN  
OUT  
L
t
6V Step, 0.1%  
ns  
S
Harmonic Distortion  
HD2, A = 10, 2V , f = 1MHz, R = 100/25Ω  
–75/–63  
–85/–71  
dBc  
dBc  
V
P-P  
L
HD3, A = 10, 2V , f = 1MHz, R = 100/25Ω  
V
P-P  
L
IMD  
Intermodulation Distortion  
Output Resistance  
Supply Current  
A = 10, f = 0.9MHz, 1MHz, 14dBm, R = 100/25Ω  
–81/–80  
dBc  
V
L
R
OUT  
A = 10, f = 1MHz  
V
0.1  
7
I
Per Amplifier  
8.25  
8.50  
mA  
mA  
S
CTRL1 Voltage  
13k to V , Measured with Respect to V  
0.77  
0.74  
0.97  
1.05  
300  
13  
1.25  
1.30  
V
V
CTRL2 Voltage  
49.9k to V , Measured with Respect to V  
per Amplifier; CTRL1, CTRL2 Open  
0.87  
0.80  
1.18  
1.25  
V
V
Minimum Supply Current  
Maximum Supply Current  
800  
1100  
µA  
µA  
per Amplifier; CTRL1 or CTRL2 Shorted to V  
mA  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS = ±2.5V, VCM = 0V, nominal mode with a 13k resistor from CTRL1 to Vand a 49.9k resistor from CTRL2 to V, pulse power tested  
unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
(Note 5)  
1.5  
5
6
mV  
mV  
OS  
Input Offset Voltage Drift  
Input Offset Current  
(Note 8)  
5
17  
µV/°C  
I
I
100  
350  
550  
nA  
nA  
OS  
Input Bias Current  
1.2  
3.5  
5.5  
µA  
µA  
B
e
Input Noise Voltage  
Input Noise Current  
Input Resistance  
f = 10kHz  
f = 10kHz  
6
2
nV/Hz  
pA/Hz  
n
i
n
R
V
= ±1V  
CM  
10  
20  
50  
MΩ  
kΩ  
IN  
Differential  
C
Input Capacitance  
2
pF  
IN  
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
1
2.4  
–1.7  
V
V
–1  
CMRR  
Common Mode Rejection Ratio  
V
= ±1V  
75  
91  
dB  
CM  
3
LT1969  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temp-  
erature range, otherwise specifications are at TA = 25°C. VS = ±2.5V, VCM = 0V, nominal mode with a 13k resistor from CTRL1 to V–  
and a 49.9k resistor from CTRL2 to V, pulse power tested unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
A
Large-Signal Voltage Gain  
V
= ±1V, R = 100Ω  
5.0  
4.5  
10  
V/mV  
V/mV  
VOL  
OUT  
L
V
= ±1V, R = 25Ω  
4.5  
4.0  
10  
1.65  
1.50  
1
V/mV  
V/mV  
OUT  
L
V
Output Swing  
R = 100, 10mV Overdrive  
1.50  
1.40  
±V  
±V  
OUT  
L
R = 25, 10mV Overdrive  
1.35  
1.25  
±V  
±V  
L
I
= 200mA, 10mV Overdrive  
0.87  
0.80  
±V  
±V  
OUT  
I
Short-Circuit Current (Sourcing)  
Short-Circuit Current (Sinking)  
(Note 3)  
500  
400  
mA  
mA  
SC  
SR  
Slew Rate  
A = –10 (Note 6)  
50  
100  
16  
530  
7
V/µs  
MHz  
MHz  
ns  
V
Full Power Bandwidth  
Gain Bandwidth  
Rise Time, Fall Time  
Overshoot  
1V Peak (Note 7)  
f = 1MHz  
GBW  
t , t  
r
A = 10, 10% to 90% of 0.1V, R = 100Ω  
V L  
f
A = 10, 0.1V, R = 100Ω  
5
%
V
L
Propagation Delay  
Harmonic Distortion  
A = 10, 50% V to 50% V , 0.1V, R = 100Ω  
5
ns  
V
IN  
OUT  
L
HD2, A = 10, 2V , f = 1MHz, R = 100/25Ω  
–75/64  
80/66  
dBc  
dBc  
V
P-P  
L
HD3, A = 10, 2V , f = 1MHz, R = 100/25Ω  
V
P-P  
L
IMD  
Intermodulation Distortion  
Output Resistance  
A = 10, f = 0.9MHz, 1MHz, 5dBm, R = 100/25Ω  
77/85  
0.2  
dBc  
V
L
R
OUT  
A = 10, f = 1MHz  
V
Channel Separation  
V
= ±1V, R = 25Ω  
82  
80  
92  
dB  
dB  
OUT  
L
I
Supply Current  
Per Amplifier  
5
6.00  
6.25  
mA  
mA  
S
CTRL1 Voltage  
13k to V , Measured with Respect to V  
0.77  
0.74  
0.95  
1.03  
250  
11.5  
1.25  
1.30  
V
V
CTRL2 Voltage  
49.9k to V , Measured with Respect to V  
0.87  
0.80  
1.18  
1.25  
V
V
Minimum Supply Current  
Maximum Supply Current  
per Amplifier; CTRL1, CTRL2 Open  
650  
750  
µA  
µA  
per Amplifier; CTRL1 or CTRL2 Shorted to V  
mA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 0.7V, the input current should be limited to less than  
10mA.  
Note 6: Slew rate is measured between ±2V on a ±4V output with ±6V  
supplies, and between ±1V on a ±1.5V output with ±2.5V supplies. Falling  
slew rate is guaranteed by correlation to rising slew rate.  
Note 7: Full power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV .  
P
Note 3: A heat sink may be required to keep the junction temperature  
Note 8: This parameter is not 100% tested.  
below absolute maximum.  
Note 4: Thermal resistance varies depending upon the amount of PC board  
metal attached to the device. θ is specified for a 2500mm test board  
covered with 2 oz copper on both sides.  
Note 9: The LT1969C is guaranteed to meet specified performance from 0°C  
to 70°C. The LT1969C is designed, characterized and expected to meet  
specified performance from –40°C to 85°C but is not tested or QA sampled  
at these temperatures.  
2
JA  
Note 5: Input offset voltage is exclusive of warm-up drift.  
Note10:TheLT1969Cisguaranteedfunctionalovertheoperatingtemperature  
range of –40°C to 85°C.  
4
LT1969  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
13k resistor from CTRL1 to Vand a 49.9k resistor from CTRL2 to V–  
Input Bias Current  
vs Input Common Mode Voltage  
Input Common Mode Range  
Supply Current vs Temperature  
vs Supply Voltage  
+
20  
18  
16  
14  
12  
10  
8
V
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
B
= 25°C  
B B  
A
I
= (I + + I )/2  
–0.1  
–0.2  
–0.3  
1.5  
V
S
= ±6V  
V
V
= ±6V  
V
= ±2.5V  
S
S
= ±2.5V  
S
6
1.0  
4
0.5  
T
= 25°C  
OS  
A
2
V > 1mV  
0
V
–50  
0
25  
50  
75 100 125  
–25  
0
2
4
6
8
10  
12  
14  
–6  
–4  
–2  
0
2
4
6
TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
1969 G01  
1969 G02  
1969 G03  
Input Bias Current  
vs Temperature  
Output Saturation Voltage  
vs Temperature  
Input Noise Spectral Density  
+
100  
10  
1
100  
10  
1
V
3.5  
3.0  
+
V
S
= ±6V  
T
= 25°C  
= 101  
I
B
= (I – I )/2  
B B  
A
V
A
–0.5  
R
L
= 100Ω  
–1.0  
–1.5  
1.5  
2.5  
2.0  
1.5  
1.0  
0.5  
200mA  
150mA  
200mA  
e
i
n
V
S
= ±6V  
1.0  
R
L
= 100Ω  
150mA  
0
V
S
= ±2.5V  
n
0.5  
V
0
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
–50 –25  
25  
50  
75  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
1969 G04  
1969 G44  
1969 G43  
Output Saturation Voltage  
vs Temperature  
Output Short-Circuit Current  
vs Temperature  
Settling Time vs Output Step  
+
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
6
4
V
S
= ±2.5V  
V
= ±6V  
S
–0.5  
SOURCE  
R
L
= 100Ω  
V
S
= ±6V  
10mV  
1mV  
–1.0  
–1.5  
1.5  
SOURCE  
2
200mA  
150mA  
V
S
= ±2.5V  
0
200mA  
SINK  
S
–2  
–4  
–6  
SINK  
= ±2.5V  
V
= ±6V  
1.0  
V
S
R
L
= 100Ω  
150mA  
0
0.5  
10mV  
1mV  
50  
V
–50  
0
25  
50  
75 100 125  
–25  
50  
100 125  
0
10  
20  
30  
40  
60  
–50 –25  
25  
75  
TEMPERATURE (°C)  
SETTLING TIME (ns)  
TEMPERATURE (°C)  
1969 G46  
1886 G05  
1969 G45  
5
LT1969  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
13k resistor from CTRL1 to Vand a 49.9k resistor from CTRL2 to V–  
Gain Bandwidth  
vs Supply Voltage  
Output Impedance vs Frequency  
Gain and Phase vs Frequency  
80  
70  
100  
80  
100  
10  
800  
700  
600  
500  
400  
300  
T
= 25°C  
= –10  
A
V
A
V
= ±6V  
PHASE  
= ±2.5V  
S
R
= 1k  
L
60  
60  
V
S
50  
40  
A
= 100  
= 10  
V
V
40  
20  
V
= ±6V  
S
R
R
= 100Ω  
= 25Ω  
L
L
30  
0
1
V
= ±2.5V  
20  
–20  
–40  
–60  
–80  
–100  
S
GAIN  
10  
0.1  
A
0
T
= 25°C  
A
A
= –10  
V
–10  
–20  
R
= 100Ω  
L
0.01  
1M  
10M  
100M  
1G  
0
2
4
6
8
10  
12  
14  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL SUPPLY VOLTAGE (V)  
1969 G06  
1969 G08  
1969 G07  
Frequency Response  
Frequency Response  
Frequency Response  
vs Supply Voltage, AV = 10  
vs Supply Voltage, AV = –10  
vs Supply Voltage, AV = 2  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
9
8
T
= 25°C  
= 10  
= 100Ω  
T
= 25°C  
= –10  
= 100Ω  
A
V
L
A
V
L
A
A
V
V
= ±2.5V  
= ±6V  
S
S
R
R
7
6
5
V
= ±6V  
V = ±6V  
S
S
4
T
= 25°C  
= 2  
3
A
V
L
F
C
C
V
= ±2.5V  
V = ±2.5V  
S
A
S
2
R
= 100Ω  
R = R = 1k  
G
1
R
C
= 124Ω  
= 100pF  
0
SEE FIGURE 3  
–1  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1969 G09  
1969 G10  
1969 G11  
Frequency Response  
vs Supply Voltage, AV = –1  
Frequency Response  
vs Capacitive Load  
Power Supply Rejection  
vs Frequency  
3
2
38  
35  
32  
29  
26  
23  
20  
17  
14  
11  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±6V  
= 25°C  
= 10  
V
S
A
V
= ±6V  
S
A
V
T
= 10  
1000pF  
500pF  
A
NO R  
V
V
= ±2.5V  
= ±6V  
S
S
1
L
0
(–) SUPPLY  
(+) SUPPLY  
200pF  
100pF  
50pF  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
T
= 25°C  
= –1  
A
V
L
F
C
C
A
R
= 100Ω  
R = R = 1k  
G
R
C
= 124Ω  
= 100pF  
SEE FIGURE 2  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1969 G12  
1969 G13  
1969 G14  
6
LT1969  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
13k resistor from CTRL1 to Vand a 49.9k resistor from CTRL2 to V–  
Common Mode Rejection Ratio  
Harmonic Distortion vs  
Frequency, AV = 10, VS = ±6V  
vs Frequency  
Amplifier Crosstalk vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
T
= ±6V  
= 25°C  
V
A
= ±6V  
= 10  
T
= 25°C  
S
A
S
V
L
A
V
A
= 10  
R
= 100Ω  
2V OUT  
P-P  
INPUT = –20dBm  
2nd  
3rd  
R
L
= 25Ω  
B A  
2nd  
3rd  
A B  
R
L
= 100Ω  
100k  
1M  
FREQUENCY (Hz)  
10M  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1969 G17  
1969 G16  
1969 G15  
Harmonic Distortion vs  
Frequency, AV = 10, VS = ±2.5V  
Harmonic Distortion  
vs Resistive Load  
Harmonic Distortion  
vs Resistive Load  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
A
= 25°C  
= ±6V  
= 10  
T
V
A
= 25°C  
= ±2.5V  
= 10  
T
= 25°C  
A
S
V
A
S
V
A
V
A
= 10  
2V OUT  
P-P  
2V OUT  
P-P  
f = 1MHz  
2V OUT  
P-P  
f = 1MHz  
R
L
= 25Ω  
2nd  
3rd  
2nd  
3rd  
2nd  
3rd  
2nd  
3rd  
R
L
= 100Ω  
100k  
1M  
FREQUENCY (Hz)  
10M  
1
10  
100  
1k  
1
10  
100  
1k  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
1969 G18  
1969 G19  
1969 G20  
Harmonic Distortion vs Output  
Swing, AV = 10, VS = ±6V  
Harmonic Distortion vs Output  
Swing, AV = 10, VS = ±2.5V  
Harmonic Distortion vs Output  
Swing, AV = 2, VS = ±6V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= 25°C  
T
= 25°C  
T
= 25°C  
A
A
A
R = R = 1k  
f = 1MHz  
f = 1MHz  
F
C
C
G
R
C
= 124Ω  
= 100pF  
f = 1MHz  
SEE FIGURE 3  
R
= 25Ω  
R
= 25Ω  
L
L
R
= 25Ω  
R
= 100Ω  
L
L
2nd  
3rd  
2nd  
3rd  
2nd  
2nd  
2nd  
3rd  
2nd  
3rd  
3rd  
3rd  
R
= 100Ω  
R
= 100Ω  
L
L
0
2
4
6
8
10  
12  
0
1
2
3
4
5
0
2
4
6
8
10  
12  
OUTPUT VOLTAGE (V  
)
P-P  
OUTPUT VOLTAGE (V  
)
P-P  
OUTPUT VOLTAGE (V  
)
P-P  
1969 G21  
1969 G22  
1969 G23  
7
LT1969  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Harmonic Distortion vs Output  
Swing, AV = 2, VS = ±2.5V  
Harmonic Distortion  
vs Output Current, VS = ±6V  
Harmonic Distortion  
vs Output Current, VS = ±2.5V  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
T
= 25°C  
T
= 25°C  
T
= 25°C  
A
A
V
A
A
= 10  
R = R = 1k  
A = 10  
V
F
C
C
G
f = 1MHz  
R
C
= 124Ω  
f = 1MHz  
= 100pF  
R
R
= 5Ω  
R
= 5Ω  
L
L
f = 1MHz  
SEE FIGURE 3  
= 10Ω  
L
R
= 10Ω  
L
R
= 25Ω  
L
R
L
= 25Ω  
R
L
= 25Ω  
2nd  
3rd  
2nd  
R
= 100Ω  
L
3rd  
0
50  
100  
150  
200  
250  
0
1
2
3
4
5
0
100  
200  
300  
400  
500  
PEAK OUTPUT CURRENT (mA)  
OUTPUT VOLTAGE (V  
)
P-P  
PEAK OUTPUT CURRENT (mA)  
1969 G26  
1969 G24  
1969 G25  
Undistorted Output Swing  
vs Frequency  
Gain Bandwidth Product  
vs Supply Current  
Phase Margin vs Supply Current  
12  
10  
8
1400  
1200  
1000  
800  
600  
400  
200  
0
81  
80  
79  
78  
77  
76  
75  
V
S
A
V
= ±6V  
V = ±6V  
S
= –10  
MEASURED AT A = –10  
V
V
= ±6V  
S
T
= 25°C  
= 10  
A
V
L
A
6
R
= 100Ω  
1% DISTORTION  
4
V
S
= ±2.5V  
2
0
100k  
1M  
FREQUENCY (Hz)  
10M  
0
6
8
10  
12  
0
4
6
8
10  
12  
2
4
2
I
, PER AMPLIFIER (mA)  
I
CC  
, PER AMPLIFIER (mA)  
CC  
1969 G27  
1959 G28  
1969 G29  
Output Impedance  
vs Supply Current  
Output Impedance  
vs Frequency Low Power **  
Slew Rate vs Supply Current  
100  
10  
1
400  
100  
10  
V = ±6V  
S
V
A
= ±6V  
V
S
= ±6V  
S
V
= 10  
350  
300  
A
= 100  
V
250  
200  
150  
100  
50  
RISING  
A
V
= 10  
f = 1MHz  
1
FALLING  
f = 600kHz  
0.1  
0.1  
0.01  
0.01  
0
1
2
6
8
10  
12  
0
4
0
1
2
3
4
5
6
7
8
9
10  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
I
PER AMPLIFIER (mA)  
I , PER AMPLIFIER (mA)  
CC  
CC  
1969 G31  
1969 G30  
1969 G32  
8
LT1969  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum IOUT Sourcing  
vs Quiescent Current  
Small-Signal Transient, AV = 10,  
Nominal Power*  
Small-Signal Transient, AV = –10,  
Nominal Power*  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= ±6V  
S
SHORT-CIRCUIT CURRENT  
LINEAR OUTPUT  
CURRENT REGION  
1969 G34  
1969 G35  
4
5
0
1
2
3
6
7
8
I
CC  
PER AMPLIFIER (mA)  
1969 G33  
Small-Signal Transient, AV = 10,  
CL = 1000pF, Nominal Power*  
Large-Signal Transient, AV = 10,  
Nominal Power*  
Large-Signal Transient, AV = –10,  
Nominal Power*  
1969 G36  
1969 G38  
1969 G37  
Large-Signal Transient, AV = 10,  
CL = 1000pF, Nominal Power*  
Small-Signal Transient, AV = 10,  
CL = 1000pF, Low Power**  
1969 G39  
1969 G40  
*13k RESISTOR FROM CTRL1 TO VAND A 49.9k RESISTOR FROM CTRL2 TO V–  
** 49.9k RESISTOR FROM CTRL2 TO V, CTR1 FLOATING  
9
LT1969  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Large-Signal Transient, AV = 10,  
Low Power**  
Large-Signal Transient, AV = 10,  
Low Power**  
1969 G42  
1969 G41  
*13k RESISTOR FROM CTRL1 TO VAND A 49.9k RESISTOR FROM CTRL2 TO V–  
** 49.9k RESISTOR FROM CTRL2 TO V, CTR1 FLOATING  
W U U  
U
APPLICATIO S I FOR ATIO  
Input Considerations  
a combination of RF-quality supply bypass capacitors  
(i.e., 470pF and 0.1µF). As the primary applications have  
high drive current, use low ESR supply bypass capacitors  
(1µF to 10µF). For best distortion performance with high  
drive current a capacitor with the shortest possible trace  
lengths should be placed between Pins 1 and 5. The  
optimum location for this capacitor is on the back side of  
the PC board.  
The inputs of the LT1969 are an NPN differential pair  
protected by back-to-back diodes (see the Simplified  
Schematic). There are no series protection resistors  
onboard which would degrade the input voltage noise. If  
theinputscanhaveavoltagedifferenceofmorethan0.7V,  
the input current should be limited to less than 10mA with  
externalresistance(usuallythefeedbackresistororsource  
resistor).EachinputalsohastwoESDclampdiodes—one  
to each supply. If an input drive exceeds the supply, limit  
the current with an external resistor to less than 10mA.  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input can combine with  
the input capacitance to form a pole which can cause  
frequency peaking. In general, use feedback resistors of  
1kor less.  
TheLT1969designisatrueoperationalamplifierwithhigh  
impedance inputs and low input bias currents. The input  
offset current is a factor of ten lower than the input bias  
current. To minimize offsets due to input bias currents,  
match the equivalent DC resistance seen by both inputs.  
The low input noise current can significantly reduce total  
noisecomparedtoacurrentfeedbackamplifier, especially  
for higher source resistances.  
Thermal Issues  
The LT1969 enhanced θJA MS10 package has the Vpin  
fusedtotheleadframe.Thisthermalconnectionincreases  
the efficiency of the PC board as a heat sink. The PCB  
material can be very effective at transmitting heat between  
the pad area attached to the Vpin and a ground or power  
plane layer. Copper board stiffeners and plated through-  
holes can also be used to spread the heat generated by the  
device. Table 1 lists the thermal resistance for several  
different board sizes and copper areas. All measurements  
Layout and Passive Components  
With a gain bandwidth product of 700MHz the LT1969  
requires attention to detail in order to extract maximum  
performance. Use a ground plane, short lead lengths and  
10  
LT1969  
W U U  
APPLICATIO S I FOR ATIO  
were taken in still air on 3/32" FR-4 board with 2oz copper.  
This data can be used as a rough guideline in estimating  
thermal resistance. The thermal resistance for each appli-  
cation will be affected by thermal interactions with other  
components as well as board size and shape.  
U
As an example, calculate the junction temperature for the  
circuitinFigure1assumingan70°Cambienttemperature.  
The device dissipation can be found by measuring the  
supply currents, calculating the total dissipation and then  
subtracting the dissipation in the load.  
Table 1. Fused 10-Lead MSOP Package  
COPPER AREA  
The dissipation for the amplifiers is:  
PD = (63.5mA)(12V) – (4V/2)2/(50) = 0.6W  
TOPSIDE* BACKSIDE  
BOARD AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
2
2
2
(mm )  
(mm )  
(mm )  
Thetotalpackagepowerdissipationis0.6W. Whena2500  
sq. mm PC board with 540 sq. mm of 2oz copper on top  
and bottom is used, the thermal resistance is 110°C/W.  
The junction temperature TJ is:  
540  
100  
100  
30  
540  
100  
0
2500  
2500  
2500  
2500  
2500  
110°C/W  
120°C/W  
130°C/W  
135°C/W  
140°C/W  
0
TJ = (0.6W)(110°C/W) + 70°C = 136°C  
0
0
*Device is mounted on topside.  
The maximum junction temperature for the LT1969 is  
150°C so the heat sinking capability of the board is  
adequate for the application.  
Calculating Junction Temperature  
The junction temperature can be calculated from the  
equation:  
If the copper area on the PC board is reduced to 0 sq. mm  
the thermal resistance increases to 140°C/W and the  
junction temperature becomes:  
TJ = (PD)(θJA) + TA  
TJ = Junction Temperature  
TA = Ambient Temperature  
PD = Device Dissipation  
TJ = (0.6W)(140°C/W) + 70°C = 154°C  
which is above the maximum junction temperature indi-  
cating that the heat sinking capability of the board is  
inadequate and should be increased.  
θJA = Thermal Resistance (Junction-to-Ambient)  
6V  
+
909Ω  
100Ω  
4V  
50Ω  
1K  
–4V  
f = 1MHz  
100Ω  
CTRL1  
6
CTRL2  
7
+
13k  
–6V  
49.9k  
–6V  
–6V  
1969 F01  
Figure 1. Thermal Calculation Example  
11  
LT1969  
W U U  
U
APPLICATIO S I FOR ATIO  
Capacitive Loading  
Compensation  
The LT1969 is stable with a 1000pF capacitive load. The  
photo of the small-signal response with 1000pF load in a  
gain of 10 shows 50% overshoot. The photo of the large-  
signal response with a 1000pF load shows that the output  
slew rate is not limited by the short-circuit current. The  
Typical Performance Curve of Frequency Response vs  
Capacitive Load shows the peaking for various capacitive  
loads.  
The LT1969 is stable in a gain 10 or higher for any supply  
and resistive load. It is easily compensated for lower gains  
with a single resistor or a resistor plus a capacitor.  
Figure 2 shows that for inverting gains, a resistor from the  
inverting node to AC ground guarantees stability if the  
parallel combination of RC and RG is less than or equal to  
RF/9. For lowest distortion and DC output offset, a series  
capacitor,CC,canbeusedtoreducethenoisegainatlower  
frequencies. The break frequency produced by RC and CC  
should be less than 15MHz to minimize peaking. The  
Typical Curve of Frequency Response vs Supply Voltage,  
AV = –1 shows less than 1dB of peaking for a break  
frequency of 12.8MHz.  
This stability is useful in the case of directly driving a  
coaxial cable or twisted pair that is inadvertently  
unterminated. For best pulse fidelity, however, a termina-  
tionresistorofvalueequaltothecharacteristicimpedance  
of the cable or twisted pair (i.e., 50/75/100/135)  
should be placed in series with the output. The other end  
of the cable or twisted pair should be terminated with the  
same value resistor to ground.  
Figure3showscompensationinthenoninvertingconfigu-  
ration. The RC, CC network acts similarly to the inverting  
case. The input impedance is not reduced because the  
R
F
V
–R  
F
o
R
=
G
+
V
R
G
i
V
i
(R || R ) R /9  
R
V
C
G
F
C
o
C
1
C
< 15MHz  
(OPTIONAL)  
2πR C  
C
C
1969 F02  
Figure 2. Compensation for Inverting Gains  
V
R
R
o
F
= 1 +  
+
V
V
i
G
i
R
C
V
o
(R || R ) R /9  
C
C
G
F
C
1
(OPTIONAL)  
< 15MHz  
R
2πR C  
F
C
C
R
G
1969 F03  
Figure 3. Compensation for Noninverting Gains  
12  
LT1969  
W U U  
U
APPLICATIO S I FOR ATIO  
network is bootstrapped. This network can also be placed  
between the inverting input and an AC ground.  
optionalsnubbernetworkconsistingofaseriesRCacross  
the load can provide a resistive load at high frequency.  
Another option is to filter the drive to the load. If a back-  
termination resistor is used, a capacitor to ground at the  
load can eliminate ringing.  
Anothercompensationschemefornoninvertingcircuitsis  
showninFigure4.Thecircuitisunitygainatlowfrequency  
and a gain of 1 + RF/RG at high frequency. The DC output  
offset is reduced by a factor of ten. The techniques of  
Figures3and4canbecombinedasshowninFigure5. The  
gainisunityatlowfrequencies, 1+RF/RG atmid-bandand  
for stability, a gain of 10 or greater at high frequencies.  
Line Driving Back-Termination  
The standard method of cable or line back-termination is  
shown in Figure 6. The cable/line is terminated in its  
characteristic impedance (50, 75, 100, 135, etc.).  
A back-termination resistor also equal to to the  
chararacteristic impedance should be used for maximum  
pulse fidelity of outgoing signals, and to terminate the line  
for incoming signals in a full-duplex application. There are  
three main drawbacks to this approach. First, the power  
dissipated in the load and back-termination resistors is  
equal so half of the power delivered by the amplifier is  
Output Loading  
The LT1969 output stage is very wide bandwidth and able  
to source and sink large currents. Reactive loading, even  
isolated with a back-termination resistor, can cause ring-  
ingatfrequenciesofhundredsofMHz.Forthisreason,any  
design should be evaluated over a wide range of output  
conditions. To reduce the effects of reactive loading, an  
V
o
+
+
= 1 (LOW FREQUENCIES)  
V
i
V
i
V
i
R
R
F
R
C
V
V
= 1 +  
(HIGH FREQUENCIES)  
V
O
C
o
G
C
R
R /9  
F
G
o
R
= 1 AT LOW FREQUENCIES  
R
F
F
V
1
i
< 15MHz  
R
F
2πR C  
= 1 +  
= 1 +  
AT MEDIUM FREQUENCIES  
G
C
R
R
C
G
G
R
G
C
C
BIG  
R
F
AT HIGH FREQUENCIES  
(R || R )  
1969 F04  
1969 F05  
C
G
Figure 4. Alternate Noninverting Compensation  
Figure 5. Combination Compensation  
CABLE OR LINE WITH  
CHARACTERISTIC IMPEDANCE R  
L
+
V
G
i
R
BT  
V
O
R
L
R
F
R
= R  
=
BT  
L
V
1
2
o
R
(1 + R /R )  
F G  
1969 F06  
V
i
Figure 6. Standard Cable/Line Back-Termination  
13  
LT1969  
W U U  
U
APPLICATIO S I FOR ATIO  
wasted in the termination resistor. Second, the signal is  
halved so the gain of the amplifer must be doubled to have  
the same overall gain to the load. The increase in gain  
increases noise and decreases bandwidth (which can also  
increase distortion). Third, the output swing of the ampli-  
fier is doubled which can limit the power it can deliver to  
the load for a given power supply voltage.  
Eliminating Vp, we get the following:  
(1 + RP2/RP1) = (1 + RF/RG)/(1 – 1/n)  
For example, reducing RBT by a factor of n = 4, and with an  
amplifer gain of (1 + RF/RG) = 10 requires that RP2/RP1  
= 12.3.  
Note that the overall gain is increased:  
An alternate method of back-termination is shown in  
Figure 7. Positive feedback increases the effective back-  
termination resistance so RBT can be reduced by a factor  
ofn.Toanalyzethiscircuit,firstgroundtheinput.AsRBT  
RL/n, and assuming RP2>>RL we require that:  
RP2 / R +R  
Vo  
V
i
(
)
P1  
P2  
P1  
=
1+ 1/ n / 1+R / R R / R +R  
) (
 
)  
(
[
)
(
] [  
]
F
G
P2  
P1  
=
A simpler method of using positive feedback to reduce the  
back-termination is shown in Figure 8. In this case, the  
drivers are driven differentially and provide complemen-  
tary outputs. Grounding the inputs, we see there is invert-  
ing gain of –RF/RP from –Vo to Va  
Va = Vo (1 – 1/n) to increase the effective value of  
RBT by n.  
Vp = Vo (1 – 1/n)/(1 + RF/RG)  
Vo = Vp (1 + RP2/RP1)  
Va = Vo (RF/RP)  
R
R
L
P2  
FOR R  
=
BT  
n
R
P1  
1
n
R
R
R
P1  
+
F
1 +  
= 1 –  
V
i
V
R
V
o
(
) (  
)
a
BT  
R
+ R  
P2  
V
G
P1  
P
R
/(R + R  
P2 P2  
)
R
P1  
L
V
R
1 + 1/n  
o
P1  
R
F
=
V
R
+ R  
P2 P1  
i
R
F
1 +  
(
)
R
R
G
G
1969 F07  
Figure 7. Back-Termination Using Positive Feedback  
V
+
i
V
R
BT  
a
V
o
R
L
FOR R  
n =  
=
BT  
R
R
F
F
n
1
R
R
R
R
G
L
R
F
1 –  
=
R
R
P
R
P
P
R
R
R
F
F
G
L
1 +  
+
V
R
P
o
G
R
F
V
i
2 1 –  
+
(
)
R
P
R
BT  
1969 F08  
–V  
o
–V  
a
–V  
i
Figure 8. Back-Termination Using Differential Positive Feedback  
14  
LT1969  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 2. ADSL Upstream Driver Designs  
and assuming RP >> RL, we require  
STANDARD  
LOW POWER  
100Ω  
13dBm  
5.33  
Va = Vo (1 – 1/n)  
Line Impedance  
100Ω  
13dBm  
5.33  
solving  
Line Power  
Peak-to-Average Ratio  
Transformer Turns Ratio  
Reflected Impedance  
Back-Termination Resistors  
Transformer Insertion Loss  
Average Amplifier Swing  
Average Amplifier Current  
Peak Amplifier Swing  
Peak Amplifier Current  
Total Average Power Consumption  
Supply Voltage  
RF/RP = 1 – 1/n  
2
1
So to reduce the back-termination by a factor of 3 choose  
RF/RP = 2/3. Note that the overall gain is increased to:  
25Ω  
12.5Ω  
1dB  
100Ω  
8.35Ω  
0.5dB  
Vo/Vi = (1 + RF/RG + RF/RP)/[2(1 – RF/RP)]  
0.79V  
0.87V  
15mA  
RMS  
RMS  
RMS  
ADSL Driver Requirements  
31.7mA  
RMS  
4.21V Peak  
169mA Peak  
550mW  
4.65V Peak  
80mA Peak  
350mW  
The LT1969 is an ideal choice for ADSL upstream (CPE)  
modems. The key advantages are: ±200mA output drive  
with only 1.7V worst-case total supply voltage headroom,  
high bandwidth, which helps achieve low distortion, low  
quiescent supply current of 7mA per amplifier and a  
space-saving, thermally enhanced MS10 package.  
Single 12V  
Single 12V  
–73dBc for all swings up to 16VP-P into the line. The gain  
of this circuit from the differential inputs to the line voltage  
is 10. Lower gains are easy to implement using the  
compensation techniques of Figure 5. Table 2 shows the  
drive requirements for this standard circuit.  
An ADSL remote terminal driver must deliver an average  
power of 13dBm (20mW) into a 100line. This corre-  
spondsto1.41VRMS intotheline.TheDMT-ADSLpeak-to-  
average ratio of 5.33 implies voltage peaks of 7.53V into  
the line. Using a differential drive configuration and trans-  
former coupling with standard back-termination, a trans-  
formerratioof1:2iswellsuited. Thisisshownonthefront  
page of this data sheet along with the distortion perfor-  
mance vs line voltage at 200kHz, which is beyond ADSL  
requirements. Note that the distortion is better than  
The above design is an excellent choice for desktop  
applications and draws typically 550mW of power. For  
portable applications, power savings can be achieved by  
reducingtheback-terminationresistorusingpositivefeed-  
back as shown in Figure 9. The overall gain of this circuit  
V
+
i
8.45  
1k  
1k  
1:1  
1.21k  
1.21k  
523Ω  
523Ω  
100Ω  
1µF  
1969 F09  
+
A
= 10  
V
8.45Ω  
–V  
i
Figure 9. Power Saving ADSL Modem Driver  
15  
LT1969  
W U U  
U
APPLICATIO S I FOR ATIO  
is also 10, but the power consumption has been reduced  
to 350mW, a savings of 36% over the previous design.  
Note that the reduction of the back-termination resistor  
has allowed use of a 1:1 transformer ratio.  
The reduced signal has system implications for the sensi-  
tivityofthereceiver.Thepowerreductionmay,ormaynot,  
be an acceptable system tradeoff for a given design.  
Controlling the Quiescent Current  
Table 2 compares the two approaches. It may seem that  
thelowpowerdesignisaclearchoice,buttherearefurther  
system issues to consider. In addition to driving the line,  
the amplifiers provide back-termination for signals that  
are received simultaneously from the line. In order to  
reject the drive signal, a receiver circuit is used such as  
shown in Figure 10. Taking advantage of the differential  
nature of the signals, the receiver can subtract out the  
drive signal and amplify the received signal. This method  
works well for standard back-termination. If the back-  
termination resistors are reduced by positive feedback, a  
portion of the received signal also appears at the amplifier  
outputs. The result is that the received signal is attenuated  
by the same amount as the reduction in the back-termina-  
tionresistor. Takingintoaccountthedifferenttransformer  
turns ratios, the received signal of the low power design  
will be one third of the standard design received signal.  
The quiescent current of the LT1969 is controlled via two  
control pins, CTRL1 and CTRL2. The pins can be used to  
either turn off the amplifiers, reducing the quiescent cur-  
renton±2.5Vsuppliestolessthan500µAperamplifier, or  
to control the quiescent current in normal operation.  
Figure 11 shows how the control pins are used in conjunc-  
tion with external resistors to program the supply current.  
In normal operation, each control pin is biased to approxi-  
mately 1V above Vand by varying the resistor values, the  
current from each control pin can be adjusted. It is this  
current that sets the supply current of both amplifiers. If  
one of the resistors is open, i.e. R2, the supply current of  
the amplifiers will be set by CTRL1 and R1. Figure 12  
shows supply current vs resistor value.  
R
BT  
V
V
a
L
1:n  
R
L
R
BT  
–V  
a
–V  
L
R
R
R
F
D
G
R
L
2
+
LT1813  
LT1813  
= REFLECTED IMPEDANCE  
n
+
R
L
2
V
RX  
V
BIAS  
2n  
= ATTENUATION OF V  
a
+
R
L
2
+ R  
BT  
2n  
R
L
R
R
D
2
2n  
R
R
G
D
SET  
=
R
L
R
F
G
+ R  
1969 F10  
BT  
2
2n  
Figure 10. Receiver Configuration  
16  
LT1969  
W U U  
APPLICATIO S I FOR ATIO  
U
+
CTRL1  
6
CTRL2  
7
V
1
+
R1  
R2  
OFF  
OFF  
ON  
ON  
3.3V/5V FROM V  
1969 F13  
CTRL1  
6
CTRL2  
7
5
Figure 13  
V
R1  
R2  
1969 F11  
V
V
remains low, preserving the line termination. The Typical  
PerformanceCharacteristicscurveOutputImpedancevs  
Supply Current shows the details. Both logic inputs high  
further reduces the supply current and places the part in  
a “standby” mode with less than 500µA per amplifier  
quiescent current.  
Figure 11  
30  
25  
V
= ±6V  
= 25°C  
S
A
T
20  
15  
Output Loading in Low Current Modes  
The LT1969 output stage has a very wide bandwidth and  
is able to source and sink large amounts of current. The  
internal circuitry of the output stage incorporates a posi-  
tive feedback boost loop giving it high drive capability. As  
thesupplycurrentisreduced,thesourcingdrivecapability  
also reduces. Maximum sink current is independent of  
supply current and is limited by the short-circuit protec-  
tion at 500mA. If the amplifier is in a low power or  
“standby” mode, the output stage is slightly biased and is  
not capable of sourcing high output currents. The Typical  
Performance Characteristics curve Maximum IOUT Sourc-  
ing vs Quiescent Current shows the maximum output  
current for a given quiescent current.  
10  
5
0
0
10 20 30 40 50 60 70 80 90 100  
RESISTANCE (k)  
1969 F12  
Figure 12. Supply Current vs Control Resistance (R1//R2)  
Using CTRL1 and CTRL2 to set the supply current effec-  
tively places R1 and R2 in parallel obtaining a net resis-  
tance, and Figure 12 can still be utilized in determining  
supply current.  
Considerations for Fault Protection  
The use of two pins to control the supply current allows  
for applications where external logic can be used to place  
the amplifiers in different supply current modes. Figure  
13 illustrates a partial shutdown with direct logic on each  
control pin. If both logic inputs are low, the control pins  
will effectively see a resistance of 13k//49.9k = 10k to  
V. This will set the amplifiers in nominal mode with a  
The basic line driver design presents a direct DC path  
between the outputs of the two amplifiers. An imbalance  
in the DC biasing potentials at the noninverting inputs  
through either a fault condition or during turn-on of the  
system can create a DC voltage differential between the  
two amplifier outputs. This condition can force a consid-  
erable amount of current, 500mA or more, to flow as it is  
limited only by the small valued back-termination resis-  
tors and the DC resistance of the transformer primary.  
This high current can possibly cause the power supply  
voltage source to drop significantly impacting overall  
gain bandwidth of 700MHz and±200mA minimum IOUT  
.
The electrical characteristics are specified in nominal  
mode. Forcing R1’s input logic high will partially shut  
down the part, putting it in a low power mode. By keeping  
the output stage slightly biased, the output impedance  
17  
LT1969  
W U U  
U
APPLICATIO S I FOR ATIO  
system performance. If left unchecked, the high DC cur-  
rent can heat the LT1969 to destruction.  
create fast voltage transitions themselves that can be  
coupled through the transformer to the outputs of the line  
driver. Several hundred volt transient signals can appear  
at the primary windings of the transformer with current  
intothedriveroutputslimitedonlybythebacktermination  
resistors. While the LT1969 has clamps to the supply rails  
at the output pins, they may not be large enough to handle  
thesignificanttransientenergy. Externalclampingdiodes,  
such as BAV99s, at each end of the transformer primary  
help to shunt this destructive transient energy away from  
the amplifier outputs.  
Using DC blocking capacitors to AC couple the signal to  
thetransformereliminatesthepossibilityforDCcurrentto  
flow under any conditions. These capacitors should be  
sized large enough to not impair the frequency response  
characteristics required for the data transmission.  
Another important fault related concern has to do with  
very fast high voltage transients appearing on the tele-  
phone line (lightning strikes for example). TransZorbsTM,  
varistors and other transient protection devices are often  
used to absorb the transient energy, but in doing so also  
TransZorb is a registered trademark of General Instruments, GSI  
18  
LT1969  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
MS10 Package  
10-Lead Plastic MSOP  
(LTC DWG # 05-08-1661)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
10 9  
8
7 6  
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.193 ± 0.006  
(4.90 ± 0.15)  
1
2
3
4 5  
0.034  
(0.86)  
REF  
0.043  
(1.10)  
MAX  
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.007 – 0.011  
(0.17 – 0.27)  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.005 ± 0.002  
(0.13 ± 0.05)  
MSOP (MS10) 1100  
0.0197  
(0.50)  
BSC  
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1969  
U
TYPICAL APPLICATIO  
Split Supply ±5V ADSL CPE Line Driver  
5V  
5V  
4
3
1
+
BAV99**  
–5V  
0.47µF**  
6.19Ω  
2
130Ω  
1/2 LT1969  
1k  
1k  
100pF  
1:2*  
+
2k  
866Ω  
866Ω  
+
V
100V  
IN  
L
2k  
100pF  
0.47µF**  
9
6.19Ω  
10  
5V  
BAV99**  
1/2 LT1969  
+
130Ω  
7
8
5
6
–5V  
49.9k  
13k  
*COILCRAFT X8390-A OR EQUIVALENT  
**SEE TEXT REGARDING FAULT PROTECTION  
1969 TA02  
–5V –5V –5V  
V
L
= 5  
(ASSUME 0.5dB TRANSFORMER POWER LOSS)  
2
V
IN  
REFLECTED LINE IMPEDANCE = 100/ 2 = 25Ω  
2kΩ  
EFFECTIVE TERMINATION = 2 • 6.19 •  
= 24.8Ω  
1kΩ  
EACH AMPLIFIER: 0.56V  
, 29.9mA  
RMS  
RMS  
±3V PEAK, ±160mA PEAK  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1207  
Dual 250mA, 60MHz Current Feedback Amplifier  
Dual 400MHz, 800V/µs Current Feedback Amplifier  
Dual 125mA, 50MHz Current Feedback Amplifier  
Dual 500mA, 50MHz Current Feedback Amplifier  
Dual 700MHz, 200mA Op Amp  
Shutdown/Current Set Function  
4.6mA Supply Current Set, 80mA I  
900V/µs Slew Rate  
LT1396  
OUT  
LT1497  
LT1795  
Shutdown/Current Set Function, ADSL CO Driver  
Gain of 10 Stable, Low Distortion  
LT1886  
1969f LT/TP 0301 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2001  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1969CMS#TR

LT1969 - Dual 700MHz, 200mA, Adjustable Current Operational Amplifier; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1969CMS#TRPBF

LT1969 - Dual 700MHz, 200mA, Adjustable Current Operational Amplifier; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1970

500mA Power Op Amp with Adjustable Precision Current Limit
Linear

LT1970A

500mA Power Op Amp with Adjustable Precision Current Limit
Linear

LT1970AIFE#PBF

LT1970A - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1970AIFE#TRPBF

LT1970A - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1970CFE

500mA Power Op Amp with Adjustable Precision Current Limit
Linear

LT1970CFE#PBF

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1970CFE#TR

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1970CFE#TRPBF

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1970IFE

500mA Power Op Amp with Adjustable Precision Current Limit
Linear

LT1970IFE#PBF

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear