LT1970CFE#TR [Linear]

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: 0°C to 70°C;
LT1970CFE#TR
型号: LT1970CFE#TR
厂家: Linear    Linear
描述:

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: 0°C to 70°C

运算放大器
文件: 总12页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1970  
500mA Power Op Amp with  
Adjustable Precision Current Limit  
U
FEATURES  
DESCRIPTIO  
The LT®1970 is a ±500mA power op amp with precise  
externally controlled current limiting. Separate control  
voltages program the sourcing and sinking current limit  
sense thresholds with 2% accuracy. Output current may  
be boosted by adding external power transistors.  
±500mA Minimum Output Current  
Independent Adjustment of Source and  
Sink Current Limits  
2% Current Limit Accuracy  
Operates with Single or Split Supplies  
Shutdown/Enable Control Input  
Thecircuitoperateswithsingleorsplitpowersuppliesfrom  
5V to 36V total supply voltage. In normal operation, the  
inputstagesuppliesandtheoutputstagesuppliesarecon-  
nected (VCC to V+ and VEE to V). To reduce power dissi-  
pationitispossibletopowertheoutputstage(V+,V)from  
independent,lowervoltagerails.Theamplifierisunity-gain  
stable with a 3.6MHz gain bandwidth product and slews at  
1.6V/µs. The current limit circuits operate with a 2MHz re-  
sponse between the VCSRC or VCSNK control inputs and  
the amplifier output.  
Open Collector Status Flags:  
Sink Current Limit  
Source Current Limit  
Thermal Shutdown  
Fail Safe Current Limit and Thermal Shutdown  
1.6V/µs Slew Rate  
3.6MHz Gain Bandwidth Product  
Fast Current Limit Response: 2MHz Bandwidth  
Specified Temperature Range: 40°C to 85°C  
U
Open collector status flags signal current limit circuit  
activation,aswellasthermalshutdownoftheamplifier.An  
enable logic input puts the amplifier into a low power, high  
impedance output state when pulled low. Thermal shut-  
down and a ±800mA fixed current limit protect the chip  
under fault conditions.  
APPLICATIO S  
Automatic Test Equipment  
Laboratory Power Supplies  
Motor Drivers  
Thermoelectric Cooler Driver  
The LT1970 is packaged in a 20-lead TSSOP package with  
a thermally conductive copper bottom plate to facilitate  
heat sinking.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
AV = 2 Amplifier with Adjustable ±500mA Full-Scale  
Current Limit and Fault indication  
Current Limited Sinewave Into 10Load  
V
LIMIT  
0V TO 5V  
15V  
3k  
15V  
V
LIMIT  
10 • R  
I
= ±  
OUT(LIMIT)  
4V  
CS  
V
CC  
+
V
2V  
VC  
SRC  
VLOAD  
V
IN  
+IN  
VC  
SNK  
0V  
R
CS  
ISNK  
1Ω  
I
ISRC  
OUT  
2V  
1/4W  
TSD  
+
OUT  
LT1970  
SENSE  
SENSE  
LOAD  
V
R1  
10k  
–IN  
V
EE  
COMMON  
VCSRC = 4V  
VCSNK = 2V  
RCS = 1Ω  
20µs/DIV  
1970 TA02  
R2  
10k  
–15V  
1970 TA01  
1970f  
1
LT1970  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
Supply Voltage (VCC to VEE).................................... 36V  
Positive High Current Supply (V+) .................. Vto VCC  
Negative High Current Supply(V) ................... VEE to V+  
Amplifier Output (OUT)..................................... Vto V+  
Current Sense Pins  
NUMBER  
V
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
EE  
EE  
+
V
LT1970CFE  
OUT  
3
TSD  
+
SENSE  
4
ISNK  
FILTER  
5
ISRC  
(SENSE+, SENSE, FILTER) .......................... Vto V+  
Logic Outputs (ISRC, ISNK, TSD)....... COMMON to VCC  
Input Voltage (–IN, +IN).......... VEE – 0.3V to VEE + 36V  
Input Current ....................................................... 10mA  
Current Control Inputs  
+
SENSE  
6
ENABLE  
COMMON  
V
7
CC  
–IN  
+IN  
8
VC  
SRC  
9
VC  
SNK  
V
10  
V
EE  
EE  
(VCSRC, VCSNK) .............COMMON to COMMON + 7V  
Enable Logic Input .............................. COMMON to VCC  
COMMON ..................................................... VEE to VCC  
Output Short-Circuit Duration......................... Indefinite  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Specified Temperature Range (Note 3)... 40°C to 85°C  
Maximum Junction Temperature ......................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
TJMAX = 150°C, θJA = 40°C/ W (NOTE 6)  
UNDERSIDE METAL CONNECTED TO VEE  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. See Test Circuit for standard test conditions.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Op Amp Characteristics  
