LT3465ES6#TRPBF [Linear]

LT3465 - 1.2MHz White LED Step-Up Converters with Built-In Schottky in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C;
LT3465ES6#TRPBF
型号: LT3465ES6#TRPBF
厂家: Linear    Linear
描述:

LT3465 - 1.2MHz White LED Step-Up Converters with Built-In Schottky in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总16页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3465/LT3465A  
1.2MHz/2.4MHz White  
LED Drivers with Built-in  
Schottky in ThinSOT  
U
DESCRIPTIO  
FEATURES  
The LT®3465/LT3465A are step-up DC/DC converters  
designedtodriveuptosixLEDsinseriesfromaLi-Ioncell.  
Series connection of the LEDs provides identical LED  
currents and eliminates the need for ballast resistors.  
These devices integrate the Schottky diode required exter-  
nally on competing devices. Additional features include  
output voltage limiting when LEDs are disconnected, one-  
pin shutdown and dimming control. The LT3465 has  
internal soft-start.  
Inherently Matched LED Current  
Drives Up to Six LEDs from a 3.6V Supply  
No External Schottky Diode Required  
1.2MHz Switching Frequency (LT3465)  
2.4MHz Switching Frequency Above AM Broadcast  
Band (LT3465A)  
VIN Range: 2.7V to 16V  
VOUT(MAX) = 30V  
Automatic Soft-Start (LT3465)  
Open LED Protection  
The LT3465 switches at 1.2MHz, allowing the use of tiny  
external components. The faster LT3465A switches at  
2.4MHz. Constantfrequencyswitchingresultsinlowinput  
noise and a small output capacitor. Just 0.22µF is required  
for 3-, 4- or 5-LED applications.  
High Efficiency: 81% (LT3465) 79% (LT3465A)  
Typical  
Requires Only 0.22µF Output Capacitor  
Low Profile (1mm) SOT-23  
U
The LT3465 and LT3465A are available in the low profile  
APPLICATIO S  
(1mm) 6-lead SOT-23 (ThinSOTTM) package.  
Cellular Phones  
, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a  
trademark of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
PDAs, Handheld Computers  
Digital Cameras  
MP3 Players  
GPS Receivers  
U
TYPICAL APPLICATIO  
Conversion Efficiency  
L1  
82  
22µH  
V
= 3.6V  
IN  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
4 LEDs  
3V TO 5V  
SW  
V
OUT  
V
IN  
C1  
1µF  
C2  
0.22µF  
LT3465/  
LT3465A  
CTRL  
GND  
SHUTDOWN  
AND DIMMING  
CONTROL  
FB  
10  
3465A F01a  
C1, C2: X5R OR X7R DIELECTRIC  
L1: MURATA LQH32CN220  
LT3465  
LT3465A  
10  
0
5
15  
20  
Figure 1. Li-Ion Powered Driver for Four White LEDs  
LED CURRENT (mA)  
3465A F01b  
3465afa  
1
LT3465/LT3465A  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
Input Voltage (VIN) ................................................. 16V  
SW Voltage ............................................................. 36V  
FB Voltage ................................................................ 2V  
CTRL Voltage.......................................................... 10V  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Maximum Junction Temperature ......................... 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
V
1
6 SW  
OUT  
GND 2  
FB 3  
5 V  
IN  
4 CTRL  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
TJMAX = 125°C, θJA = 256°C/W IN FREE AIR  
= 120°C ON BOARD OVER GROUND PLANE  
θ
JA  
S6 PART MARKING  
ORDER PART NUMBER  
LT3465ES6  
LT3465AES6  
LTH2  
LTAFT  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 3V, V  
= 3V, unless otherwise noted.  
A
IN  
CTRL  
LT3465  
TYP  
LT3465A  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
V
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
2.7  
2.7  
16  
16  
V
0°C T 85°C  
188  
10  
200  
35  
212  
100  
188  
10  
200  
35  
212  
100  
mV  
nA  
A
FB Pin Bias Current  
Supply Current  
Not Switching  
CTRL = 0V  
1.9  
2.0  
2.6  
3.2  
3.3  
5.0  
1.9  
2.0  
2.6  
3.2  
3.3  
5.0  
mA  
µA  
Switching Frequency  
Maximum Duty Cycle  
Switch Current Limit  
0.8  
90  
1.2  
93  
1.6  
1.8  
90  
2.4  
93  
2.8  
MHz  
%
225  
340  
300  
0.01  
225  
340  
300  
0.01  
mA  
mV  
µA  
Switch V  
I
= 250mA  
= 5V  
CESAT  
SW  
Switch Leakage Current  
V
5
5
SW  
V
V
V
for Full LED Current  
to Enable Chip  
1.8  
1.8  
V
CTRL  
CTRL  
CTRL  
150  
150  
mV  
mV  
to Shut Down Chip  
50  
50  
CTRL Pin Bias Current  
48  
40  
60  
60  
50  
75  
72  
60  
90  
48  
40  
60  
60  
50  
75  
72  
60  
90  
µA  
µA  
µA  
T = 85°C  
A
A
T = –40°C  
Soft-Start Time  
600  
0.7  
µs  
V
Schottky Forward Drop  
Schottky Leakage Current  
I = 150mA  
0.7  
D
V = 30V  
R
4
4
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LT3465E/LT3465AE are guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
3465afa  
2
LT3465/LT3465A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Shutdown Quiescent Current  
(CTRL = 0V)  
Switch Saturation Voltage (V  
)
Schottky Forward Voltage Drop  
CESAT  
450  
400  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
30  
27  
24  
21  
18  
15  
12  
9
T
= 25°C  
T
= 25°C  
T
= 25°C  
A
A
A
6
3
0
0
0
0
400  
600  
800  
1000 1200  
4
6
10  
(V)  
12  
0
50 100 150  
350  
200  
2
14  
16  
200 250 300  
8
V
SCHOTTKY FORWARD DROP (mV)  
SWITCH CURRENT (mA)  
IN  
3465A G02  
3465A G01  
3465A G03  
V
vs V  
Open-Circuit Output Clamp Voltage  
Input Current in Output Open Circuit  
FB  
CTRL  
5
4
3
2
1
0
250  
200  
150  
100  
50  
35  
30  
T
= 25°C  
T
= 25°C  
T
A
= 25°C  
A
A
25  
20  
15  
10  
5
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
2
10  
INPUT VOLTAGE (V)  
14  
16  
2
4
6
8
12  
INPUT VOLTAGE (V)  
CONTROL VOLTAGE (V)  
3465A G04  
3465A G06  
3465A G05  
Switching Waveforms (LT3465)  
Switching Frequency  
Switching Waveforms (LT3465A)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VSW  
VSW  
10V/DIV  
10V/DIV  
LT3465A  
IL  
IL  
100mA/DIV  
50mA/DIV  
VOUT  
100mV/DIV  
VOUT  
50mV/DIV  
LT3465  
V
IN = 3.6V  
200ns/DIV  
3465A G07a  
V
IN = 3.6V  
100ns/DIV  
3465A G07b  
4 LEDs  
4 LEDs  
20mA, 22µH  
20mA, 22µH  
50  
TEMPERATURE (°C)  
100  
–50  
0
4365A G08  
3465afa  
3
LT3465/LT3465A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Current (CTRL = 3V)  
Switching Current Limit  
Feedback Voltage  
3.0  
2.5  
210  
208  
206  
204  
202  
200  
198  
196  
194  
192  
190  
400  
350  
300  
250  
2.0  
1.5  
200  
150  
1.0  
0.5  
0
100  
50  
0
–50°C  
–50°C  
25°C  
100°C  
25°C  
100°C  
0
5
10  
(V)  
15  
20  
–50  
70  
90  
0
20  
40  
DUTY CYCLE (%)  
60  
80  
100  
–30 –10 10  
30  
TEMPERATURE (°C)  
50  
V
IN  
3465A G10  
3465A G09  
3465A G11  
V
IN  
= 3.6V, 4 LEDs  
Schottky Leakage Current  
85  
80  
75  
70  
65  
60  
8
7
6
5
LT3465  
LT3465A  
20mA  
V
= 25  
R
V
= 16  
= 10  
R
V
R
15mA  
4
3
10mA  
2
1
0
50  
100  
0
50  
–50  
0
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3465A G12  
3465A G13  
3465afa  
4
LT3465/LT3465A  
U
U
U
PI FU CTIO S  
VOUT (Pin 1): Output Pin. Connect to output capacitor and CTRL(Pin4):DimmingControlandShutdownPin.Ground  
LEDs. Minimize trace between this pin and output capaci- this pin to shut down the device. When VCTRL is greater  
tor to reduce EMI.  
than about 1.8V, full-scale LED current is generated.  
When VCTRL is less than 1V, LED current is reduced.  
Floating this pin places the device in shutdown mode.  
GND (Pin 2): Ground Pin. Connect directly to local ground  
plane.  
VIN (Pin 5): Input Supply Pin. Must be locally bypassed  
with a 1µF X5R or X7R type ceramic capacitor.  
FB (Pin 3): Feedback Pin. Reference voltage is 200mV.  
Connect LEDs and a resistor at this pin. LED current is  
determined by the resistance and CTRL pin voltage:  
SW (Pin 6): Switch Pin. Connect inductor here.  
200mV  
26mV  
exp  
1
RFB  
ILED  
=
• 200mV – 26mV • 1n  
+ 1 for VCTRL > 150mV  
VCTRL mV  
(
)
exp  
5mV • 26mV  
3465afa  
5
LT3465/LT3465A  
W
BLOCK DIAGRA  
V
IN  
FB  
3
5
6
SW  
V
OUT  
1
+
+
COMPARATOR  
A2  
200mV  
+
V
REF  
A1  
DRIVER  
1.25V  
Q1  
R
Q
R
C
S
OVERVOLTAGE  
PROTECT  
C
C
+
0.2  
Σ
10k  
RAMP  
GENERATOR  
CTRL  
4
40k  
2
GND  
3465A F02  
1.2MHz*  
OSCILLATOR  
*2.4MHz FOR LT3465A  
Figure 2. LT3465 Block Diagram  
3465afa  
6
LT3465/LT3465A  
W U U  
APPLICATIO S I FOR ATIO  
U
Operation  
Minimum Output Current  
he LT3465 can drive a 3-LED string at 1.5mA LED  
The LT3465 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. Operation can be best understood by referring to the  
block diagram in Figure 2. At the start of each oscillator  
cycle, the SR latch is set, which turns on the power switch  
Q1. A voltage proportional to the switch current is added  
to a stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator A2. When this  
voltage exceeds the level at the negative input of A2, the  
SR latch is reset turning off the power switch. The level at  
the negative input of A2 is set by the error amplifier A1,  
and is simply an amplified version of the difference  
betweenthefeedbackvoltageandthereferencevoltageof  
200mV. In this manner, the error amplifier sets the  
correct peak current level to keep the output in regulation.  
If the error amplifier’s output increases, more current is  
delivered to the output; if it decreases, less current is  
delivered. The CTRL pin voltage is used to adjust the  
referencevoltage. TheblockdiagramfortheLT3465A(not  
shown) is identical except that the oscillator frequency  
is 2.4MHz.  
T
current without pulse skipping. As current is further  
reduced, the device will begin skipping pulses. This will  
result in some low frequency ripple, although the LED  
current remains regulated on an average basis down to  
zero. The photo in Figure 3a details circuit operation  
driving three white LEDs at a 1.5mA load. Peak inductor  
current is less than 40mA and the regulator operates in  
discontinuous mode, meaning the inductor current  
reacheszeroduringthedischargephase.Aftertheinduc-  
tor current reaches zero, the SW pin exhibits ringing due  
to the LC tank circuit formed by the inductor in combina-  
tion with switch and diode capacitance. This ringing is  
not harmful; far less spectral energy is contained in the  
ringing than in the switch transitions. The ringing can be  
damped by application of a 300resistor across the  
inductor, although this will degrade efficiency. Because  
ofthehigherswitchingfrequency,theLT3465Acandrive  
a 3-LED string at 0.2mA LED current without pulse  
VSW  
5V/DIV  
IL  
20mA/DIV  
VOUT  
10mV/DIV  
VIN = 4.2V  
ILED = 1.5mA  
3 LEDs  
0.2µs/DIV  
3465A F03a  
Figure 3a. Switching Waveforms (LT3465)  
VSW  
5V/DIV  
IL  
20mA/DIV  
VOUT  
10mV/DIV  
VIN = 4.2V  
ILED = 0.2mA  
3 LEDs  
0.1µs/DIV  
3465A F03b  
Figure 3b. Switching Waveforms (LT3465A)  
3465afa  
7
LT3465/LT3465A  
W U U  
U
APPLICATIO S I FOR ATIO  
85  
80  
75  
skipping using a 1k resistor from FB to GND. The photo  
in Figure 3b details circuit operation driving three white  
LEDs at a 0.2mA load. Peak inductor current is less  
than 30mA.  
V
= 3.6V  
IN  
4 LEDs  
70  
65  
60  
55  
50  
Inductor Selection  
A 22µH inductor is recommended for most LT3465 appli-  
cations. Although small size and high efficiency are major  
concerns, the inductor should have low core losses at  
1.2MHz and low DCR (copper wire resistance). Some  
inductors in this category with small size are listed in  
Table 1. The efficiency comparison of different inductors  
is shown in Figure 4a. A 22µH or 10µH inductor is recom-  
mended for most LT3465A applications. The inductor  
should have low core losses at 2.4MHz and low DCR. The  
efficiency comparison of different inductors is shown in  
figure 4b.  
MURATA LQH32CN220  
TAIYO YUDEN LB2012B220M  
TAIYO YUDEN CB2012B220  
5
10  
20  
0
15  
LED CURRENT (mA)  
3465A F04b  
Figure 4a. Efficiency Comparison of Different Inductors (LT3465)  
80  
V
= 3.6V  
IN  
4 LEDs  
75  
70  
65  
60  
55  
50  
Table 1. Recommended Inductors  
PART  
NUMBER  
CURRENT RATING  
(mA)  
DCR ()  
MANUFACTURER  
LQH32CN220  
LQH2MCN220  
0.71  
2.4  
250  
185  
Murata  
814-237-1431  
www.murata.com  
MURATA LQH32CN220  
MURATA LQH32CN100  
MURATA LQH2MCN220  
TOKO D312-220  
TOKO D312-100  
TAIYO YUDEN LB2012B220  
ELJPC220KF  
4.0  
0.53  
1.7  
160  
350  
75  
Panasonic  
714-373-7334  
www.panasonic.com  
5
10  
20  
0
15  
LED CURRENT (mA)  
CDRH3D16-220  
LB2012B220M  
LEM2520-220  
Sumida  
847-956-0666  
www.sumida.com  
3465A F04b  
Figure 4b. Efficiency Comparison of Different Inductors (LT3465A)  
Taiyo Yuden  
408-573-4150  
www.t-yuden.com  
Capacitor Selection  
5.5  
125  
Taiyo Yuden  
408-573-4150  
www.t-yuden.com  
The small size of ceramic capacitors makes them ideal for  
LT3465andLT3465Aapplications.X5RandX7Rtypesare  
recommended because they retain their capacitance over  
wider voltage and temperature ranges than other types  
such as Y5V or Z5U. A 1µF input capacitor and a 0.22µF  
output capacitor are sufficient for most LT3465 and  
LT3465A applications.  
Table 2. Recommended Ceramic Capacitor Manufacturers  
MANUFACTURER  
Taiyo Yuden  
Murata  
PHONE  
URL  
408-573-4150  
814-237-1431  
408-986-0424  
www.t-yuden.com  
www.murata.com  
www.kemet.com  
Kemet  
3465afa  
8
LT3465/LT3465A  
W U U  
APPLICATIO S I FOR ATIO  
U
Soft-Start (LT3465)  
inductors, which is usually the case for this application,  
the peak inrush current can be simplified as follows:  
The LT3465 has an internal soft-start circuit to limit the  
input current during circuit start-up. The circuit start-up  
waveforms are shown in Figure 5.  
V – 0.6  
α π  
IN  
IP =  
• exp –  
L • ω  
ω 2  
Table 3 gives inrush peak currents for some component  
selections.  
IIN 50mA/DIV  
VOUT 5V/DIV  
Table 3. Inrush Peak Current  
V
(V)  
r ()  
0.5  
L (µH)  
22  
C (µF)  
0.22  
1
I (A)  
IN  
P
VFB 100mV/DIV  
CTRL 5V/DIV  
5
0.38  
0.70  
0.26  
0.60  
5
3.6  
5
0.5  
22  
VIN = 3.6V  
4 LEDs, 20mA  
L = 22µH  
200µs/DIV  
3465 F05  
0.5  
22  
0.22  
1
0.5  
33  
C = 0.22µF  
Figure 5. Start-Up Waveforms  
LED Current and Dimming Control  
The LED current is controlled by the feedback resistor (R1  
in Figure 1) and the feedback reference voltage.  
Inrush Current  
The LT3465 and LT3465A have a built-in Schottky diode.  
When supply voltage is applied to the VIN pin, the voltage  
difference between VIN and VOUT generates inrush current  
flowing from input through the inductor and the Schottky  
diode to charge the output capacitor to VIN. The maximum  
current the Schottky diode in the LT3465 and LT3465A  
can sustain is 1A. The selection of inductor and capacitor  
value should ensure the peak of the inrush current to be  
below 1A. The peak inrush current can be calculated  
as follows:  
ILED = VFB/RFB  
The CTRL pin controls the feedback reference voltage as  
shown in the Typical Performance Characteristics. For  
CTRL higher than 1.8V, the feedback reference is 200mV,  
which results in full LED current. CTRL pin can be used as  
dimmingcontrolwhenCTRLvoltageisbetween200mVto  
1.5V. In order to have accurate LED current, precision  
resistors are preferred (1% is recommended). The for-  
mula and table for RFB selection are shown below.  
RFB = 200mV/ILED-Full  
(1)  
⎛ ⎞  
ω
α
⎝ ⎠  
⎛ ⎞  
ω
α
⎝ ⎠  
V – 0.6  
L • ω  
α
ω
Table 4. R Resistor Value Selection  
IN  
FB  
IP =  
α =  
• exp – • arctan  
• sin arctan  
⎜ ⎟  
⎜ ⎟  
FULL I (mA)  
R1 ()  
40.0  
LED  
5
r + 1.5  
2 L  
10  
15  
20  
20.0  
13.3  
2
10.0  
r + 1.5  
(
)
1
ω =  
4 L2  
L C  
The filtered PWM signal can be considered to be an  
adjustable DC voltage. It can be used to adjust the CTRL  
voltage source in dimming control. The circuit is shown in  
Figure 6. The corner frequency of R1 and C1 should be  
where L is the inductance, r is the resistance of the  
inductor and C is the output capacitance. For low DCR  
3465afa  
9
LT3465/LT3465A  
W U U  
U
APPLICATIO S I FOR ATIO  
lower than the frequency of the PWM signal. R1 needs to  
be much smaller than the internal impedance in the CTRL  
pin, which is 50k. A 5k resistor is suggested.  
percent duty cycle sets the LED current to zero, while  
100% duty cycle sets it to full current. Average LED  
current increases proportionally with the duty cycle of the  
PWM signal. With the PWM signal at the CTRL pin to turn  
the LT3465A on and off, the output capacitor is charged  
and discharged accordingly. This capacitor charging/  
discharging affects the waveform at the FB pin. For low  
PWMfrequenciestheoutputcapacitorcharging/discharg-  
ing time is a very small portion in a PWM period. The  
average FB voltage increases linearly with the PWM duty  
cycle. As the PWM frequency increases, the capacitor  
charging/discharging has a larger effect on the linearity of  
the PWM control. Waveforms for a 1kHz and 10kHz PWM  
CTRLsignalsareshowninFigures7aand7brespectively.  
The capacitor charging/discharging has a larger effect on  
the FB waveform in the 10kHz case than that in the 1kHz  
LT3465/  
R1  
5k  
LT3465A  
CTRL  
PWM  
C1  
100nF  
3465A F06  
Figure 6. Dimming Control Using a Filtered PWM Signal  
Dimming Using Direct PWM (LT3465A)  
Unlike the LT3465, the LT3465A does not have internal  
soft-start. Although the input current is higher during  
start-up, the absence of soft-start allows the CTRL pin to  
be directly driven with a PWM signal for dimming. A zero  
LT3465A  
CTRL  
PWM  
FB  
100mV/DIV  
CTRL  
2V/DIV  
200µs/DIV (1kHz)  
3465A F07a  
Figure 7a.  
FB  
100mV/DIV  
CTRL  
2V/DIV  
20µs/DIV (10kHz)  
3465A F07b  
Figure 7b.  
3465afa  
10  
LT3465/LT3465A  
W U U  
APPLICATIO S I FOR ATIO  
U
case. The Average FB Voltage vs PWM Duty Cycle curves  
of different PWM frequencies with different output ca-  
pacitors are shown in Figures 7c and 7d respectively. For  
PWM frequency lower than 1kHz, the curves are almost  
linear. For PWM frequency higher than 10kHz, the curves  
show strong nonlinearity. Since the cause of the  
nonlinearity is the output capacitor charging/discharg-  
ing, the output capacitance and output voltage also affect  
the nonlinearity in the high PWM frequencies. Because  
smaller capacitance corresponds to shorter capacitor  
charging/discharging time, the smaller output capaci-  
tance has better linearity as shown in Figures 7c and 7d.  
Figures 7e and 7f show the output voltage’s effect to the  
curves. The PWM signal should be at least 1.8V in  
magnitude; lower voltage will lower the feedback voltage  
as shown in Equation 1.  
200  
200  
C
= 0.47µF  
C
= 0.22µF  
OUT  
OUT  
4 LEDs  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
4 LEDs  
10Hz  
100Hz  
1kHz  
10kHz  
30kHz  
10Hz  
100Hz  
1kHz  
10kHz  
30kHz  
60  
60  
40  
40  
20  
20  
0
0
0
10 20 30 40 50 60 70 80 90 100  
CTRL PWM DUTY CYCLE (%)  
3465A F07d  
0
20  
40  
60  
80  
100  
CTRL PWM DUTY CYCLE (%)  
3465A F07c  
Figure 7c. V vs CTRL PWM Duty Cycle  
Figure 7d. V vs CTRL PWM Duty Cycle  
FB  
FB  
200  
180  
160  
140  
120  
100  
80  
200  
30kHz PWM  
OUT  
10kHz PWM  
OUT  
180  
C
= 0.22µF  
C
= 0.22µF  
160  
140  
120  
100  
80  
60  
60  
2 LEDs  
3 LEDs  
4 LEDs  
2 LEDs  
3 LEDs  
4 LEDs  
40  
40  
20  
20  
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
CTRL PWM DUTY CYCLE (%)  
CTRL PWM DUTY CYCLE (%)  
3465A F07f  
3465A F07e  
Figure 7f.V vs CTRL PWM Duty Cycle  
Figure 7e.V vs CTRL PWM Duty Cycle  
FB  
FB  
3465afa  
11  
LT3465/LT3465A  
W U U  
U
APPLICATIO S I FOR ATIO  
Open-Circuit Protection  
resistor R1 should be tied directly to the GND pin and not  
sharedwithanyothercomponent,ensuringaclean,noise-  
free connection. Recommended component placement is  
shown in Figure 8.  
The LT3465 and LT3465A have an internal open-circuit  
protection circuit. In the cases of output open circuit,  
when the LEDs are disconnected from the circuit or the  
LEDs fail, the VOUT is clamped at 30V. The LT3465 and  
LT3465A will then switch at a very low frequency to  
minimize the input current. VOUT and input current during  
output open circuit are shown in the Typical Performance  
Characteristics.  
Start-Up Input Current (LT3465A)  
As previously mentioned, the LT3465A does not have an  
internal soft-start circuit. Inrush current can therefore rise  
to approximately 400mA as shown in Figure 9 when  
driving 4 LEDs. The LT3465 has an internal soft-start  
circuit and is recommended if inrush current must be  
minimized.  
Board Layout Consideration  
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
To maximize efficiency, switch rise and fall times are  
made as short as possible. To prevent electromagnetic  
interference (EMI) problems, proper layout of the high  
frequency switching path is essential. Place COUT next to  
the VOUT and GND pins. Always use a ground plane under  
the switching regulator to minimize interplane coupling.  
In addition, the ground connection for the feedback  
IIN  
200mV/DIV  
FB  
200mV/DIV  
CTRL  
2V/DIV  
50µs/DIV  
3465A F09  
Figure 9.  
GND  
L
1
2
3
6
5
4
C
C
IN  
OUT  
V
IN  
R
FB  
CTRL  
3465A F08a  
Figure 8. Recommended Component Placement.  
3465afa  
12  
LT3465/LT3465A  
U
TYPICAL APPLICATIO S  
Li-Ion to Two White LEDs  
85  
L1  
22µH  
V
= 3.6V  
IN  
2 LEDs  
3V TO 5V  
80  
75  
SW  
V
OUT  
V
70  
65  
60  
55  
50  
IN  
C
C
OUT  
IN  
1µF  
LT3465/  
LT3465A  
CTRL  
GND  
1µF  
FB  
R1  
4  
3465A TA01a  
LT3465  
LT3465A  
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
: AVX 0603ZD105  
OUT  
L1: MURATA LQH32CN220  
0
10  
20  
30  
40  
50  
LED CURRENT (mA)  
3465A TA01b  
Li-Ion to Three White LEDs  
85  
L1  
22µH  
V
= 3.6V  
IN  
3 LEDs  
80  
75  
3V TO 5V  
SW  
V
OUT  
V
70  
65  
60  
55  
50  
IN  
C
C
IN  
1µF  
OUT  
0.22µF  
LT3465/  
LT3465A  
CTRL  
GND  
FB  
R1  
10  
3465A TA02a  
LT3465  
LT3465A  
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
: AVX 0603YD224  
OUT  
L1: MURATA LQH32CN220  
0
5
10  
15  
20  
LED CURRENT (mA)  
3465A TA02b  
3465afa  
13  
LT3465/LT3465A  
U
TYPICAL APPLICATIO  
Li-Ion to Five White LEDs  
L1  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 3.6V  
IN  
5 LEDs  
22µH  
3V TO 5V  
SW  
V
OUT  
V
IN  
C
C
IN  
1µF  
OUT  
0.22µF  
LT3465/  
LT3465A  
CTRL  
GND  
FB  
R1  
10  
LT3465  
3465A TA03a  
LT3465A  
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
: TAIYO YUDEN GMK212BJ224  
0
5
10  
15  
20  
OUT  
L1: MURATA LQH32CN220  
LED CURRENT (mA)  
3465A TA03b  
3465afa  
14  
LT3465/LT3465A  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3465afa  
15  
LT3465/LT3465A  
U
TYPICAL APPLICATIO  
Li-Ion to Six White LEDs  
85  
80  
75  
70  
65  
60  
55  
50  
L1  
V
= 3.6V  
IN  
47µH/22µH  
6 LEDs  
3V TO 5V  
SW  
V
OUT  
V
IN  
C
C
IN  
1µF  
OUT  
0.47µF  
LT3465/  
LT3465A  
CTRL  
GND  
FB  
R1  
10  
3465A TA04a  
LT3465  
C
C
: TAIYO YUDEN JMK107BJ105  
: TAIYO YUDEN GMK212BJ474  
L1: MURATA LQH32CN470 (LT3465)  
L1: MURATA LQH32CN220 (LT3465A)  
IN  
LT3465A  
OUT  
0
5
10  
15  
20  
LED CURRENT (mA)  
3465A TA04b  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1618  
Constant Current, Constant Voltage, 1.4MHz, High Efficiency Up to 16 White LEDs, V : 1.6V to 18V, V  
: 34V, I : 1.8mA,  
OUT(MAX) Q  
IN  
Boost Regulator  
I
: <1µA, 10-Lead MS Package  
SHDN  
LT1932  
Constant Current, 1.2MHz, High Efficiency White LED  
Boost Regulator  
Up to 8 White LEDs, V : 1V to 10V, V  
SHDN  
: 34V, I : 1.2mA,  
OUT(MAX) Q  
IN  
I
: <1µA, ThinSOT Package  
LT1937  
Constant Current, 1.2MHz, High Efficiency White LED  
Boost Regulator  
Up to 4 White LEDs, V : 2.5V to 10V, V  
SHDN  
: 34V, I : 1.9mA,  
IN  
OUT(MAX)  
Q
I
: <1µA, ThinSOT  
LTC®3200-5  
LTC3202  
LTC3205  
Low Noise, 2MHz, Regulated Charge Pump White LED Driver Up to 6 White LEDs, V : 2.7V to 4.5V, I : 8mA, I  
: <1µA,  
IN  
Q
SHDN  
ThinSOT Package  
Low Noise, 1.5MHz, Regulated Charge Pump White LED Driver Up to 8 White LEDs, V : 2.7V to 4.5V, I : 5mA, I : <1µA,  
SHDN  
IN  
Q
10-Lead MS Package  
Multi-Display LED Controller  
92% Efficiency, V : 2.8V to 4.5V, I : 4.2mA, I : <1µA, Drives Main,  
IN  
Q
SD  
Sub, RGB, QFN Package  
LTC3405  
LTC3405A  
300mA (I ), 1.5MHz Synchronous Step-Down  
95% Efficiency, V : 2.7V to 6V, V  
: 0.8V, I : 20µA, I : <1µA,  
SHDN  
OUT  
IN  
OUT(MIN)  
Q
DC/DC Converter  
ThinSOT Package  
LTC3406  
600mA (I ), 1.5MHz Synchronous Step-Down  
95% Efficiency, V : 2.5V to 5.5V, V  
: 0.6V, I : 20µA,  
Q
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
LTC3406B  
DC/DC Converter  
I
: <1µA, ThinSOT Package  
SHDN  
LTC3407  
LTC3411  
LTC3412  
Dual 600mA (I ), 1.5MHz Synchronous Step-Down  
95% Efficiency, V : 2.5V to 5.5V, V  
: 0.6V, I : 40µA,  
Q
OUT  
IN  
DC/DC Converters  
I
: <1µA, MS10E, DFN Package  
SHDN  
1.25A (I ), 4MHz Synchronous Step-Down DC/DC Converter 95% Efficiency, V : 2.5V to 5.5V, V  
: 0.8V, I : 60µA,  
Q
OUT  
IN  
I
: <1µA, MS10, DFN Package  
SHDN  
2.5A (I ), 4MHz Synchronous Step-Down DC/DC Converter 95% Efficiency, V : 2.5V to 5.5V, V  
: 0.8V, I : 60µA,  
Q
OUT  
IN  
I
: <1µA, TSSOP16E Package  
SHDN  
LTC3440/  
LTC3441  
600mA/1.2A (I ), 2MHz/1MHz Synchronous Buck-Boost  
95% Efficiency, V : 2.5V to 5.5V, V  
: 2.5V, I : 25µA,  
Q
OUT  
IN  
DC/DC Converter  
I
: <1µA, 10-Lead MS Package  
SHDN  
LT3466  
Full Function White LED Step-Up Converter with  
Built-In Schottkys  
Drives Up to 20 LEDs, Independent Step-Up Converters,  
V : 2.7µV to 24V, DFN Package  
IN  
3465afa  
LT/LT 0805 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LT3465_15

1.2MHz/2.4MHz White LED Drivers with Built-in Schottky in ThinSOT
Linear

LT3466

Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes
Linear

LT3466-1

20mA LED Driver and OLED Driver with Integrated Schottky in 3mm x 2mm DFN
Linear

LT3466EDD

Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes
Linear

LT3466EDD#PBF

LT3466 - Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3466EDD#TR

LT3466 - Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3466EDD#TRPBF

暂无描述
Linear

LT3466EDD-1

White LED Driver and Boost Converter in 3mm × 3mm DFN Package
Linear

LT3466EDD-1#PBF

LT3466-1 - White LED Driver and Boost Converter in 3mm x 3mm DFN Package; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3466EDD-1#TR

暂无描述
Linear

LT3466EFE

LT3466 - Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3466EFE#PBF

LT3466 - Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear