LT1970AIFE#PBF [Linear]

LT1970A - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C;
LT1970AIFE#PBF
型号: LT1970AIFE#PBF
厂家: Linear    Linear
描述:

LT1970A - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C

放大器 光电二极管
文件: 总24页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1970A  
500mA Power Op Amp with  
Adjustable Precision Current Limit  
FEATURES  
DESCRIPTION  
The LT®1970A is a 500mA power op amp with precise  
externally controlled current limiting. Separate control  
voltages program the sourcing and sinking current limit  
sense thresholds with 1% accuracy. Output current may  
be boosted by adding external power transistors.  
n
±±550m Miꢃi0u0 Output ꢂurreꢃt  
n
IꢃAepeꢃAeꢃt mAduꢀt0eꢃt of Source ꢁꢃA  
Siꢃk ꢂurreꢃt ꢄi0itꢀ  
1% ꢂurreꢃt ꢄi0it mccurꢁcy  
I0proveA Reꢁctive ꢄoꢁA Driviꢃg Stꢁaility  
Operates with Single or Split Supplies  
Shutdown/Enable Control Input  
Open-Collector Status Flags:  
n
n
n
The circuit operates with single or split power supplies  
from 5V to 36V total supply voltage. In normal opera-  
tion, the input stage supplies and the output stage sup-  
n
n
Sink Current Limit  
Source Current Limit  
Thermal Shutdown  
+
plies are connected (V to V and V to V ). To reduce  
CC  
EE  
power dissipation it is possible to power the output stage  
+
(V ,V )fromindependent,lowervoltagerails.Theamplifier  
isunity-gainstablewitha3.6MHzgain-bandwidthproduct  
and slews at 1.6V/μs. The LT1970A can drive capacitive  
and inductive loads directly.  
n
Fail-Safe Current Limit and Thermal Shutdown  
n
1.6V/μs Slew Rate  
3.6MHz Gain-Bandwidth Product  
Specified Temperature Range: –40°C to 85°C  
Available in a 20-Lead TSSOP Package  
n
n
n
Open-collector status flags signal current limit circuit  
activation, as well as thermal shutdown of the amplifier.  
An enable logic input puts the amplifier into a low power,  
high impedance output state when pulled low. Thermal  
shutdown and a 800mA fixed current limit protect the  
chip under fault conditions.  
APPLICATIONS  
n
Automatic Test Equipment  
n
Laboratory Power Supplies  
n
Motor Drivers  
Thermoelectric Cooler Driver  
n
TheLT1970Aispackagedina20-leadTSSOPpackagewith  
a thermally conductive copper bottom plate to facilitate  
heat sinking.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Device Power Supply (DPS) with ±±550m mAduꢀtꢁale ꢂurreꢃt ꢄi0it  
V
LIMIT  
0V TO 5V  
20V  
20V  
6k  
CURRENT LIMIT = 500mA  
V
CC  
V
LIMIT  
ꢀꢁꢂtꢂ3  
+
I
=
V
OUT(MAX)  
V
, R = 100Ω  
LOAD LOAD  
CS  
EN  
VC  
I
OUT  
SRC  
VC  
V
IN  
+IN  
SNK  
R
CS  
ISNK  
TRACE R TRACE L  
100mΩ 200nH  
V
LOAD  
,
1Ω  
LOAD  
= 10Ω  
ISRC  
2V/DIV  
0V  
R
1/4W  
TSD  
LT1970A  
OUT  
+
SENSE  
4.7μF  
V
, 5V/DIV  
IN  
SENSE  
LOAD  
SENSE  
ESR  
0.1Ω  
V
–IN  
COMMON  
V
EE  
1970A TA01  
100μs/DIV  
–5V  
10k  
100pF  
1970A TA01b  
1970afa  
1
LT1970A  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Supply Voltage (V to V )..................................... 36V  
CC  
EE  
+
V
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
EE  
EE  
+
Positive High Current Supply (V )................... V to V  
CC  
V
+
21  
Negative High Current Supply(V ) ....................V to V  
Amplifier Output (OUT)..................................... V to V  
EE  
OUT  
3
TSD  
+
+
SENSE  
4
ISNK  
Current Sense Pins  
FILTER  
5
ISRC  
+
+
+
(SENSE , SENSE , FILTER)........................... V to V  
SENSE  
6
ENABLE  
COMMON  
Logic Outputs (ISRC, ISNK, TSD)....... COMMON to V  
CC  
V
7
CC  
Input Voltage (–IN, +IN)............ V – 0.3V to V + 36V  
EE  
EE  
–IN  
+IN  
8
VC  
SRC  
Input Current......................................................... 10mA  
9
VC  
SNK  
Current Control Inputs  
V
EE  
10  
V
EE  
(VC , VC )..............COMMON to COMMON + 7V  
SRC  
SNK  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
= 150°C, θ = 40°C/W (NOTE 8)  
Enable Logic Input .............................. COMMON to V  
CC  
T
JMAX  
JA  
COMMON....................................................... V to V  
EE  
CC  
EXPOSED PAD (PIN 21) IS CONNECTED TO V  
EE  
Output Short-Circuit Duration ......................... Indefinite  
Operating Temperature Range (Note 2)....–40°C to 85°C  
Specified Temperature Range (Note 3)  
LT1970AC ................................................ 0°C to 70°C  
LT1970AI.............................................. –40°C to 85°C  
Maximum Junction Temperature.......................... 150°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
ORDER INFORMATION  
ꢄEmD FREE FINISH  
LT1970ACFE#PBF  
LT1970AIFE#PBF  
TmPE mND REEꢄ  
PmRT MmRKING*  
LT1970AFE  
PmꢂKmGE DESꢂRIPTION  
20-Lead Plastic TSSOP  
20-Lead Plastic TSSOP  
SPEꢂIFIED TEMPERmTURE RmNGE  
0°C to 70°C  
LT1970ACFE#TRPBF  
LT1970AIFE#TRPBF  
LT1970AFE  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS  
The l Aeꢃoteꢀ the ꢀpecificꢁtioꢃꢀ which ꢁpply over the full operꢁtiꢃg  
te0perꢁture rꢁꢃge, otherwiꢀe ꢀpecificꢁtioꢃꢀ ꢁre ꢁt Tm = 2±°ꢂ. See Teꢀt ꢂircuit for ꢀtꢁꢃAꢁrA teꢀt coꢃAitioꢃꢀ.  
SYMBOꢄ  
PmRmMETER  
ꢂONDITIONS  
MIN  
TYP  
MmX  
UNITS  
Power Op m0p ꢂhꢁrꢁcteriꢀticꢀ  
V
Input Offset Voltage  
200  
600  
1000  
1300  
μV  
μV  
μV  
OS  
l
l
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
l
l
l
Input Offset Voltage Drift (Note 4)  
Input Offset Current  
–10  
–100  
–600  
–4  
10  
μV/°C  
I
I
V
V
= 0V  
= 0V  
100  
nA  
OS  
CM  
Input Bias Current  
–160  
3
nA  
B
CM  
Input Noise Voltage  
0.1Hz to 10Hz  
μV  
P-P  
1970afa  
2
LT1970A  
ELECTRICAL CHARACTERISTICS The l Aeꢃoteꢀ the ꢀpecificꢁtioꢃꢀ which ꢁpply over the full operꢁtiꢃg  
te0perꢁture rꢁꢃge, otherwiꢀe ꢀpecificꢁtioꢃꢀ ꢁre ꢁt Tm = 2±°ꢂ. See Teꢀt ꢂircuit for ꢀtꢁꢃAꢁrA teꢀt coꢃAitioꢃꢀ.  
SYMBOꢄ  
PmRmMETER  
ꢂONDITIONS  
1kHz  
MIN  
TYP  
15  
3
MmX  
UNITS  
nV/√Hz  
pA/√Hz  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
i
1kHz  
n
R
Common Mode  
Differential Mode  
500  
100  
kΩ  
kΩ  
IN  
C
V
Input Capacitance  
Pin 8 and Pin 9 to Ground  
6
pF  
IN  
Input Voltage Range  
Typical  
Guaranteed by CMRR Test  
–14.5  
–12.0  
92  
13.6  
12.0  
V
V
dB  
CM  
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
–12V < V < 12V  
105  
CM  
+
l
l
l
l
V
EE  
V
EE  
V
EE  
V
EE  
= V = –5V, V = V = 3V to 30V  
90  
110  
90  
100  
130  
100  
130  
dB  
dB  
dB  
dB  
CC  
+
= V = –5V, V = 30V, V = 2.5V to 30V  
CC  
+
= V = –3V to 30V, V = V = 5V  
CC  
+
110  
= –30V, V = 2.5V to –30V, V = V = 5V  
CC  
A
Large-Signal Voltage Gain  
R = 1k, –12.5V < V < 12.5V  
OUT  
100  
75  
80  
40  
20  
5
150  
120  
45  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
L
l
l
l
l
R = 100Ω, –12.5V < V  
L
< 12.5V  
OUT  
+
R = 10Ω, –5V < V  
L
< 5V, V = V = 8V  
OUT  
V
V
Output Sat Voltage Low  
Output Sat Voltage High  
Output Short-Circuit Current  
V
OL  
= V  
– V  
OUT  
OL  
OH  
+
R = 100, V = V = 15V, V = V = 15V  
1.9  
0.8  
2.5  
2.3  
V
V
L
CC  
EE  
+
R = 10, V = V = 15V, V = V = 5V  
L
CC  
EE  
+
V
= V – V  
OH  
OUT  
+
l
R = 100, V = V = 15V, V = V = 15V  
1.7  
1.0  
800  
–800  
V
V
mA  
mA  
L
L
CC  
CC  
EE  
+
R = 10, V = V = 15V, V = V = 5V  
EE  
I
SC  
Output Low, R  
= 0Ω  
= 0Ω  
500  
–1000  
1200  
–500  
SENSE  
SENSE  
Output High, R  
SR  
Slew Rate  
–10V < V  
< 10V, R = 1k  
0.7  
1.6  
V/μs  
kHz  
MHz  
μs  
OUT  
L
FPBW  
GBW  
Full Power Bandwidth  
Gain-Bandwidth Product  
Settling Time  
V
= 10V  
(Note 5)  
PEAK  
11  
OUT  
f = 10kHz  
0.01%, V  
3.6  
8
t
= 0V to 10V, A = 1, R = 1k  
S
OUT  
V
L
ꢂurreꢃt Seꢃꢀe ꢂhꢁrꢁcteriꢀticꢀ  
V
Minimum Current Sense Voltage  
VC  
= VC  
= 0V  
0.1  
0.1  
15  
4
7
mV  
mV  
mV  
SENSE(MIN)  
SRC  
SNK  
l
l
10  
V
V
V
Current Sense Voltage 4% of Full Scale  
Current Sense Voltage 10% of Full Scale  
VC  
SRC  
VC  
SRC  
SRC  
= VC  
= VC  
= VC  
= 0.2V  
= 0.5V  
= 5V  
20  
50  
25  
SENSE(4%)  
SENSE(10%)  
SENSE(FS)  
SNK  
SNK  
SNK  
l
45  
55  
mV  
Current Sense Voltage 100% of Full Scale VC  
495  
480  
–1  
500  
500  
–0.2  
505  
520  
0.1  
500  
500  
mV  
mV  
μA  
nA  
nA  
l
l
I
I
I
I
Current Limit Control Input Bias Current  
VC , VC Pins  
SRC SNK  
BI  
l
l
+
SENSE Input Current  
0V < (VC , VC ) < 5V  
–500  
–500  
SENSE  
FILTER  
SENSE  
SRC  
SNK  
FILTER Input Current  
0V < (VC , VC ) < 5V  
SRC SNK  
+
l
l
l
l
SENSE Input Current  
VC = VC  
= 0V  
–500  
200  
–300  
–25  
500  
300  
–200  
25  
nA  
μA  
μA  
μA  
SRC  
SRC  
SNK  
= 5V, VC  
VC  
= 0V  
250  
–250  
SNK  
SNK  
VC = 0V, VC  
= 5V  
SRC  
SRC  
VC  
= VC  
= VC  
= 5V  
SNK  
Current Sense Change with Output Voltage VC  
= 5V, 12.5V < V  
< 12.5V  
0.1  
%
SRC  
SNK  
OUT  
+
Current Sense Change with Supply Voltage VC  
= VC  
= 5V, 6V < (V , V ) < 18V  
0.05  
0.01  
0.05  
0.01  
%
%
SRC  
SNK  
CC  
+
2.5V < V < 18V, V = 18V  
CC  
–18V < (V , V ) < –2.5V  
%
EE  
–18V < V < –2.5V, V = 18V  
%
EE  
1970afa  
3
LT1970A  
ELECTRICAL CHARACTERISTICS The l Aeꢃoteꢀ the ꢀpecificꢁtioꢃꢀ which ꢁpply over the full operꢁtiꢃg  
te0perꢁture rꢁꢃge, otherwiꢀe ꢀpecificꢁtioꢃꢀ ꢁre ꢁt Tm = 2±°ꢂ. See Teꢀt ꢂircuit for ꢀtꢁꢃAꢁrA teꢀt coꢃAitioꢃꢀ.  
SYMBOꢄ  
PmRmMETER  
ꢂONDITIONS  
MIN  
TYP  
2
MmX  
UNITS  
MHz  
Current Sense Bandwidth  
Resistance FILTER to SENSE  
l
R
750  
1000  
1250  
CSF  
ꢄogic I/O ꢂhꢁrꢁcteriꢀticꢀ  
l
l
Logic Output Leakage ISRC, ISNK, TSD  
Logic Low Output Level  
V = 15V  
1
μA  
V
I = 5mA (Note 6)  
0.2  
25  
0.4  
Logic Output Current Limit  
Enable Logic Threshold  
mA  
V
l
l
l
l
l
V
0.8  
–1  
1.9  
2.5  
1
ENABLE  
ENABLE  
SUPPLY  
CC  
I
I
I
I
t
t
Enable Pin Bias Current  
μA  
mA  
mA  
mA  
μs  
+
Total Supply Current  
V
CC  
V
CC  
V
CC  
, V and V , V Connected  
7
3
13  
7
EE  
+
V
Supply Current  
, V and V , V Separate  
EE  
CC  
+
Supply Current Disabled  
Turn-On Delay  
, V and V , V Connected, V ≤ 0.8V  
ENABLE  
0.6  
10  
10  
1.5  
CC(STBY)  
ON  
EE  
(Note 7)  
(Note 7)  
Turn-Off Delay  
μs  
OFF  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device reli-  
ability and lifetime.  
Note 2: The LT1970AC is guaranteed functional over the operating tem-  
perature range of 40°C and 85°C.  
Note 4: This parameter is not 100% tested.  
Note ±: Full power bandwidth is calculated from slew rate measurements:  
FPBW = SR/(2 • π • V )  
P
Note 6: The logic low output level of pin TSD is guaranteed by correlating  
the output level of pin ISRC and pin ISNK over temperature.  
Note 7: Turn-on and turn-off delay are measured from V  
crossing  
ENABLE  
Note 3: The LT1970AC is guaranteed to meet specified performance from  
0°C to 70°C. The LT1970AC is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LT1970AI is guaranteed to meet speci-  
fied performance from –40°C to 85°C.  
1.6V to the OUT pin at 90% of normal output voltage.  
Note 8: Thermal resistance varies depending upon the amount of PC board  
metal attached to the device. If the maximum dissipation of the package is  
exceeded, the device will go into thermal shutdown and be protected.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Totꢁl Supply ꢂurreꢃt  
vꢀ Supply Voltꢁge  
Wꢁr0-Up Drift VIO vꢀ Ti0e  
Iꢃput Biꢁꢀ ꢂurreꢃt vꢀ VꢂM  
–100  
–120  
–140  
–160  
–180  
–200  
–220  
–240  
–260  
14  
12  
10  
8
6
4
V
S
= 15V  
+
I
+ I  
V
125°C  
25°C  
CC  
–I  
BIAS  
–55°C  
–55°C  
2
0
+I  
BIAS  
I
+ I  
V
EE  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
0V  
25°C  
TIME (100ms/DIV)  
1970A G01  
125°C  
–15 –12 –9 –6 –3  
0
3
6
9
12 15  
0
2
4
6
8
10 12 14 16 18  
COMMON MODE INPUT VOLTAGE (V)  
SUPPLY VOLTAGE ( V)  
1970A G03  
1970A G02  
1970afa  
4
LT1970A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Opeꢃ-ꢄoop Gꢁiꢃ ꢁꢃA Phꢁꢀe  
Supply ꢂurreꢃt vꢀ Supply Voltꢁge  
vꢀ Frequeꢃcy  
Phꢁꢀe Mꢁrgiꢃ vꢀ Supply Voltꢁge  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
70  
60  
50  
40  
100  
90  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
+
A
= –1  
V
F
I
V
R
= R = 1k  
G
I
T
A
= 25°C  
V
80  
V
= V /2  
OUT  
S
GAIN  
PHASE  
70  
I
VCC  
30  
20  
60  
50  
I
VEE  
10  
0
40  
30  
20  
10  
0
–10  
–20  
–30  
T
= 25°C  
CC  
A
+
V
= V = –V = –V  
EE  
0
0
4
8
12 16 20 24 28 32 36  
100  
1k  
10k 100k  
1M  
10M 100M  
2
4
6
8
10 12  
20  
14 16 18  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE ( V)  
1970A G05  
1970A G06  
1870A G04  
Gꢁiꢃ BꢁꢃAwiAth vꢀ Supply Voltꢁge  
Gꢁiꢃ vꢀ Frequeꢃcy  
Gꢁiꢃ vꢀ Frequeꢃcy with ꢂꢄOmD  
10  
0
10  
5
A
= 1  
V
A
=
= 1  
15V  
A
= 100  
V
S
V
V
30nF  
10nF  
0
–10  
–20  
–30  
–40  
4
3
1nF  
V
= 15V  
S
–10  
–20  
–30  
–40  
V
=
5V  
S
0nF  
2
1
0
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
0
4
8
12 16 20 24 28 32 36  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL SUPPLY VOLTAGE (V)  
1970A G08  
1970A G09  
1970A G07  
Output I0peAꢁꢃce  
DiꢀꢁaleA Output I0peAꢁꢃce  
Slew Rꢁte vꢀ Supply Voltꢁge  
600k  
100k  
100  
10  
1.8  
V
V
=
15V  
= 0.8V  
V
= 15V  
S
S
ENABLE  
1.7  
1.6  
FALLING  
RISING  
A
= 100  
V
10k  
1k  
1.5  
1.4  
1.3  
1.2  
1.1  
1
A
= 10  
V
0.1  
A
= 1  
V
100  
10  
1
0.01  
0.001  
A
= –1  
V
F
R
= R = 1k  
G
T
A
= 25°C  
1.0  
1k  
10k  
100k  
1M  
10M  
100M  
4
6
8
10  
12  
14  
16  
18  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE ( V)  
1970A G10  
1970A G11  
1970A G12  
1970afa  
5
LT1970A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Slew Rꢁte vꢀ Te0perꢁture  
ꢄꢁrge-Sigꢃꢁl Reꢀpoꢃꢀe, mV = 1  
ꢄꢁrge-Sigꢃꢁl Reꢀpoꢃꢀe, mV = 1  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 15V  
S
FALLING  
10V  
10V  
RISING  
0V  
0V  
–10V  
–10V  
R
= 1k  
1970A G14  
20μs/DIV  
L
R
L
L
= 1k  
20μs/DIV  
1970A G15  
C
= 1000pF  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
1970A G13  
S0ꢁll-Sigꢃꢁl Reꢀpoꢃꢀe, mV = 1  
S0ꢁll-Sigꢃꢁl Reꢀpoꢃꢀe, mV = 1  
Output OverAriveꢃ  
V
OUT  
0V  
0V  
5V/DIV  
V
IN  
5V/DIV  
R
= 1k  
1970A G16  
500ns/DIV  
R
C
= 1k  
= 1000pF  
1970A G17  
2μs/DIV  
V
S
A
V
=
= 1  
5V  
200μs/DIV  
1970A G18  
L
L
L
UꢃAiꢀtorteA Output Swiꢃg  
vꢀ Frequeꢃcy  
Full Rꢁꢃge ꢂurreꢃt Seꢃꢀe  
Trꢁꢃꢀfer ꢂurve  
% Overꢀhoot vꢀ ꢂꢄOmD  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
500  
400  
300  
200  
100  
0
V
= 15V  
S
SOURCING  
CURRENT  
A
= 1  
V
A
= –1  
V
–100  
–200  
–300  
–400  
–500  
SINKING  
CURRENT  
V
A
=
15V  
S
V
= –5  
1% THD  
0
10  
100  
1k  
10k  
100  
1k  
10k  
100k  
0
1
2
3
4
5
C
(pF)  
FREQUENCY (Hz)  
V
CSNK  
= V  
(V)  
LOAD  
CSRC  
1970A G19  
1970A G20  
1970A G21  
1970afa  
6
LT1970A  
TYPICAL PERFORMANCE CHARACTERISTICS  
ꢄow ꢄevel ꢂurreꢃt Seꢃꢀe  
Trꢁꢃꢀfer ꢂurve  
ꢄogic Output ꢄevel  
Mꢁxi0u0 Output ꢂurreꢃt  
vꢀ Siꢃk ꢂurreꢃt (Output ꢄow)  
vꢀ Te0perꢁture  
25  
20  
1.0  
0.9  
0.8  
0.7  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
+
+
V
V
= 15V  
= –15V  
V
V
= 15V  
= –15V  
15  
SOURCING  
CURRENT  
10  
SOURCE  
SINK  
5
0.6  
0.5  
25°C  
0
125°C  
0.4  
0.3  
0.2  
0.1  
0
–5  
SINKING  
CURRENT  
–10  
–15  
–20  
–25  
–55°C  
25 50  
0
25 50 75 100 125 150 175 200 225 250  
–75 –50 –25  
0
75 100 125  
0.001  
0.01  
0.1  
1
10  
100  
V
= V  
(mV)  
CSRC  
TEMPERATURE (°C)  
SINK CURRENT (mA)  
CSNK  
1970A G23  
1970A G22  
1970A G24  
Output Stꢁge Quieꢀceꢃt ꢂurreꢃt  
vꢀ Supply Voltꢁge  
Sꢁfe Operꢁtiꢃg mreꢁ  
10  
8
1200  
1000  
800  
600  
400  
200  
0
I
AT 10% DUTY CYCLE  
OUT  
+
125°C  
I
V
6
25°C  
4
–55°C  
2
0
I
V
–55°C  
–2  
–4  
–6  
–8  
–10  
25°C  
125°C  
14 16  
18  
25 30  
10 15 20  
SUPPLY VOLTAGE (V)  
0
2
4
6
8
10 12  
SUPPLY VOLTAGE ( V)  
0
5
35 40  
1970A G26  
1970A G25  
ꢂoꢃtrol Stꢁge Quieꢀceꢃt ꢂurreꢃt  
vꢀ Supply Voltꢁge  
Supply ꢂurreꢃt vꢀ Supply Voltꢁge  
iꢃ ShutAowꢃ  
5
4
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 0V  
I
ENABLE  
CC  
85°C  
125°C  
25°C  
–55°C  
3
25°C  
2
–55°C  
1
0
I
EE  
–1  
–2  
–3  
–4  
–5  
–55°C  
25°C  
125°C  
8
10  
0
2
4
6
12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE ( V)  
SUPPLY VOLTAGE (V)  
1970A G27  
1970A G28  
1970afa  
7
LT1970A  
PIN FUNCTIONS  
V
(Piꢃꢀ 1, 15, 11, 25, 21): Minus Supply Voltage. V  
FITER (Piꢃ ±): Current Sense Filter Pin. This pin is  
EE  
EE  
connects to the substrate of the integrated circuit die, and  
normally not used and should be left open or shorted to  
therefore must always be the most negative voltage ap-  
the SENSE pin. The FILTER pin can be used to adapt the  
plied to the part. Decouple V to ground with a low ESR  
response time of the current sense amplifiers with a 1nF  
EE  
capacitor. V may be a negative voltage or it may equal  
to 100nF capacitor connected to the SENSE input. An  
EE  
ground potential. Any or all of the V pins may be used.  
internal 1k resistor sets the filter time constant.  
EE  
Unused V pins must remain open.  
EE  
SENSE (Piꢃ 6): Negative Current Sense Pin. This pin is  
V (Piꢃ 2): Output Stage Negative Supply. V may equal  
normally connected to the load end of the external sense  
resistor.Sourcingcurrentlimitoperationisactivatedwhen  
V
or may be smaller in magnitude. Only output stage  
EE  
current flows out of V , all other current flows out of V .  
the voltage V  
(V  
+ – V  
–) equals 1/10 of  
EE  
SENSE SENSE  
the programming control voltage at VC  
SENSE  
V maybeusedtodrivethebase/gateofanexternalpower  
(Pin 13). Sink-  
SRC  
devicetoboosttheamplifier’soutputcurrenttolevelsabove  
the rated 500mA of the on-chip output devices. Unless  
ing current limit operation is activated when the voltage  
equals –1/10 of the programming control voltage  
V
SENSE  
at VC  
used to drive boost transistors, V should be decoupled  
(Pin 12).  
SNK  
to ground with a low ESR capacitor.  
V
(Piꢃ 7): Positive Supply Voltage. All circuitry except  
ꢂꢂ  
OUT (Piꢃ 3): Amplifier Output. The OUT pin provides the  
force function as part of a Kelvin sensed load connection.  
OUTisnormallyconnecteddirectlytoanexternalloadcur-  
the output transistors draw power from V . Total supply  
CC  
voltage from V to V must be between 3.5V and 36V.  
CC  
EE  
+
V
CC  
mustalwaysbegreaterthanorequaltoV . V should  
CC  
+
rentsenseresistorandtheSENSE pin.Amplifierfeedback  
always be decoupled to ground with a low ESR capacitor.  
is directly connected to the load and the other end of the  
current sense resistor. The load connection is also wired  
–IN (Piꢃ 8): Inverting Input of Amplifier. –IN may be any  
voltage from V – 0.3V to V + 36V. IN and +IN remain  
EE  
EE  
directly to the SENSE pin to monitor the load current.  
high impedance at all times to prevent current flow into  
the inputs when current limit mode is active. Care must  
be taken to ensure that –IN or +IN can never go to a volt-  
The OUT pin is current limited to 800mA typical. This  
currentlimitprotectstheoutputtransistorintheeventthat  
connections to the external sense resistor are opened or  
shortedwhichdisablestheprecisioncurrentlimitfunction.  
age below V – 0.3V even during transient conditions or  
EE  
damage to the circuit may result. A Schottky diode from  
V
to –IN can provide clamping if other elements in the  
+
EE  
SENSE (Piꢃ 4): Positive Current Sense Pin. This lead is  
circuit can allow –IN to go below V .  
EE  
normallyconnectedtothedrivenendoftheexternalsense  
resistor.Sourcingcurrentlimitoperationisactivatedwhen  
+IN(Pi9):NoninvertingInputofAmplifier.+INmaybeany  
the voltage V  
(V  
+ – V  
–) equals 1/10 of  
SRC  
voltage from V – 0.3V to V + 36V. IN and +IN remain  
SENSE SENSE  
the programming control voltage at VC  
SENSE  
EE EE  
(Pin 13). Sink-  
high impedance at all times to prevent current flow into  
the inputs when current limit mode is active. Care must  
be taken to ensure that –IN or +IN can never go to a volt-  
ing current limit operation is activated when the voltage  
V
equals –1/10 of the programming control voltage  
SNK  
SENSE  
at VC  
(Pin 12).  
age below V – 0.3V even during transient conditions or  
EE  
damage to the circuit may result. A Schottky diode from  
V
to +IN can provide clamping if other elements in the  
EE  
circuit can allow +IN to go below V .  
EE  
1970afa  
8
LT1970A  
PIN FUNCTIONS  
Vꢂ  
(Piꢃ 12): Sink Current Limit Control Voltage In-  
current. The current limit flag is off when the source  
current limit is not active. ISRC, ISNK and TSD may be  
wired “OR” together if desired. ISRC may be left open if  
this function is not monitored.  
SNK  
put. The current sink limit amplifier will activate when  
+
the sense voltage between SENSE and SENSE equals  
–1.0 • V  
and V  
and V  
at VC  
/10. VC  
may be set between V  
VCSNK  
COMMON  
SENSE  
SNK COMMON  
+ 6V. The transfer function between VC  
SNK  
ISNK (Piꢃ 17): Sinking Current Limit Digital Output Flag.  
ISNK is an open-collector digital output. ISNK pulls low  
whenever the sinking current limit amplifier assumes  
control of the output. This pin can sink up to 10mA of  
current. The current limit flag is off when the source  
current limit is not active. ISRC, ISNK and TSD may be  
wired “OR” together if desired. ISNK may be left open if  
this function is not monitored.  
is linear except for very small input voltages  
< 60mV. V  
limits at a minimum set point  
SNK  
SENSE  
of 4mV typical to ensure that the sink and source limit  
amplifiers do not try to operate simultaneously. To force  
zero output current, the ENABLE pin can be taken low.  
Vꢂ  
(Piꢃ 13): Source Current Limit Control Voltage  
SRꢂ  
Input. The current source limit amplifier will activate  
+
when the sense voltage between SENSE and SENSE  
equals V  
and V  
and V  
at VC  
TSD (Piꢃ 18): Thermal Shutdown Digital Output Flag. TSD  
isanopen-collectordigitaloutput.TSDpullslowwhenever  
theinternalthermalshutdowncircuitactivates, typicallyat  
a die temperature of 160°C. This pin can sink up to 10mA  
of output current. The TSD flag is off when the die tem-  
perature is within normal operating temperatures. ISRC,  
ISNKandTSDmaybewiredORtogetherifdesired.ISNK  
may be left open if this function is not monitored. Thermal  
shutdown activation should prompt the user to evaluate  
electrical loading or thermal environmental conditions.  
/10. VC  
may be set between V  
VCSRC  
SRC COMMON  
+ 6V. The transfer function between VC  
COMMON  
SRC  
is linear except for very small input voltages  
SENSE  
< 60m  
V. V  
limits at a minimum set point  
SRC  
SENSE  
of 4mV typical to ensure that the sink and source limit  
amplifiers do not try to operate simultaneously. To force  
zero output current, the ENABLE pin can be taken low.  
ꢂOMMON (Piꢃ 14): Control and ENABLE inputs and flag  
outputs are referenced to the COMMON pin. COMMON  
may be at any potential between VEE and VCC – 3V. In  
+
+
V (Piꢃ 19): Output Stage Positive Supply. V may equal  
typical applications, COMMON is connected to ground.  
V
or may be smaller in magnitude. Only output stage  
CC  
+
ENmBꢄE (Piꢃ 1±): ENABLE Digital Input Control. When  
taken low this TTL-level digital input turns off the ampli-  
fier output and drops supply current to less than 1mA.  
Use the ENABLE pin to force zero output current. Setting  
current flows through V , all other current flows into V .  
CC  
+
V may be used to drive the base/gate of an external power  
devicetoboosttheamplifier’soutputcurrenttolevelsabove  
the rated 500mA of the on-chip output devices. Unless  
+
VC  
= VC  
= 0V allows I  
OUT  
= 4mV/R to flow  
used to drive boost transistors, V should be decoupled  
SNK  
in or out of V  
SRC  
OUT  
SENSE  
.
to ground with a low ESR capacitor.  
ISRC (Piꢃ 16): Sourcing Current Limit Digital Output Flag.  
ISRC is an open-collector digital output. ISRC pulls low  
whenever the sourcing current limit amplifier assumes  
control of the output. This pin can sink up to 10mA of  
ExpoꢀeA PꢁA (Piꢃ 21): The exposed backside of the pack-  
age is electrically connected to the V pins on the IC die.  
EE  
The package base should be soldered to a heat spreading  
pad on the PC board that is electrically connected to V .  
EE  
1970afa  
9
LT1970A  
BLOCK DIAGRAM AND TEST CIRCUIT  
R
F
1k  
V
CC  
+
7
V
15V  
19  
+IN  
9
8
+
Q1  
Q2  
OUT  
+
V
IN  
1=  
GM1  
3
–IN  
R
G
1k  
10k  
10k  
10k  
ISNK  
ISRC  
TSD  
17  
16  
18  
+
D1  
D2  
R
1Ω  
CS  
+
I
I
V
SNK  
SNK  
SRC  
+
SENSE  
FILTER  
15V  
4
5
6
ENABLE  
+
V
ENABLE  
15  
12  
SENSE  
VC  
SNK  
5V  
VC  
SNK  
+
R
FIL  
1k  
R
VC  
LOAD  
SRC  
V
SRC  
VC  
1k  
13  
14  
SRC  
2
V
COMMON  
EE  
–15V  
1, 10, 11, 20  
1970ATC  
APPLICATIONS INFORMATION  
The LT1970A power op amp with precision controllable  
current limit is a flexible voltage and current source  
module. The drawing on the front page of this data sheet  
is representative of the basic application of the circuit,  
however many alternate uses are possible with proper  
understanding of the subcircuit capabilities.  
a conventional manner. The output stage includes current  
limiting at 800mA to protect against fault conditions.  
The input stage has high differential breakdown of 36V  
minimum between –IN and +IN. No current will flow at  
the inputs when differential input voltage is present. This  
feature is important when the precision current sense  
amplifiers “I  
” and “I ” become active.  
SINK  
SRC  
ꢂIRꢂUIT DESꢂRIPTION  
ꢂurreꢃt ꢄi0it m0plifierꢀ  
AmplifierstagesI andI areveryhightranscon-  
Mꢁiꢃ Operꢁtioꢃꢁl m0plifier  
SINK  
SRC  
ductance amplifier stages with independently controlled  
Subcircuit block GM1, the 1X unity-gain current buffer  
and output transistors Q1 and Q2 form a standard op-  
erational amplifier. This amplifier has 500mA current  
output capability and a 3.6MHz gain-bandwidth product.  
Most applications of the LT1970A will use this op amp  
in the main signal path. All conventional op amp circuit  
configurationsaresupported.Inverting,noninverting,filter,  
summation or nonlinear circuits may be implemented in  
offset voltages. These amplifiers monitor the voltage  
+
between input pins SENSE and SENSE which usually  
sense the voltage across a small external current sense  
resistor. The transconductance amplifiers outputs con-  
nect to the same high impedance node as the main input  
stage GM1 amplifier. Small voltage differences between  
+
SENSE and SENSE , smaller than the user set VC /10  
SNK  
1970afa  
10  
LT1970A  
APPLICATIONS INFORMATION  
andVC /10inmagnitude, causethecurrentlimitampli-  
For low V supply applications it is important to keep  
CC  
SRC  
fiers to decouple from the signal path. This is functionally  
the maximum input control voltages, VC  
and VC  
,
SRC  
SNK  
indicatedbydiodesD1andD2intheBlockDiagram.When  
at least 2.5V below the V potential. This ensures linear  
CC  
the voltage V  
increases in magnitude sufficient to  
controlofthecurrentlimitthreshold.Reducingthecurrent  
limit sense resistor value allows high output current from  
a smaller control voltage which may be necessary if the  
SENSE  
equal or overcome one of the offset voltages VC /10 or  
SNK  
VC /10,theappropriatecurrentlimitamplifierbecomes  
SRC  
activeandbecauseofitsveryhightransconductance,takes  
V
CC  
supply is only 5V.  
control from the input stage, GM1. The output current is  
The transfer function from V to the associated V is  
C
OS  
regulated to a value of I  
= V  
/R  
= (VC  
or  
OUT  
SENSE SENSE  
SRC  
linear from about 0.1V to 5V in, or 10mV to 500mV at  
thecurrentlimitamplifierinputs. Anintentionalnonlinear-  
ity is built into the transfer functions at low levels. This  
nonlinearity ensures that both the sink and source limit  
amplifiers cannot become active simultaneously. Simul-  
taneous activation of the limit amplifiers could result in  
uncontrolledoutputs.AsshownintheTypicalPerformance  
Characteristics curves, the control inputs have a “hockey  
stick” shape, to keep the minimum limit threshold at 4mV  
for each limit amplifier.  
VC )/(10 • R  
). The time required for the current  
SNK  
SENSE  
limitamplifierstotakecontroloftheoutputistypically4μs.  
Linear operation of the current limit sense amplifier  
+
occurs with the inputs SENSE and SENSE ranging be-  
tween V – 1.5V and V + 1.5 . Most applications will  
V
CC  
EE  
+
connect pins SENSE and OUT together, with the load on  
the opposite side of the external sense resistor and pin  
SENSE . Feedback to the inverting input of GM1 should  
be connected from SENSE to IN. Ground side sensing  
of load current may be employed by connecting the load  
Figure 1 illustrates an interesting use of the current  
sense input pins. Here the current limit control ampli-  
fiers are used to produce a symmetrically limited output  
voltage swing. Instead of monitoring the output current,  
the output voltage is divided down by a factor of 20 and  
+
between pins OUT and SENSE . Pin SENSE would be  
connected to ground in this instance. Load current would  
be regulated in exactly the same way as the conventional  
connection. However, voltage mode accuracy would be  
degraded in this case due to the voltage across R  
.
+
SENSE  
+
applied to the SENSE input, with the SENSE input  
+
Creative applications are possible where pins SENSE and  
grounded. When the threshold voltage between SENSE  
SENSE monitor a parameter other than load current. The  
and SENSE (V  
/10) is reached, the current limit  
CLAMP  
operating principle that at most one of the current limit  
stages may be active at one time, and that when active,  
the current limit stages take control of the output from  
GM1, can be used for many different signals.  
stage takes control of the output and clamps it a level of  
2 • V . With control inputs VC and VC tied  
together, a single polarity input voltage sets the same +  
and – output limit voltage for symmetrical limiting. In this  
circuit the output will current limit at the built-in fail-safe  
level of typically 800mA.  
CLAMP  
SRC  
SNK  
ꢂurreꢃt ꢄi0it ThreꢀholA ꢂoꢃtrol Bufferꢀ  
Input pins VC  
and VC  
are used to set the response  
SNK  
SRC  
ENmBꢄE ꢂoꢃtrol  
thresholds of current limit amplifiers “I  
” and “I ”.  
SRC  
SINK  
Each of these inputs may be independently driven by a  
voltage of 0V to 5V above the COMMON reference pin.  
The 0V to 5V input voltage is attenuated by a factor of 10  
and applied as an offset to the appropriate current limit  
amplifier. AC signals may be applied to these pins. The AC  
The ENABLE input pin puts the LT1970A into a low sup-  
ply current, high impedance output state. The ENABLE  
pin responds to TTL threshold levels with respect to the  
COMMON pin. Pulling the ENABLE pin low is the best  
way to force zero current at the output. Setting VC  
=
SNK  
bandwidth from a V pin to the output is typically 2MHz.  
VC  
= 0V allows the output current to remain as high  
C
SRC  
as 4mV/R  
For proper operation of the LT1970A, these control inputs  
cannot be left floating.  
.
SENSE  
1970afa  
11  
LT1970A  
APPLICATIONS INFORMATION  
12V  
V
OUT  
80mV  
1V/DIV  
0V  
TO  
V
CLAMP  
R3  
3k  
10V  
OV TO 5V  
–80mV  
TO  
–10V  
EN  
CLAMP  
VC  
SRC  
VC  
10V/DIV  
REACHED  
0V  
SNK  
OUTPUT CLAMPS  
EN  
ENABLE  
V
IN  
= 0.5V  
V
= –0.5V  
IN  
AT 2w V  
CLAMP  
+IN  
V
5V  
0V  
V
IN  
CC  
+
5μs/DIV  
V
DISABLE  
5V  
ISRC  
ISNK  
TSD  
OUT  
LT1970A  
+
SENSE  
12V  
R1  
21.5k  
SENSE  
FILTER  
R
L
VC  
SRC  
VC  
SNK  
V
–IN  
EN  
V
R2  
1.13k  
EE  
+IN  
V
V
IN  
CC  
+
COMMON  
V
ISRC  
ISNK  
R
S
1Ω  
TSD  
OUT  
LT1970A  
–12V  
+
R
R
SENSE  
G
F
1970A F01  
R
L
SENSE  
FILTER  
10Ω  
V
–IN  
V
EE  
Figure 1. Sy00etricꢁl Output Voltꢁge ꢄi0itiꢃg  
COMMON  
R
R
F
–12V  
G
10k  
In applications such as circuit testers (ATE), it may be  
preferable to apply a predetermined test voltage with a  
preset current limit to a test node simultaneously. The  
ENABLE pin can be used to provide this gating action  
as shown in Figure 2. While the LT1970A is disabled,  
the load is essentially floating and the input voltage and  
current limit control voltages can be set to produce the  
load test levels. Enabling the LT1970A then drives the  
load. The LT1970A enables and disables in just a few  
microseconds. The actual enable and disable times at  
the load are a function of the load reactance.  
10k  
1970A F02  
Figure 2. Uꢀiꢃg the ENmBꢄE piꢃ  
Forslowvaryingoutputsignals,theassertionofalowlevel  
at the current limit output flags occurs when the current  
limit threshold is reached. For fast moving signals where  
the LT1970A output is moving at the slew limit, typically  
1.6V/μs, the flag assertion can be somewhat premature  
at typically 75% of the actual current limit value.  
Operꢁtiꢃg Stꢁtuꢀ Flꢁgꢀ  
The operating status flags are designed to drive LEDs to  
provide a visual indication of current limit and thermal  
conditions. As such, the transition edges to and from  
the active low state are not particularly sharp and may  
exhibitsomeuncertainty.Addingsomepositivefeedback  
to the current limit control inputs helps to sharpen these  
transitions.  
The LT1970A has three digital output indicators; TSD,  
ISRC and ISNK. These outputs are open-collector drivers  
referred to the COMMON pin. The outputs have 36V ca-  
pabilities and can sink in excess of 10mA. ISRC and ISNK  
indicateactivationoftheassociatedcurrentlimitamplifier.  
The TSD output indicates excessive die temperature has  
caused the circuit to enter thermal shutdown. The three  
digital outputs may be wire “OR’d” together, monitored  
individually or left open. These outputs do not affect  
circuit operation, but provide an indication of the present  
operational status of the chip.  
WiththevaluesshowninFigure3, thecurrentlimitthresh-  
old is reduced by approximately 0.5% when either current  
limit status flag goes low. With sharp logic transitions, the  
status outputs can be used in a system control loop to  
take protective measures when a current limit condition  
is detected automatically.  
1970afa  
12  
LT1970A  
APPLICATIONS INFORMATION  
R1  
100Ω  
R3  
20k  
500mA  
I
CURRENT  
LIMIT  
CONTROL  
VOLTAGE  
(0.1V TO 5V)  
MAX  
I
FLAG  
SOURCE  
R2  
100Ω  
R4  
20k  
50mA  
0
I
LOW  
I
OUT  
I FLAG  
SINK  
12V  
WHEN CURRENT LIMIT  
–500mA  
VC  
SRC  
IS FLAGGED, I  
LIMIT  
TRESHOLD IS REDUCED  
BY 0.5%  
VC  
SNK  
EN  
V
ꢂtꢂ3ꢇ  
CC  
+IN  
V
V
IN  
CC  
I
I
MAX  
LOW  
+
ꢃ3ꢀꢂꢈꢂ3ꢇꢆꢂtꢂꢀꢁꢂtꢂ3  
V
S
ISRC  
ISNK  
V
ꢂtꢂꢃ3ꢇ]]3ꢉꢆ  
R
S
1Ω  
CC  
<3ꢀꢂꢈꢂꢃ3ꢇ]]3ꢉꢆ>ꢂtꢂꢀꢁꢂtꢂ3  
TSD  
S
12V  
OUT  
LT1970A  
+
SENSE  
SENSE  
R
L
R1  
54.9k  
R2  
39.2k  
R3  
2.55k  
FILTER  
V
–IN  
V
EE  
COMMON  
VC  
SRC  
VC  
SNK  
–12V  
EN  
R
G
R
F
+IN  
V
V
IN  
CC  
1970A F03  
+
V
ISRC  
ISNK  
R
S
1Ω  
TSD  
OUT  
LT1970A  
+
Figure 3. mAAiꢃg Poꢀitive FeeAaꢁck to Shꢁrpeꢃ the Trꢁꢃꢀitioꢃ  
EAgeꢀ of the ꢂurreꢃt ꢄi0it Stꢁtuꢀ Flꢁgꢀ  
SENSE  
SENSE  
FILTER  
R
L
V
–IN  
V
EE  
COMMON  
The current limit status flag can also be used to produce  
a dramatic change in the current limit value of the ampli-  
fier. Figure 4 illustrates a “snap-back” current limiting  
characteristic. In this circuit, a simple resistor network  
initially sets a high value of current limit (500mA). The  
circuitoperatesnormallyuntilthesignalislargeenoughto  
enter current limit. When either current limit flag goes low,  
the current limit control voltage is reduced by a factor of  
10. This then forces a low level of output current (50mA)  
until the signal is reduced in magnitude. When the load  
current drops below the lower level, the current limit is  
then restored to the higher value. This action is similar to  
a self resettable fuse that trips at dangerously high current  
levels and resets only when conditions are safe to do so.  
R
R
G
–12V  
F
10k  
10k  
1970A F04  
Figure 4. “Sꢃꢁp-Bꢁck” ꢂurreꢃt ꢄi0itiꢃg  
shutdown. While the thermal shutdown feature prevents  
damage to the circuit, normal operation is impaired.  
Thermal design of the LT1970A operating environment  
is essential to getting maximum utility from the circuit.  
The first concern for thermal management is minimizing  
the heat which must be dissipated. The separate power  
+
pins V and V can be a great aid in minimizing on-chip  
+
power. The output pin can swing to within 1.0V of V or  
THERMmꢄ MmNmGEMENT  
V even under maximum output current conditions. Using  
+
separate power supplies, or voltage regulators, to set V  
Miꢃi0iziꢃg Power Diꢀꢀipꢁtioꢃ  
and V to their minimum values for the required output  
The LT1970A can operate with up to 36V total supply volt-  
age with output currents up to 500mA. The amount of  
power dissipated in the chip could approach 18W under  
worst-case conditions. This amount of power will cause  
die temperature to rise until the circuit enters thermal  
swing will minimize power dissipation. The supplies V  
CC  
and V may also be reduced to a minimal value, but these  
EE  
supply pins do not carry high currents, and the power  
saving is much less. V and V must be greater than  
CC  
EE  
the maximum output swing by 1.5V or more.  
1970afa  
13  
LT1970A  
APPLICATIONS INFORMATION  
+
WhenV andV areprovidedseparatelyfromV andV ,  
plating) connecting all layers of metal also helps reduce  
the operating temperature of the LT1970A. These are also  
shown in Figure 5.  
CC  
EE  
+
care must be taken to ensure that V and V are always  
less than or equal to the main supplies in magnitude.  
Protection Schottky diodes may be required to ensure this  
in all cases, including power on/off transients.  
It is important to note that the metal planes used for heat  
sinking are connecting electrically to V . These planes  
EE  
+
Operation with reduced V and V supplies does not affect  
any performance parameters except maximum output  
swing.AllDCaccuracyandACperformancespecifications  
must be isolated from any other power planes used in  
the PCB design.  
Anothereffectivewaytocontrolthepoweramplifieroperat-  
ing temperature is to use airflow over the board. Airflow  
can significantly reduce the total thermal resistance as  
also shown in Figure 5.  
+
guaranteed with V = V and V = V are still valid with  
CC  
EE  
the reduced output signal swing range.  
Heꢁt Siꢃkiꢃg  
The power dissipated in the LT1970A die must have a path  
to the environment. With 100°C/W thermal resistance in  
free air with no heat sink, the package power dissipation  
is limited to only 1W. The 20-pin TSSOP package with  
exposed copper underside is an efficient heat conductor  
if it is effectively mounted on a PC board. Thermal resis-  
tances as low as 40°C/W can be obtained by soldering  
the bottom of the package to a large copper pattern on  
the PC board. For operation at 85°C, this allows up to  
1.625W of power to be dissipated on the LT1970A. At  
25°C operation, up to 3.125W of power dissipation can  
be achieved. The PC board heat spreading copper area  
DRIVING REmꢂTIVE ꢄOmDS  
ꢂꢁpꢁcitive ꢄoꢁAꢀ  
The LT1970A is much more tolerant of capacitive loading  
than most operational amplifiers. In a worst-case con-  
figuration as a voltage follower, the circuit is stable for  
capacitiveloadslessthan2.5nF.Highergainconfigurations  
improve the C  
handling. If very large capacitive loads  
LOAD  
are to be driven, a resistive decoupling of the amplifier  
fromthecapacitiveloadiseffectiveinmaintainingstability  
and reducing peaking. The current sense resistor, usually  
connected between the output pin and the load can serve  
as a part of the decoupling resistance.  
must be connected to V .  
EE  
Figure 5 shows examples of PCB metal being used for  
heat spreading. These are provided as a reference for  
what might be expected when using different combina-  
tions of metal area on different layers of a PCB. These  
examples are with a 4-layer board using 1oz copper on  
each layer. The most effective layers for spreading heat  
are those closest to the LT1970A junction. Soldering the  
exposed thermal pad of the TSSOP package to the board  
produces a thermal resistance from junction-to-case of  
approximately 3°C/W.  
IꢃAuctive ꢄoꢁAꢀ  
Load inductance is usually not a problem at the outputs of  
operational amplifiers, but the LT1970A can be used as a  
highoutputimpedancecurrentsource.Thisconditionmay  
be the main operating mode, or when the circuit enters  
a protective current limit mode. Just as load capacitance  
degrades the phase margin of normal op amps, load  
inductance causes a peaking in the loop response of the  
feedbackcontrolledcurrentsource.Theinductiveloadmay  
be caused by long lead lengths at the amplifier output. If  
the amplifier will be driving inductive loads or long lead  
lengths (greater than 4 inches) a 500pF capacitor from the  
As a minimum, the area directly beneath the package on  
all PCB layers can be used for heat spreading. However,  
limiting the area to that of the metal heat sinking pad is  
not very effective. Expanding the area on various layers  
significantly reduces the overall thermal resistance. The  
addition of vias (small 13 mil holes which fill during PCB  
SENSE pin to the ground plane will cancel the inductive  
load and ensure stability.  
1970afa  
14  
LT1970A  
APPLICATIONS INFORMATION  
STIꢄꢄ mIR V  
PmꢂKmGE  
TOP ꢄmYER  
2ND ꢄmYER  
3RD ꢄmYER  
BOTTOM ꢄmYER  
Jm  
TSSOP  
155°ꢂ/W  
TSSOP  
±5°ꢂ/W  
TSSOP  
°ꢂ/W  
1970A F05a  
Typicꢁl ReAuctioꢃ iꢃ V with  
Jm  
ꢄꢁ0iꢃꢁr mirflow Over the Device  
0
–10  
–20  
–30  
–40  
–50  
–60  
% REDUCTION RELATIVE  
TO V IN STILL AIR  
JA  
0
100 200 300 400 500 600 700 800 900 1000  
AIRFLOW (LINEAR FEET PER MINUTE, lfpm)  
1970A F05b  
Figure ±. Exꢁ0pleꢀ of PꢂB Metꢁl UꢀeA for Heꢁt Diꢀꢀipꢁtioꢃ. Driver Pꢁckꢁge MouꢃteA oꢃ Top  
ꢄꢁyer. Heꢁt Siꢃk PꢁA SolAereA to Top ꢄꢁyer Metꢁl. Metꢁl mreꢁꢀ Drꢁwꢃ to Scꢁle of Pꢁckꢁge Size  
1970afa  
15  
LT1970A  
APPLICATIONS INFORMATION  
5V  
V
IN  
12V  
0V  
5V  
VC  
SRC  
SOURCING  
VC  
SNK  
D1  
EN  
1N4001  
+IN  
V
CC  
+
V
SINKING  
ISRC  
ISNK  
R
1Ω  
S
500mA  
TSD  
OUT  
LT1970A  
12V  
+
SENSE  
MAGNETIC  
TRANSDUCER  
R1  
95.3K  
SENSE  
FILTER  
V
2.5V  
–IN  
V
EE  
LT1634-2.5  
D2  
1N4001  
COMMON  
1970A F06  
C1  
500pF  
–12V  
Figure 6. ꢂurreꢃt MoAulꢁtioꢃ of ꢁ Mꢁgꢃetic TrꢁꢃꢀAucer  
OPTIONAL TEST PIN  
ON/OFF CONTROL  
APPLY LOAD  
DRIVE  
5V  
Hi-Z  
0V  
5V  
CODE C – CODE D  
V
= 15V  
≈ 15V  
OUT  
(
)
1024  
V
CLR V  
REF  
CC  
ꢁꢊꢄꢂtꢂ$0%&ꢂ#  
I
I
=
≈ –4mA TO –500mA  
≈ 4mA TO 500mA  
SOURCE(MAX)  
ꢀꢁꢇꢋꢂtꢂ3  
S
DAC A  
DAC B  
DAC C  
ꢁꢊꢄꢂtꢂ$0%&ꢂ"  
=
SINK(MAX)  
ꢀꢁꢇꢋꢂtꢂ3  
S
18V  
+
3-WIRE  
R5  
R6  
3k  
10μF  
0.1μF  
SERIAL  
3k  
INTERFACE  
CS/LD  
SCK  
DI  
DECODER  
VC  
SRC  
VC  
R1  
SNK  
3.4k  
EN  
+IN  
V
CC  
+
V
R2  
10.2k  
ISRC  
ISNK  
R
S
1ꢀ  
FORCE  
TSD  
OUT  
LT1970A  
+
SENSE  
TEST PIN  
LOAD  
SENSE  
FILTER  
R3  
3.4k  
DAC D  
V
–IN  
V
EE  
COMMON  
SENSE  
10μF  
0.1μF  
+
–18V  
R4  
10.2k  
LTC1664  
QUAD 10-BIT DAC  
1970A F07  
Figure 7. Digitꢁlly ꢂoꢃtrolleA mꢃꢁlog Piꢃ Driver  
1970afa  
16  
LT1970A  
APPLICATIONS INFORMATION  
Figure 6 shows the LT1970A driving an inductive load  
with a controlled amount of current. This load is shown  
as a generic magnetic transducer, which could be used to  
create and modulate a magnetic field. Driving the current  
limit control inputs directly forces a current through the  
load that could range up to 2MHz in modulation. Clamp  
diodesareaddedtoprotecttheLT1970Aoutputfromlarge  
inductiveflybackpotentialscausedbyrapiddi/dtchanges.  
LT1787 high side current sense amplifier monitoring the  
current through sense resistor R . The LT1787 is biased  
S
from the V supply to accommodate the common mode  
EE  
input range of 10V. The sense resistor is scaled down  
to provide a 100mV maximum differential signal to the  
current sense amplifier to preserve linearity. The LT1880  
amplifier provides gain and level shifting to produce a 0V  
to 5V output signal (2.5V DC 5mV/mA) with up to 1kHz  
full-scale bandwidth. An A/D converter could then digi-  
tize this instantaneous current reading to provide digital  
feedback from the circuit.  
Supply Bypꢁꢀꢀiꢃg  
The LT1970A can supply large currents from the power  
supplies to a load at frequencies up to 4MHz. Power  
supply impedance must be kept low enough to deliver  
these currents without causing supply rails to droop. Low  
ESR capacitors, such as 0.1μF or 1μF ceramics, located  
close to the pins are essential in all applications. When  
large, high speed transient currents are present additional  
capacitance may be needed near the chip. Check supply  
rails with a scope and if signal related ripple is seen on the  
supply rail, increase the decoupling capacitor as needed.  
The LT1970A is just as easy to use as a standard opera-  
tionalamplifier.Basicamplificationofaprecisionreference  
voltage creates a very simple bench DC power supply as  
shown in Figure 9. The built-in power stage produces an  
adjustable 0V to 25V at 4mA to 100mA of output current.  
Voltage and current adjustments are derived from the  
LT1634-5 5V reference. The output current capability is  
500mA, but this supply is restricted to 100mA for power  
dissipation reasons. The worst-case output voltage for  
maximum power dissipated in the LT1970A output stage  
occurs if the output is shorted to ground or set to a voltage  
near zero. Limiting the output current to 100mA sets the  
maximum power dissipation to 3W. To allow the output to  
range all the way to 0V, an LTC1046 charge pump inverter  
is used to develop a –5V supply. This produces a negative  
rail for the LT1970A which has to sink only the quiescent  
current of the amplifier, typically 7mA.  
To ensure proper start-up biasing of the LT1970A, it is  
recommended that the rate of change of the supply volt-  
ages at turn-on be limited to be no faster than 6V/μs.  
mpplicꢁtioꢃ ꢂircuit IAeꢁꢀ  
The digitally controlled analog pin driver is shown in  
Figure 7. All of the control signals are provided by an  
LTC®1664 quad, 10-bit DAC by way of a 3-wire serial  
interface. The LT1970A is configured as a simple differ-  
ence amplifier with a gain of 3. This gain is required to  
produce 15V from the 0V to 5V outputs from DACs C  
and D. To provide voltage headroom, the supplies for the  
LT1970A are set to the maximum value of 18V. As 18V  
is the absolute maximum rating of supply voltage for the  
LT1970A,caremustbetakentonotallowthesupplyvoltage  
to increase. DACs A and B separately control the sinking  
and sourcing current limit to the load over the range of  
4mA to 500mA. An optional on/off control for the pin  
driver using the ENABLE input is shown. If always enabled  
UsingasecondLT1970A,a0Vto 12Vdualtrackingpower  
supply is shown in Figure 10. The midpoint of two 10k  
resistors connected between the + and – outputs is held  
at 0V by the LT1881 dual op amp servo feedback loop. To  
maintain 0V, both outputs must be equal and opposite in  
polarity, thus they track each other. If one output reaches  
current limit and drops in voltage, the other output fol-  
lows to maintain a symmetrical + and – voltage across  
a common load. Again, the output current limit is less  
than the full capability of the LT1970A due to thermal  
reasons. Separate current limit indicators are used on  
each LT1970A because one output only sources current  
and the other only sinks current. Both devices can share  
the same thermal shutdown indicator, as the output flags  
can be OR’ed together.  
the ENABLE pin should be tied to V .  
CC  
In some applications it may be necessary to know what  
the current into the load is at any time. Figure 8 shows an  
1970afa  
17  
LT1970A  
APPLICATIONS INFORMATION  
V
CC  
0V TO 1V  
12V  
VC  
SRC  
VC  
SNK  
EN  
+IN  
V
CC  
+
V
ISRC  
ISNK  
R
S
0.2ꢀ  
TSD  
OUT  
LT1970A  
+
SENSE  
SENSE  
R
LOAD  
FILTER  
V
–IN  
V
EE  
COMMON  
R4  
LT1787  
255k  
+
V
V
V
S
S
BIAS  
–12V  
–12V  
R
R
F
G
12V  
LT1880  
–12V  
R1  
60.4k  
20k  
+
V
OUT  
EE  
R2  
10k  
2.5V  
5mV/mA  
1kHz FULL CURRENT  
BANDWIDTH  
R3  
20k  
–12V  
0V TO 5V  
A/D  
1970A F08  
OPTIONAL DIGITAL FEEDBACK  
Figure 8. Seꢃꢀiꢃg Output ꢂurreꢃt  
30V DC  
R2 40k  
R1  
2.1k  
CURRENT LIMIT  
ADJUST  
R5  
5.49k  
R3  
10k  
R4 10k  
LOAD  
FAULT  
OUTPUT  
VOLTAGE  
ADJUST  
VC  
SRC  
VC  
SNK  
EN  
+IN  
V
CC  
+
V
ISRC  
ISNK  
R
S
1Ω  
V
OUT  
0V TO 25V  
TSD  
OUT  
LT1970A  
LT1634-5  
+
SENSE  
4mA TO 100mA  
C3  
10μF  
+
SENSE  
FILTER  
V
–IN  
V
EE  
GND  
COMMON  
–5V  
LTC1046  
C2  
+ 10μF  
+
R
R
G
F
2.55k  
10.2k  
C1 10μF  
1970A F09  
Figure 9. Si0ple Beꢃch Power Supply  
1970afa  
18  
LT1970A  
APPLICATIONS INFORMATION  
R6  
18.2k  
15V  
+
+
R7  
R8  
0.1  
10μF  
3k  
3k  
+OUT  
CURRENT FAULT  
LIMIT  
THERMAL  
VC  
SRC  
VC  
R5  
13k  
SNK  
EN  
–IN  
V
CC  
+
V
ISRC  
ISNK  
R
S1  
1ꢀ  
+OUT  
TSD  
0V TO 12V  
OUT  
LT1970A  
+
4mA TO 150mA  
SENSE  
C2  
10μF  
SENSE  
FILTER  
V
+IN  
COMMON  
V
EE  
18V  
R1  
R9  
10k  
1%  
5V  
C1  
1μF  
6.19k  
REF  
V
–15V  
OUT  
R3  
23.2k  
ADJUST  
R2  
10k  
R4  
10k  
15V  
+
LT1634-5  
OPTIONAL SYMMETRY  
ADJUST  
+
CURRENT  
R11  
10k  
1/2 LT1881  
LIMIT  
100ꢀ  
ADJUST  
1/2 LT1881  
–15V  
R12  
10k  
GROUND  
R13  
25.5k  
15V  
R15  
3k  
R10  
10k  
1%  
TO TSD PIN  
OF +OUT  
–OUT  
CURRENT  
LIMIT  
VC  
SRC  
VC  
R14  
10.7k  
SNK  
EN  
–IN  
V
CC  
+
V
ISRC  
ISNK  
R
S2  
1ꢀ  
–OUT  
TSD  
0V TO –12V  
4mA TO 150mA  
OUT  
+
LT1970A  
C3  
SENSE  
+
10μF  
SENSE  
FILTER  
V
+IN  
V
EE  
1970A F10  
COMMON  
10μF  
0.1μF  
+
–15V  
Figure 15. Duꢁl Trꢁckiꢃg Beꢃch Power Supply  
1970afa  
19  
LT1970A  
APPLICATIONS INFORMATION  
Another simple linear power amplifier circuit is shown in  
Figure 11. This uses the LT1970A as a linear driver of a DC  
motorwithspeedcontrol.Theabilitytosourceandsinkthe  
same amount of output current provides for bidirectional  
rotationofthemotor.Speedcontrolismanagedbysensing  
the output of a tachometer built on to the motor. A typi-  
cal feedback signal of 3V/1000rpm is compared with the  
desired speed-set input voltage. Because the LT1970A is  
unity-gain stable, it can be configured as an integrator to  
force whatever voltage across the motor as necessary to  
match the feedback speed signal with the set input signal.  
For motor speed control without using a tachometer, the  
circuit in Figure 12 shows an approach. Using the enable  
feature of the LT1970A, the drive to the motor can be  
removed periodically. With no drive applied, the spinning  
motor presents a back EMF voltage proportional to its  
rotational speed. The LT1782 is a tiny rail-to-rail amplifier  
with a shutdown pin. The amplifier is enabled during this  
interval to sample the back EMF voltage across the motor.  
This voltage is then buffered by one-half of an LT1638 dual  
op amp and used to provide the feedback to the LT1970A  
integrator. When re-enabled the LT1970A will adjust the  
drive to the motor until the speed feedback voltage, com-  
pared to the speed-set input voltage, settles the output to  
a fixed value. A 0V to 5V signal for the motor speed input  
controls both rotational speed and direction.  
Additionally, the current limit of the amplifier can be ad-  
justed to control the torque and stall current of the motor.  
For reliability, a feedback scheme similar to that shown in  
Figure 4 can be used. Assuming that a stalled rotor will  
generate a current limit condition, the stall current limit  
can be significantly reduced to prevent excessive power  
dissipation in the motor windings.  
The other half of the LT1638 is used as a simple pulse  
oscillator to control the periodic sampling of the motor  
back EMF.  
Figure 13 shows how easy it is to boost the output current  
of the LT1970A. This 5A power stage uses complemen-  
tary external N- and P-channel MOSFETs to provide the  
additional current. The output stage power supply inputs,  
OV TO 5V  
TORQUE/STALL  
CURRENT CONTROL  
15V  
VC  
SRC  
VC  
+
SNK  
V and V , are used to provide gate drive as needed. With  
EN  
+IN  
V
CC  
+
higher output currents, the sense resistor R , is reduced  
V
CS  
ISRC  
ISNK  
R
S
in value to maintain the same easy current limit control.  
1ꢀ  
TSD  
OUT  
LT1970A  
+
This Class B power stage is intended for DC and low  
frequency, <1kHz, applications as crossover distortion  
becomes evident at higher frequencies.  
SENSE  
SENSE  
FILTER  
12V DC  
MOTOR  
V
–IN  
V
EE  
COMMON  
GND  
Figure 13 shows some optional resistor dividers between  
theoutputconnectionsandthecurrentsenseinputs. They  
are required only if the load of this power stage is removed  
or at a very low current level. Large power devices with  
no load on them can saturate and pull the output voltage  
very close to the power supply rails. The current sense  
amplifiers operate properly with input voltages at least  
15V  
C1  
1μF  
R1  
–15V  
TACH  
1.2k  
FEEDBACK  
REVERSE  
3V/1000rpm  
R4  
49.9k  
R5  
49.9k  
1970A F11  
R2  
10k  
FORWARD  
R3  
1.2k  
–15V  
1V away from the V and V supply rails. In boosted  
CC  
EE  
current applications, it may be necessary to attenuate the  
maximum output voltage levels by 1V before connecting  
to the sense input pins. This only slightly deceases the  
current limit thresholds.  
Figure 11. Si0ple BiAirectioꢃꢁl Dꢂ Motor SpeeA ꢂoꢃtroller  
1970afa  
20  
LT1970A  
APPLICATIONS INFORMATION  
12V  
OV TO 5V  
TORQUE/STALL  
CURRENT CONTROL  
R3  
2k  
FAULT/STALL  
VC  
SRC  
FWD  
R1  
10k  
5V  
STOP  
VC  
SNK  
V
MOTOR SPEED  
CONTROL  
CC  
+IN  
+
V
R2  
20k  
ISRC  
0V  
REV  
R
S
1ꢀ  
ISNK  
TSD  
OUT  
LT1970A  
+
SENSE  
SENSE  
12V DC  
MOTOR  
FILTER  
V
–IN  
V
EE  
EN  
COM  
C1  
4.7μF  
–12V  
R6  
49.9k  
R14  
10k  
R4  
100k  
12V  
R5  
120k  
+
R15  
12V  
1/2 LT1638  
–12V  
100ꢀ  
+
LT1782  
–12V  
2.5V AT 10mA  
1μF  
C2  
0.01μF  
SHDN  
R7  
10k  
R8  
20k  
R13  
10k  
R12  
10k  
+
12V  
1/2 LT1638  
D1  
R9  
20k  
R10  
1N4148  
82.5k  
C3  
0.1μF  
D2  
1N4148  
R11  
9.09k  
1970A F12  
–12V  
Figure 12. Si0ple BiAirectioꢃꢁl Dꢂ Motor SpeeA ꢂoꢃtroller Without ꢁ Tꢁcho0eter  
1970afa  
21  
LT1970A  
PACKAGE DESCRIPTION  
Pleꢁꢀe refer to http://www.liꢃeꢁr.co0/Aeꢀigꢃtoolꢀ/pꢁckꢁgiꢃg/ for the 0oꢀt receꢃt pꢁckꢁge Arꢁwiꢃgꢀ.  
FE Pꢁckꢁge  
25-ꢄeꢁA Plꢁꢀtic TSSOP (4.400)  
(Reference LTC DWG # 05-08-1663 Rev I)  
ExpoꢀeA PꢁA Vꢁriꢁtioꢃ ꢂm  
6.40 – 6.60*  
4.95  
(.195)  
(.252 – .260)  
4.95  
(.195)  
20 1918 17 16 15 14 1312 11  
6.60 t0.10  
2.74  
(.108)  
4.50 t0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
0.45 t0.05  
1.05 t0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0s – 8s  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE20 (CA) TSSOP REV I 0211  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
1970afa  
22  
LT1970A  
REVISION HISTORY  
REV  
DmTE  
DESꢂRIPTION  
PmGE NUMBER  
A
06/12 Corrected D1, D2 orientation in Block Diagram  
Changed supply voltage in Figure 12  
10  
21  
1970afa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT1970A  
APPLICATIONS INFORMATION  
V
CC  
CURRENT LIMIT  
CONTROL VOLTAGE  
0V TO 5V  
15V  
R2  
100Ω  
10μF  
0.1μF  
IRF9530  
V
CC  
R1  
1k  
ENABLE  
+IN  
VC  
SRC  
VC  
SNK  
R4  
100Ω  
+
V
OUT  
LT1970A  
+
SENSE  
R5  
100Ω  
SENSE  
R
0.1Ω  
5W  
CS  
COMMON  
V
*
*
–IN  
V
EE  
*
*
R
LOAD  
R
F
G
2.2k  
2.2k  
V
IN  
IRF530  
0.1μF  
R3  
100Ω  
V
EE  
–15V  
10μF  
*OPTIONAL, SEE TEXT  
1970A F13  
Figure 13. mV = 1 m0plifier with Diꢀcrete Power Deviceꢀ to Booꢀt Output ꢂurreꢃt to ±m  
RELATED PARTS  
PmRT NUMBER  
LT1010  
DESꢂRIPTION  
ꢂOMMENTS  
Fast 150mA Power Buffer  
20MHz Bandwidth, 75V/μs Slew Rate  
Shutdown Mode, Adjustable Supply Current  
LT1206  
250mA/60MHz Current Feedback Amplifier  
1.1A/35MHz Current Feedback Amplifier  
High Voltage Bidirectional Current Sense Amplifier  
LT1210  
Stable with C = 10,000pF  
L
LT1999  
–5V to 80V Input Voltage Range  
1970afa  
LT 0612 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1970AIFE#TRPBF

LT1970A - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1970CFE

500mA Power Op Amp with Adjustable Precision Current Limit
Linear

LT1970CFE#PBF

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1970CFE#TR

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1970CFE#TRPBF

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1970IFE

500mA Power Op Amp with Adjustable Precision Current Limit
Linear

LT1970IFE#PBF

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1970IFE#TR

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1970IFE#TRPBF

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1970_1

500mA Power Op Amp with Adjustable Precision Current Limit
Linear

LT1976

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100mA Quiescent Current
Linear

LT1976B

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100μA Quiescent Current
Linear