V
Input Offset Voltage  
200  
600  
800  
1000  
µV  
µV  
µV  
OS  
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
Input Offset Voltage Drift (Note 4)  
Input Offset Current  
–10  
–100  
–600  
–4  
10  
µV/°C  
nA  
I
I
V
V
= 0V  
= 0V  
100  
OS  
CM  
CM  
Input Bias Current  
–160  
3
nA  
B
Input Noise Voltage  
0.1Hz to 10Hz  
1kHz  
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
15  
3
nV/Hz  
pA/Hz  
n
i
1kHz  
n
R
Common Mode  
Differential Mode  
500  
100  
kΩ  
kΩ  
IN  
C
V
Input Capacitance  
Pin 8 and Pin 9 to Ground  
6
pF  
IN  
Input Voltage Range  
Typical  
Guaranteed by CMRR Test  
–14.5  
–12.0  
13.6  
12.0  
V
V
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
–12V < V < 12V  
92  
105  
dB  
CM  
+
V
V
V
V
= V = –5V, V = V = 3V to 30V  
90  
110  
90  
100  
130  
100  
130  
dB  
dB  
dB  
dB  
EE  
EE  
EE  
EE  
CC  
+
= V = –5V, V = 30V, V = 2.5V to 30V  
CC  
+
= V = –3V to 30V, V = V = 5V  
CC  
+
= –30V, V = –2.5V to –30V, V = V = 5V  
110  
CC  
1970f  
2
LT1970  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. See Test Circuit for standard test conditions.  
SYMBOL  
PARAMETER  
CONDITIONS  
R = 1k, –12.5V < V < 12.5V  
OUT  
MIN  
TYP  
MAX  
UNITS  
A
Large-Signal Voltage Gain  
100  
75  
150  
V/mV  
V/mV  
VOL  
L
R = 100, –12.5V < V  
< 12.5V  
80  
40  
120  
60  
V/mV  
V/mV  
L
OUT  
+
R = 10, –5V < V  
L
< 5V, V = V = 8V  
20  
5
V/mV  
V/mV  
OUT  
V
V
Output Sat Voltage Low  
Output Sat Voltage High  
Output Short-Circuit Current  
V
OL  
= V  
– V  
OUT  
OL  
OH  
+
R = 100, V = V = 15V, V = V = –15V  
1.9  
0.8  
2.4  
2.2  
V
V
L
CC  
EE  
+
R = 10, V = V = 15V, V = –V = 5V  
L
CC  
EE  
+
V
OH  
= V – V  
OUT  
+
R = 100, V = V = 15V, V = V = –15V  
1.7  
1.0  
V
V
L
CC  
EE  
+
R = 10, V = V = 15V, V = –V = 5V  
L
CC  
EE  
I
Output Low, R  
Output High, R  
= 0Ω  
= 0Ω  
500  
–1000  
800  
800  
1200  
500  
mA  
mA  
SC  
SENSE  
SENSE  
SR  
Slew Rate  
–10V < V  
< 10V, R = 1k  
0.7  
11  
1.6  
V/µs  
kHz  
MHz  
µs  
OUT  
L
FPBW  
GBW  
Full Power Bandwidth  
Gain Bandwidth Product  
Settling Time  
V
OUT  
= 10V  
(Note 5)  
PEAK  
f = 10kHz  
0.01%, V  
3.6  
8
t
= 0V to 10V, A = –1, R = 1k  
S
OUT  
V
L
Current Sense Characteristics  
V
Minimum Current Sense Voltage  
VC  
= VC  
= 0V  
0.1  
0.1  
4
7
10  
mV  
mV  
SENSE(MIN)  
SRC  
SNK  
V
V
V
Current Sense Voltage 4% of Full Scale  
Current Sense Voltage 10% of Full Scale  
VC  
SRC  
VC  
SRC  
SRC  
= VC  
= VC  
= VC  
= 0.2V  
= 0.5V  
= 5V  
15  
45  
20  
50  
25  
55  
mV  
mV  
SENSE(4%)  
SENSE(10%)  
SENSE(FS)  
SNK  
SNK  
SNK  
Current Sense Voltage 100% of Full Scale VC  
490  
480  
500  
500  
510  
520  
mV  
mV  
I
I
I
I
Current Limit Control Input Bias Current  
VC , VC Pins  
SRC SNK  
–1  
–0.2  
0.1  
200  
200  
µA  
nA  
nA  
BI  
SENSE  
FILTER  
SENSE Input Current  
0V < (VC , VC ) < 5V  
200  
200  
SRC  
SNK  
FILTER Input Current  
0V < (VC , VC ) < 5V  
SRC SNK  
+
+
SENSE Input Current  
VC = VC  
= 0V  
–500  
200  
–300  
500  
300  
–200  
25  
nA  
µA  
µA  
µA  
SENSE  
SRC  
SRC  
SNK  
= 5V, VC  
VC  
= 0V  
= 5V  
250  
–250  
SNK  
SNK  
VC = 0V, VC  
SRC  
VC  
= VC  
= 5V  
–25  
SRC  
SRC  
SRC  
SNK  
SNK  
SNK  
Current Sense Change with Output Voltage VC  
= VC  
= 5V, –12.5V < V  
< 12.5V  
0.1  
750  
0.1  
%
OUT  
+
Current Sense Change with Supply Voltage VC  
= VC  
= 5V, 6V < (V , V ) < 18V  
±0.05  
±0.01  
±0.05  
±0.01  
%
%
%
%
CC  
+
2.5V < V < 18V, V = 18V  
–18V < (V , V ) < –2.5V  
–18V < V < –2.5V, V = –18V  
CC  
EE  
EE  
Current Sense Bandwidth  
2
MHz  
R
Resistance FILTER to SENSE  
1000  
1250  
CSF  
Logic I/O Characteristics  
Logic Output Leakage ISRC, ISNK, TSD  
Logic Low Output Level  
V = 15V  
I = 5mA  
1
µA  
V
0.2  
25  
0.4  
Logic Output Current Limit  
Enable Logic Threshold  
mA  
V
V
0.8  
–1  
1.6  
2.4  
1
ENABLE  
I
Enable Pin Bias Current  
µA  
ENABLE  
1970f  
3
LT1970  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. See Test Circuit for standard test conditions.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
7
MAX  
13  
UNITS  
mA  
mA  
mA  
µs  
+
I
I
I
t
t
Total Supply Current  
Supply Current  
V
V
V
, V and V , V Connected  
SUPPLY  
CC  
CC  
CC  
CC  
EE  
+
V
, V and V , V Separate  
3
7
CC  
EE  
+
Supply Current Disabled  
Turn-On Delay  
, V and V , V Connected, V 0.8V  
ENABLE  
0.6  
10  
10  
1.5  
CC(STBY)  
ON  
EE  
(Note 7)  
(Note 7)  
Turn-Off Delay  
µs  
OFF  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: This parameter is not 100% tested.  
Note 5: Full power bandwidth is calculated from slew rate measurements:  
Note 2: The LT1970C is guaranteed functional over the operating  
temperature range of 40°C and 85°C.  
Note 3: The LT1970C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1970C is designed, characterized and expected to  
meet specified performance from 40°C to 85°C but is not tested or QA  
sampled at these temperatures.  
FPBW = SR/(2 • π • V )  
P
Note 6: Thermal resistance varies depending upon the amount of PC board  
metal attached to the device. If the maximum dissipation of the package is  
exceeded, the device will go into thermal shutdown and be protected.  
Note 7: Turn-on and turn-off delay are measured from V  
1.6V to the OUT pin at 90% of normal output voltage.  
crossing  
ENABLE  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Total Supply Current  
vs Supply Voltage  
Warm-Up Drift VIO vs Time  
Input Bias Current vs VCM  
14  
12  
10  
8
6
4
–100  
–120  
–140  
–160  
–180  
–200  
220  
–240  
–260  
V
= ±15V  
S
+
I
+ I  
125°C  
25°C  
CC  
V
–I  
BIAS  
+I  
–55°C  
–55°C  
2
0
BIAS  
I
+ I  
EE  
V
–2  
–4  
–6  
–8  
–10  
–12  
–14  
0V  
25°C  
TIME (100ms/DIV)  
1970 G04  
125°C  
0
2
4
6
8
10 12 14 16 18  
–15 –12 –9 –6 –3  
0
3
6
9
12 15  
SUPPLY VOLTAGE (±V)  
COMMON MODE INPUT VOLTAGE (V)  
1970 G15  
1970 G05  
1970f  
4
LT1970  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Open-Loop Gain and Phase  
Supply Current vs Supply Voltage  
vs Frequency  
Phase Margin vs Supply Voltage  
70  
60  
50  
40  
100  
90  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
+
A
= –1  
V
F
I
V
R = R = 1k  
G
I
V
T
= 25°C  
A
80  
V
= V /2  
GAIN  
PHASE  
OUT  
S
70  
I
VCC  
30  
20  
60  
50  
I
VEE  
10  
0
40  
30  
20  
10  
0
–10  
–20  
–30  
T
= 25°C  
CC  
A
+
V
= V = –V = –V  
EE  
0
100  
1k  
10k 100k  
1M  
10M 100M  
0
4
8
12 16 20 24 28 32 36  
2
4
6
8
10 12  
20  
14 16 18  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
1970 G18  
1970 G21  
1870 G16  
Slew Rate vs Supply Voltage  
Slew Rate vs Temperature  
Large-Signal Response, AV = 1  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.8  
V
S
= ±15V  
FALLING  
1.7  
1.6  
FALLING  
RISING  
10V  
0V  
RISING  
1.5  
1.4  
1.3  
1.2  
1.1  
–10V  
A
= –1  
V
F
R
L = 1k  
20µs/DIV  
1970 G39  
R = R = 1k  
G
T
= 25°C  
A
1.0  
–50 –25  
0
25  
50  
75 100 125  
6
8
12  
14  
16  
18  
4
10  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V)  
1970 G24  
1970 G23  
Large-Signal Response, AV = 1  
Small-Signal Response, AV = 1  
Small-Signal Response, AV = 1  
10V  
0V  
10V  
R
L = 1k  
20µs/DIV  
1970 G40  
RL = 1k  
500ns/DIV  
1970 G41  
RL = 1k  
CL = 1000pF  
2µs/DIV  
1970 G42  
CL = 1000pF  
1970f  
5
LT1970  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Undistorted Output Swing  
vs Frequency  
Full Range Current Sense  
Transfer Curve  
% Overshoot vs CLOAD  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
500  
400  
V
= ±15V  
S
300  
SOURCING  
A
= 1  
V
200  
CURRENT  
100  
0
A
= –1  
V
–100  
–200  
–300  
–400  
–500  
SINKING  
CURRENT  
V
A
= ±15V  
S
V
= –5  
1% THD  
0
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
0
1
2
3
4
5
FREQUENCY (Hz)  
C
(pF)  
LOAD  
V
= V  
(V)  
CSNK  
CSRC  
1970 G47  
1970 G44  
1970 G50  
Low Level Current Sense  
Transfer Curve  
Output Stage Quiescent Current  
vs Supply Voltage  
10  
8
25  
20  
15  
10  
5
+
125°C  
I
V
6
SOURCING  
CURRENT  
25°C  
4
–55°C  
2
0
0
I
V
–55°C  
–2  
–4  
–6  
–8  
–10  
–5  
SINKING  
–10  
–15  
–20  
–25  
25°C  
CURRENT  
125°C  
14 16  
SUPPLY VOLTAGE (±V)  
18  
0
25 50 75 100 125 150 175 200 225 250  
= V (mV)  
0
2
4
6
8
10 12  
V
CSNK  
CSRR  
1970 G80  
1970 G51  
Control Stage Quiescent Current  
vs Supply Voltage  
Supply Current vs Supply Voltage  
in Shutdown  
800  
700  
600  
500  
400  
300  
200  
100  
0
5
4
V
= 0V  
I
ENABLE  
CC  
85°C  
125°C  
25°C  
–55°C  
3
25°C  
2
–55°C  
1
0
I
EE  
–1  
–2  
–3  
–4  
–5  
–55°C  
25°C  
125°C  
8
10  
0
2
4
6
12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (±V)  
1970 G82  
1970 G81  
1970f  
6
LT1970  
U
U
U
PI FU CTIO S  
VEE (Pins 1, 10, 11, 20, Package Base): Minus Supply  
Voltage. VEE connects to the substrate of the integrated  
circuitdie,andthereforemustalwaysbethemostnegative  
voltage applied to the part. Decouple VEE to ground with a  
low ESR capacitor. VEE may be a negative voltage or it may  
equal ground potential. Any or all of the VEE pins may be  
used. Unused VEE pins must remain open.  
V(Pin 2): Output Stage Negative Supply. Vmay equal  
VEE or may be smaller in magnitude. Only output stage  
current flows out of V, all other current flows out of VEE.  
Vmay be used to drive the base/gate of an external power  
device to boost the amplifier’s output current to levels  
above the rated 500mA of the on-chip output devices.  
Unless used to drive boost transistors, Vshould be  
decoupled to ground with a low ESR capacitor.  
FILTER (Pin 5): Current Sense Filter Pin. This pin is  
normally not used and should be left open in most appli-  
cations. When very large capacitive loads are driven, a  
filter capacitor connected between FILTER and SENSE+  
will reduce overshoot as the amplifier enters current  
limiting mode. The filter time constant is set by an internal  
1k resistor and the external filter capacitor. Capacitor  
values of 1nF to 100nF are most effective at reducing  
overshoot.  
SENSE(Pin 6): Negative Current Sense Pin. This pin is  
normally connected to the load end of the external sense  
resistor. Positive current limit operation is activated when  
the voltage VSENSE (VSENSE+ – VSENSE–) equals 1/10 of  
the programming control voltage at VCSRC (Pin 13).  
Negative current limit operation is activated when the  
voltage VSENSE equals –1/10 of the programming control  
voltage at VCSNK (Pin 12).  
OUT (Pin 3): Amplifier Output. The OUT pin provides the  
force function as part of a Kelvin sensed load connection.  
OUT is normally connected directly to an external load  
current sense resistor and the SENSE+ pin. Amplifier  
feedback is directly connected to the load and the other  
end of the current sense resistor. The load connection is  
also wired directly to the SENSEpin to monitor the load  
current.  
VCC (Pin 7): Positive Supply Voltage. All circuitry except  
the output transistors draw power from VCC. Total supply  
voltage from VCC to VEE must be between 3.5V and 36V.  
VCC mustalwaysbegreaterthanorequaltoV+. VCCshould  
always be decoupled to ground with a low ESR capacitor.  
IN (Pin 8): Inverting Input of Amplifier. IN may be any  
voltage from VEE – 0.3V to VEE + 36V. IN and +IN remain  
The OUT pin is current limited to ±800mA typical. This  
current limit protects the output transistor in the event highimpedanceatalltimestopreventcurrentflowintothe  
thatconnectionstotheexternalsenseresistorareopened inputs when current limit mode is active. Care must be  
or shorted which disables the precision current limit taken to insure that IN or +IN can never go to a voltage  
function.  
below VEE – 0.3V even during transient conditions or  
damage to the circuit may result. A Schottky diode from  
VEE to IN can provide clamping if other elements in the  
circuit can allow IN to go below VEE.  
SENSE+ (Pin 4): Positive Current Sense Pin. This lead is  
normally connected to the driven end of the external sense  
resistor. Positive current limit operation is activated when  
the voltage VSENSE (VSENSE+ – VSENSE–) equals 1/10 of  
theprogrammingcontrolvoltageatVCSRC (Pin13). Nega-  
tive current limit operation is activated when the voltage  
VSENSE equals –1/10 of the programming control voltage  
at VCSNK (Pin 12).  
+IN (Pin 9): Noninverting Input of Amplifier. +IN may be  
any voltage from VEE – 0.3V to VEE + 36V. IN and +IN  
remain high impedance at all times to prevent current flow  
into the inputs when current limit mode is active. Care  
must be taken to insure that IN or +IN can never go to a  
voltage below VEE – 0.3V even during transient conditions  
or damage to the circuit may result. A Schottky diode from  
VEE to +IN can provide clamping if other elements in the  
circuit can allow +IN to go below VEE.  
1970f  
7
LT1970  
U
U
U
PI FU CTIO S  
VCSNK (Pin 12): Sink Current Limit Control Voltage Input.  
The current sink limit amplifier will activate when the  
sense voltage between SENSE+ and SENSEequals  
–1.0 • VVCSNK/10. VCSNK may be set between VCOMMON  
and VCOMMON + 6V. The transfer function between VCSNK  
and VSENSE is linear except for very small input voltages at  
VCSNK < 60mV. VSENSE limits at a minimum set point of  
4mV typical to insure that the sink and source limit  
amplifiers do not try to operate simultaneously. To force  
zero output current, the ENABLE pin can be taken low.  
current limit is not active. ISRC, ISNK and TSD may be  
wired “OR” together if desired. ISRC may be left open if  
this function is not monitored.  
ISNK (Pin 17): Sinking Current Limit Digital Output Flag.  
ISNK is an open collector digital output. ISNK pulls low  
whenever the sinking current limit amplifier assumes  
control of the output. This pin can sink up to 10mA of  
current. The current limit flag is off when the source  
current limit is not active. ISRC, ISNK and TSD may be  
wired “OR” together if desired. ISNK may be left open if  
this function is not monitored.  
VCSRC (Pin 13): Source Current Limit Control Voltage  
Input. The current source limit amplifier will activate  
when the sense voltage between SENSE+ and SENSE–  
equals VVCSRC/10. VCSRC may be set between VCOMMON  
and VCOMMON + 6V. The transfer function between VCSRC  
and VSENSE is linear except for very small input voltages  
at VCSRC < 60mV. VSENSE limits at a minimum set point  
of 4mV typical to insure that the sink and source limit  
amplifiers do not try to operate simultaneously. To force  
zero output current, the ENABLE pin can be taken low.  
TSD (Pin 18): Thermal Shutdown Digital Output Flag. TSD  
isanopencollectordigitaloutput. TSDpullslowwhenever  
theinternalthermalshutdowncircuitactivates, typicallyat  
a die temperature of 160°C. This pin can sink up to 10mA  
of output current. The TSD flag is off when the die  
temperature is within normal operating temperatures.  
ISRC, ISNK and TSD may be wired “OR” together if  
desired. ISNK may be left open if this function is not  
monitored. Thermal shutdown activation should prompt  
the user to evaluate electrical loading or thermal environ-  
mental conditions.  
V+ (Pin 19): Output Stage Positive Supply. V+ may equal  
VCC or may be smaller in magnitude. Only output stage  
current flows through V+, all other current flows into VCC.  
V+ maybeusedtodrivethebase/gateofanexternalpower  
device to boost the amplifier’s output current to levels  
above the rated 500mA of the on-chip output devices.  
Unless used to drive boost transistors, V+ should be  
decoupled to ground with a low ESR capacitor.  
COMMON (Pin 14): Control and ENABLE inputs and flag  
outputs are referenced to the COMMON pin. COMMON  
may be at any potential between VEE and VCC – 3V. In  
typical applications, COMMON is connected to ground.  
ENABLE (Pin 15): ENABLE Digital Input Control. When  
taken low this TTL-level digital input turns off the amplifier  
output and drops supply current to less than 1mA. Use the  
ENABLE pin to force zero output current. Setting VCSNK  
VCSRC = 0V allows IOUT = ±4mV/RSENSE to flow in or out  
of VOUT  
=
.
ISRC (Pin 16): Sourcing Current Limit Digital Output Flag.  
ISRC is an open collector digital output. ISRC pulls low  
whenever the sourcing current limit amplifier assumes  
control of the output. This pin can sink up to 10mA of  
current. The current limit flag is off when the source  
Package Base: The exposed backside of the package is  
electrically connected to the VEE pins on the IC die. The  
package base should be soldered to a heat spreading pad  
on the PC board that is electrically connected to VEE.  
1970f  
8
LT1970  
W U  
BLOCK DIAGRA A D TEST CIRCUIT  
R
V
FB  
CC  
+
7
1k  
V
15V  
19  
+IN  
9
8
+
Q1  
OUT  
+
V
IN  
1×  
GM1  
3
–IN  
Q2  
PS1  
R
G
1k  
10k  
10k  
10k  
ISNK  
ISRC  
TSD  
17  
16  
18  
+
D1  
D2  
R
1  
CS  
+
I
V
SINK  
SNK  
SRC  
+
SENSE  
FILTER  
15V  
4
5
6
ENABLE  
+
V
ENABLE  
15  
12  
SENSE  
VC  
SNK  
5V  
VC  
SNK  
+
R
FIL  
1k  
R
VC  
SRC  
LOAD  
V
I
SRC  
VC  
1k  
13  
14  
SRC  
2
V
COMMON  
EE  
–15V  
2, 10, 11, 20  
1970TC  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT1970 power op amp with precision controllable  
current limit is a flexible voltage and current source  
module. The drawing on the front page of this data sheet  
is representative of the basic application of the circuit,  
however many alternate uses are possible with proper  
understanding of the subcircuit capabilities.  
between IN and +IN. No current will flow at the inputs  
when differential input voltage is present. This feature is  
important when the precision current sense amplifiers  
“ISINK” and “ISRC” become active.  
Current Limit Amplifiers  
AmplifierstagesISINKandISRCareveryhightranscon-  
ductance amplifier stages with independently controlled  
offset voltages. These amplifiers monitor the voltage  
between input pins SENSE+ and SENSEwhich usually  
sense the voltage across a small external current sense  
resistor. The transconductance amplifiers outputs con-  
nect to the same high impedance node as the main input  
stage GM1 amplifier. Small voltage differences between  
SENSE+ and SENSE, smaller than the user set VCSNK/10  
and VCSRC/10 in magnitude, cause the current limit ampli-  
fiers to decouple from the signal path. This is functionally  
indicatedbydiodesD1andD2intheBlockDiagram.When  
the voltage VSENSE increases in magnitude sufficient to  
equal or overcome one of the offset voltages VCSNK/10 or  
VCSRC/10,theappropriatecurrentlimitamplifierbecomes  
1970f  
CIRCUIT DESCRIPTION  
Main Operational Amplifier  
Subcircuit block GM1, the 1X unity-gain current buffer  
and output transistors Q1 and Q2 form a standard opera-  
tionalamplifier.Thisamplifierhas±500mAcurrentoutput  
capability and a 3.6MHz gain bandwidth product. Most  
applicationsoftheLT1970willusethisopampinthemain  
signalpath.Allconventionalopampcircuitconfigurations  
are supported. Inverting, noninverting, filter, summation  
or nonlinear circuits may be implemented in a conven-  
tional manner. The output stage includes current limiting  
at ±800mA to protect against fault conditions. The input  
stage has high differential breakdown of 36V minimum  
9
LT1970  
W U U  
U
APPLICATIO S I FOR ATIO  
active and because of its very high transconductance,  
ENABLE Control  
takes control from the input stage, GM1. The output  
The ENABLE input pin puts the LT1970 into a low supply  
current, high impedance output state. The ENABLE pin  
responds to TTL threshold levels with respect to the  
COMMONpin.PullingtheENABLEpinlowisthebestway  
toforcezerocurrentattheoutput.SettingVCSNK =VCSRC  
= 0V allows the output current to remain as high as  
current is regulated to a value of IOUT = VSENSE/RSENSE  
(VCSRC or VCSNK)/(10 • RSENSE).  
=
Most applications will connect pins SENSE+ and OUT to-  
gether, with the load on the opposite side of the external  
sense resistor and pin SENSE. Feedback to the inverting  
input of GM1 should be connected from SENSEto IN.  
±4mV/RSENSE  
.
The common mode range of stages “ISINK” and “ISRC  
Operating Status Flags  
allow other connections. Ground side sensing of load  
current may be employed by connecting the load between  
pinsOUTandSENSE+. PinSENSEwouldbeconnectedto  
ground in this instance. Load current would be regulated  
in exactly the same way as the conventional connection.  
However, voltage mode accuracy would be degraded in  
The LT1970 has three digital output indicators; TSD, ISRC  
and ISNK. These outputs are open collector drivers re-  
ferredtotheCOMMONpin.Theoutputshave36Vcapabili-  
ties and can sink in excess of 10mA. ISRC and ISNK  
indicate activation of the associated current limit ampli-  
fier. The TSD output indicates excessive die temperature  
has caused the circuit to enter thermal shutdown. The  
three digital outputs may be wire “OR’d” together, moni-  
tored individually or left open. These outputs do not affect  
circuit operation, but provide an indication of the present  
operational status of the chip.  
this case due to the voltage across RSENSE  
.
Creative applications are possible where pins SENSE+ and  
SENSEmonitor a parameter other than load current. The  
operating principle that at most one of the current limit  
stages may be active at one time, and that when active, the  
current limit stages take control of the output from GM1,  
can be used for many different signals.  
THERMAL MANAGEMENT  
Current Limit Threshold Control Buffers  
Minimizing Power Dissipation  
Input pins VCSNK and VCSRC are used to set the response  
thresholds of current limit amplifiers “ISINK” and “ISRC”.  
Each of these inputs may be independently driven by a  
voltage of 0V to 5V above the COMMON reference pin. The  
0V to 5V input voltage is attenuated by a factor of 10 and  
applied as an offset to the appropriate current limit ampli-  
fier. AC signals may be applied to these pins. The AC  
bandwidth from a VC pin to the output is typically 2MHz.  
The LT1970 can operate with up to 36V total supply  
voltage with output currents up to ±500mA. The amount  
ofpowerdissipatedinthechipcouldapproach18Wunder  
worst-case conditions. This amount of power will cause  
die temperature to rise until the circuit enters thermal  
shutdown. While the thermal shutdown feature prevents  
damage to the circuit, normal operation is impaired.  
Thermal design of the LT1970 operating environment is  
essential to getting maximum utility from the circuit.  
The transfer function from VC to the associated VOS is  
linear from about 0.1V to 5V in, or 10mV to 500mV at the  
currentlimitamplifierinputs. Anintentionalnonlinearityis  
built into the transfer functions at low levels. This nonlin-  
earityinsuresthatboththesinkandsourcelimitamplifiers  
cannot become active simultaneously. Simultaneous acti-  
vation of the limit amplifiers could result in uncontrolled  
outputs. As shown in the Typical Performance Character-  
istics curves, the control inputs have a “hockey stick”  
shape, to keep the minimum limit threshold at 4mV for  
each limit amplifier.  
The first concern for thermal management is minimizing  
the heat which must be dissipated. The separate power  
pins V+ and Vcan be a great aid in minimizing on-chip  
power. The output pin can swing to within 1.0V of V+ or V–  
even under maximum output current conditions. Using  
separate power supplies, or off chip dissipative elements,  
to set V+ and Vto their minimum values for the required  
output swing will minimize power dissipation. The sup-  
plies VCC and VEE may also be reduced to a minimal value,  
1970f  
10  
LT1970  
W U U  
APPLICATIO S I FOR ATIO  
U
but these supply pins do not carry high currents, and the  
power saving is much less. VCC and VEE must be greater  
than the maximum output swing by 2V or more.  
and reducing peaking. The current sense resistor, usually  
connected between the output pin and the load can serve  
as a part of the decoupling resistance.  
WhenVandV+ areprovidedseparatelyfromVCC andVEE,  
care must be taken to insure that Vand V+ are always less  
than or equal to the main supplies in magnitude. Protec-  
tion Schottky diodes may be required to insure this in all  
cases, including power on/off transients.  
OperationwithreducedV+ andVsuppliesdoesnotaffect  
any performance parameters except maximum output  
swing.AllDCaccuracyandACperformancespecifications  
guaranteed with VCC = V+ and VEE = Vare still valid within  
the reduced signal swing range.  
Very large capacitive loads above 1µF can also cause  
transient overshoots when the current limiting circuits  
activate. TheFILTERpinisprovidedtoassistincontrolling  
this problem. Should load capacitance cause transient  
overshoot, a 1nF to 100nF capacitor between the FILTER  
and SENSEpins will minimize the overshoot. The best  
value of capacitor to use in this situation will likely require  
some empirical evaluation, as the optimum is a complex  
function of output current, load resistance, sense resistor  
and load capacitance.  
Inductive Loads  
Heat Sinking  
Load inductance is usually not a problem at the outputs of  
operational amplifiers, but the LT1970 can be used as a  
high output impedance current source. This condition  
may be the main operating mode, or when the circuit  
entersaprotectivecurrentlimitmode. Justasloadcapaci-  
tance degrades the phase margin of normal op amps, load  
inductance causes a peaking in the loop response of the  
feedback controlled current source. The inductive load  
maybecausedbylongleadlengthsattheamplifieroutput.  
If the amplifier will be driving inductive loads or long lead  
lengths (greater than 4 inches) a 500pF capacitor from the  
SENSEpin to the ground plane will cancel the inductive  
load and insure stability.  
The power dissipated in the LT1970 die must have a path  
to the environment. With 100°C/W thermal resistance in  
free air with no heat sink, the package power dissipation is  
limited to only 1W. The 20-pin TSSOP package with  
exposed copper underside is an efficient heat conductor if  
it is effectively mounted on a PC board. Thermal resis-  
tances as low as 40°C/W can be obtained by soldering the  
bottom of the package to a large copper pattern on the PC  
board. For operation at 85°C, this allows up to 1.625W of  
power to be dissipated on the LT1970. At 25°C operation,  
up to 3.125W of power dissipation can be achieved. The  
PC board heat spreading copper area must be connected  
to VEE.  
Supply Bypassing  
DRIVING REACTIVE LOADS  
Capacitive Loads  
The LT1970 can supply large currents from the power  
suppliestoaloadatfrequenciesupto4MHz.Powersupply  
impedance must be kept low enough to deliver these  
currents without causing supply rails to droop. Low ESR  
capacitors, such as 0.1µF or 1µF ceramics, located close  
to the pins are essential in all applications. When large,  
high speed transient currents are present additional ca-  
pacitance may be needed near the chip. Check supply rails  
with a scope and if signal related ripple is seen on the  
supply rail, increase the decoupling capacitor as needed.  
The LT1970 is much more tolerant of capacitive loading  
thanmostoperationalamplifiers. Inaworst-caseconfigu-  
ration as a voltage follower, the circuit is stable for capaci-  
tive loads less than 2.5nF. Higher gain configurations  
improve the CLOAD handling. If very large capacitive loads  
are to be driven, a resistive decoupling of the amplifier  
fromthecapacitiveloadiseffectiveinmaintainingstability  
1970f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
11  
LT1970  
U
TYPICAL APPLICATIO  
AV = 1 Amplifier with Discrete Power Devices to Boost Output Current to 5A  
V
CC  
CURRENT LIMIT  
CONTROL VOLTAGE  
0V TO 5V  
15V  
10µF  
0.1µF  
100Ω  
IRF9640  
V
CC  
ENABLE  
+IN  
1k  
VC  
SRC  
VC  
SNK  
+
V
100Ω  
100Ω  
OUT  
LT1970  
+
SENSE  
SENSE  
R
CS  
COMMON  
V
0.1Ω  
–IN  
5W  
V
EE  
LOAD  
2.2k  
2.2k  
V
IN  
IRF9540  
100Ω  
V
EE  
–15V  
10µF  
0.1µF  
1970 TA03  
U
PACKAGE DESCRIPTIO  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663,  
Exposed Pad Variation CA)  
6.60 ±0.10  
4.50 ±0.10  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
6.40 – 6.60*  
(.252 – .260)  
5.2  
RECOMMENDED SOLDER PAD  
1.15  
(.0453)  
MAX  
(.205)  
4.30 – 4.48*  
(.169 – .176)  
20 1918 17 16 15 14 1312 11  
0° – 8°  
EXPOSED  
PAD HEAT SINK  
ON BOTTOM OF  
PACKAGE  
0.65  
(.0256)  
BSC  
0.50 – 0.70  
(.020 – .028)  
3.0  
6.25 – 6.50  
0.105 – 0.180  
(.0041 – .0071)  
0.05 – 0.15  
(.002 – .006)  
(.118) (.246 – .256)  
0.195 – 0.30  
(.0077 – .0118)  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
FE20 TSSOP 1101  
5
7
8
1
2
3
4
6
9 10  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .150mm (.006") PER SIDE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1010  
Fast ±150mA Power Buffer  
LT1206  
250mA/60MHz Current Feedback Amplifier  
1.1A/35MHz Current Feedback Amplifier  
Shutdown Mode, Adjustable Supply Current  
Stable with C = 10,000pF  
LT1210  
L
1970f  
LT/TP 0102 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LT1970CFE#TRPBF

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1970IFE

500mA Power Op Amp with Adjustable Precision Current Limit
Linear

LT1970IFE#PBF

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1970IFE#TR

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1970IFE#TRPBF

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1970_1

500mA Power Op Amp with Adjustable Precision Current Limit
Linear

LT1976

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100mA Quiescent Current
Linear

LT1976B

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100μA Quiescent Current
Linear

LT1976BEFE

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100μA Quiescent Current
Linear

LT1976BIFE

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100μA Quiescent Current
Linear

LT1976BIFE#TR

LT1976/LT1976B - High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1976BIFE#TRPBF

LT1976/LT1976B - High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear