LT3471EDD [Linear]

Dual 1.3A, 1.2MHz Boost/Inverter in 3mm ???? 3mm DFN; 双1.3A , 1.2MHz的升压/逆变器采用3mm ???? 3mm DFN封装
LT3471EDD
型号: LT3471EDD
厂家: Linear    Linear
描述:

Dual 1.3A, 1.2MHz Boost/Inverter in 3mm ???? 3mm DFN
双1.3A , 1.2MHz的升压/逆变器采用3mm ???? 3mm DFN封装

文件: 总16页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3471  
Dual 1.3A, 1.2MHz  
Boost/Inverter in  
3mm × 3mm DFN  
U
FEATURES  
DESCRIPTIO  
1.2MHz Switching Frequency  
The LT®3471 dual switching regulator combines two 42V,  
1.3A switches with error amplifiers that can sense to  
ground providing boost and inverting capability. The low  
Low VCESAT Switches: 330mV at 1.3A  
High Output Voltage: Up to 40V  
Wide Input Range: 2.4V to 16V  
VCESAT bipolar switches enable the device to deliver high  
Inverting Capability  
current outputs in a small footprint. The LT3471 switches  
at 1.2MHz, allowing the use of tiny, low cost and low  
profile inductors and capacitors. High inrush current at  
start-up is eliminated using the programmable soft-start  
function, where an external RC sets the current ramp rate.  
A constant frequency current mode PWM architecture  
resultsinlow,predictableoutputnoisethatiseasytofilter.  
5V at 630mA from 3.3V Input  
12V at 320mA from 5V Input  
–12V at 200mA from 5V Input  
Uses Tiny Surface Mount Components  
Low Shutdown Current: <1µA  
Low Profile (0.75mm) 10-Lead 3mm × 3mm  
DFN Package  
The LT3471 switches are rated at 42V, making the device  
idealforboostconvertersupto±40VaswellasSEPICand  
flyback designs. Each channel can generate 5V at up to  
630mA from a 3.3V supply, or 5V at 510mA from four  
alkaline cells in a SEPIC design. The device can be config-  
ured as two boosts, a boost and inverter or two inverters.  
U
APPLICATIO S  
Organic LED Power Supply  
Digital Cameras  
White LED Power Supply  
Cellular Phones  
Medical Diagnostic Equipment  
Local ±5V or ±12V Supply  
TFT-LCD Bias Supply  
xDSL Power Supply  
The LT3471 is available in a low profile (0.75mm) 10-lead  
3mm × 3mm DFN package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
OLED Driver  
2.2µH  
V
OLED Driver Efficiency  
OUT1  
V
IN  
7V  
3.3V  
95  
350mA  
90.9k  
15k  
4.7µF  
CONTROL 1  
90  
SW1  
4.7k  
V
= 7V  
OUT1  
SHDN/SS1  
FB1N  
FB1P  
85  
80  
75  
70  
65  
60  
55  
50  
0.33µF  
V
V
= –7V  
REF  
OUT1  
0.1µF  
V
V
LT3471  
IN  
IN  
10µF  
4.7k  
15k  
FB2N  
FB2P  
CONTROL 2  
SHDN/SS2  
GND  
SW2  
0.33µF  
75pF  
105k  
1µF  
10µH  
15µH  
V
–7V  
250mA  
OUT2  
V
IN  
200  
0
100  
300  
400  
10µF  
I
(mA)  
OUT  
3471 TA01b  
3471 TA01  
3471f  
1
LT3471  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
VIN Voltage .............................................................. 16V  
SW1, SW2 Voltage ....................................0.4V to 42V  
FB1N, FB1P, FB2N, FB2P Voltage ....... 12V or VIN – 1.5V  
SHDN/SS1, SHDN/SS2 Voltage .............................. 16V  
VREF Voltage ........................................................... 1.5V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
FB1N  
FB1P  
1
2
3
4
5
10 SW1  
9
8
7
6
SHDN/SS1  
LT3471EDD  
V
REF  
11  
V
IN  
FB2P  
FB2N  
SHDN/SS2  
SW2  
DD PART MARKING  
LBHM  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 43°C/ W, θJC = 3°C/ W  
EXPOSED PAD (PIN 11) IS GND  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are TA = 25°C. VIN = VSHDN = 3V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.1  
MAX  
UNITS  
Minimum Operating Voltage  
Reference Voltage  
2.4  
V
0.991  
0.987  
1.000  
1.009  
1.013  
V
V
Reference Voltage Current Limit  
Reference Voltage Load Regulation  
Reference Voltage Line Regulation  
Error Amplifier Offset  
(Note 3)  
1
1.4  
0.1  
0.03  
±2  
mA  
%/100µA  
%/V  
0mA I 100µA (Note 3)  
0.2  
0.08  
±3  
REF  
2.6V V 16V  
IN  
Transition from Not Switching to Switching, V = V  
= 1V  
FBN  
mV  
FBP  
FB Pin Bias Current  
(Note 3)  
60  
100  
4
nA  
Quiescent Current  
V
V
= 1.8V, Not Switching  
2.5  
0.01  
1.2  
94  
mA  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Switching Frequency  
= 0.3V, V = 3V  
1
µA  
IN  
1
1.4  
MHz  
Maximum Duty Cycle  
90  
86  
%
%
Minimum Duty Cycle  
Switch Current Limit  
15  
%
At Minimum Duty Cycle  
At Maximum Duty Cycle (Note 4)  
1.5  
0.9  
2.05  
1.45  
2.6  
2.0  
A
A
Switch V  
I
= 1.3A (Note 5)  
= 5V  
330  
440  
1
mV  
µA  
V
CESAT  
SW  
Switch Leakage Current  
SHDN/SS Input Voltage High  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
0.01  
SW  
1.8  
Quiescent Current 1µA  
0.3  
V
V
V
= 3V, V = 4V  
22  
0
36  
0.1  
µA  
µA  
SHDN  
SHDN  
IN  
= 0V  
Note 1: Absolute Maximum Ratings are those values beyond which the life of  
Note 3: Current flows out of the pin.  
a device may be impaired.  
Note 4: See Typical Performance Characteristics for guaranteed current  
Note 2: The LT3471E is guaranteed to meet performance specifications from  
0°C to 70°C. Specifications over the –40°C to 85°C operating temperature  
range are assured by design, characterization and correlation with statistical  
process controls.  
limit vs duty cycle.  
Note 5: V  
is 100% tested at wafer level.  
CESAT  
3471f  
2
LT3471  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Current  
vs Temperature  
VREF Voltage vs VREF Current  
VREF Voltage vs Temperature  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.010  
1.005  
1.000  
0.995  
0.990  
VREF  
VOLTAGE  
100mV/DIV  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VREF CURRENT 200µA/DIV  
3741 G03  
3471 G01  
3471 G02  
SHDN/SS Current  
vs SHDN/SS Voltage  
Switch Saturation Voltage  
vs Switch Current  
Current Limit vs Duty Cycle  
2.2  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
A
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VIN = 3.3V  
TYPICAL  
90°C  
GUARANTEED  
SHDN/SS  
CURRENT  
20µV/DIV  
25°C  
V
IN > VSHDN/SS  
SHDN/SS VOLTAGE 1V/DIV  
3741 G04  
0
20  
40  
60  
80  
100  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
DUTY CYCLE (%)  
SW CURRENT (A)  
3471 G05  
3471 G06  
Oscillator Frequency  
vs Temperature  
Peak Switch Current  
vs SHDN/SS Voltage  
Start-Up Waveform  
(Figure 2 Circuit)  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
A
ISUPPLY  
1A/DIV  
VOUT1  
2V/DIV  
VOUT2  
5V/DIV  
CONTROL 1 AND 2  
5V/DIV  
0.5ms/DIV  
3471 G09  
–50  
0
25  
50  
75 100 125  
–25  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8 2.0  
TEMPERATURE (°C)  
V
(V)  
SHDN/SS  
3471 G07  
3471 G08  
3471f  
3
LT3471  
U
U
U
PI FU CTIO S  
FB1N (Pin 1): Negative Feedback Pin for Switcher 1. and minimize the metal trace area connected to this pin to  
Connect resistive divider tap here. Minimize trace area at minimize EMI.  
FB1N. Set VOUT = VFB1P(1 + R1/R2), or connect to ground  
SHDN/SS2 (Pin 7): Shutdown and Soft-Start Pin. Tie to  
for inverting topologies.  
1.8V or more to enable device. Ground to shut down. Soft-  
FB1P (Pin 2): Positive Feedback Pin for Switcher 1. Con- start function is provided when the voltage at this pin is  
nect either to VREG or a divided down version of VREG, or ramped slowly to 1.8V with an external RC circuit.  
connect to a resistive divider tap for inverting topologies.  
VIN (Pin 8): Input Supply. Must be locally bypassed.  
V
REF (Pin 3): 1.00V Reference Pin. Can supply up to 1mA  
SHDN/SS1(Pin9):SameasSHDN/SS2butforSwitcher 1.  
Note: taking either SHDN/SS pin high will enable the part.  
Each switcher is individually enabled with its respective  
SHDN/SS pin.  
of current. Do not pull this pin high. Must be locally  
bypassed with no less than 0.01µF and no more than 1µF.  
A 0.1µF ceramic capacitor is recommended. Use this pin  
as the positive feedback reference or connect a resistor  
divider here for a smaller reference voltage.  
SW1 (Pin 10): Same as SW2 but for Switcher 1.  
Exposed Pad (Pin 11): Ground. Connect directly to local  
ground plane. This ground plane also serves as a heat sink  
for optimal thermal performance.  
FB2P (Pin 4): Same as FB1P but for Switcher 2.  
FB2N (Pin 5): Same as FB1N but for Switcher 2.  
SW2 (Pin 6): Switch Pin for Switcher 2 (Collector of  
internal NPN power switch). Connect inductor/diode here  
W
BLOCK DIAGRA  
10 SW1  
FB1P  
2
+
+
DRIVER  
A1  
FB1N  
R
Q1  
1
A2  
R
Q
C
S
C
C
+
V
V
REF  
IN  
1.00V  
0.01  
8
9
3
Σ
REFERENCE  
RAMP  
GENERATOR  
SHDN/SS1  
LEVEL  
SHIFTER  
GND  
11  
6
SW2  
FB2P  
FB2N  
4
5
+
+
DRIVER  
A3  
R
C
Q2  
A4  
R
Q
S
C
C
+
SHDN/SS2  
LEVEL  
SHIFTER  
7
0.01Ω  
Σ
RAMP  
GENERATOR  
GND  
1.2MHz  
OSCILLATOR  
3471 F01  
Figure 1. Block Diagram  
3471f  
4
LT3471  
U
OPERATIO  
The LT3471 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. Refer to the Block Diagram. At the start of each  
oscillator cycle, the SR latch is set, which turns on the  
power switch, Q1 (Q2). A voltage proportional to the  
switch current is added to a stabilizing ramp and the  
resulting sum is fed into the positive terminal of the PWM  
comparator A2 (A4). When this voltage exceeds the level  
at the negative input of A2 (A4), the SR latch is reset,  
turning off the power switch Q1 (Q2). The level at the  
negative input of A2 (A4) is set by the error amplifier A1  
(A3) and is simply an amplified version of the difference  
between the negative feedback voltage and the positive  
feedback voltage, usually tied to the reference voltage  
taking either SHDN/SS pin above 1.8V. Disabling the part  
is done by grounding both SHDN/SS pins. The soft-start  
feature of the LT3471 allows for clean start-up conditions  
by limiting the amount of voltage rise at the output of  
comparator A1 and A2, which in turn limits the peak  
switching current. The soft-start feature for each switcher  
isenabledbyslowlyrampingthatswitcher’sSHDN/SSpin,  
using an RC network, for example. Typical resistor and  
capacitor values are 0.33µF and 4.7k, allowing for a  
start-uptimeontheorderofmilliseconds.TheLT3471has  
a current limit circuit not shown in the Block Diagram. The  
switch current is constantly monitored and not allowed to  
exceed the maximum switch current (typically 1.6A). If the  
switch current reaches this value, the SR latch is reset  
regardless of the state of the comparator A2 (A4). Also not  
shown in the Block Diagram is the thermal shutdown  
circuit. If the temperature of the part exceeds approxi-  
mately160°C,bothlatchesareresetregardlessofthestate  
of comparators A2 and A4. The current limit and thermal  
shutdown circuits protect the power switch as well as the  
external components connected to the LT3471.  
V
REG. In this manner, the error amplifier sets the correct  
peak current level to keep the output in regulation. If the  
error amplifier’s output increases, more current is deliv-  
ered to the output. Similarly, if the error decreases, less  
current is delivered. Each switcher functions indepen-  
dently but they share the same oscillator and thus the  
switchersarealwaysinphase. Enablingthepartisdoneby  
U
W U U  
APPLICATIONS INFORMATION  
Duty Cycle  
where VFBN is connected between R1 and R2 (see the  
Typical Applications section for examples).  
The typical maximum duty cycle of the LT3471 is 94%.  
The duty cycle for a given application is given by:  
Select values of R1 and R2 according to the following  
equation:  
|VOUT | + |VD | – |V |  
IN  
DC =  
VOUT  
VREF – 1⎠  
|VOUT | + |VD | – |VCESAT  
|
R1= R2  
Where VD is the diode forward voltage drop and VCESAT is  
in the worst case 330mV (at 1.3A)  
A good value for R2 is 15k which sets the current in the  
resistor divider chain to 1.00V/15k = 67µA.  
The LT3471 can be used at higher duty cycles, but it must  
beoperatedinthediscontinuousconductionmodesothat  
the actual duty cycle is reduced.  
VFBP is usually just tied to VREF = 1.00V, but VFBP can also  
be tied to a divided down version of VREF or some other  
voltage as long as the absolute maximum ratings for the  
feedback pins are not exceeded (see Absolute Maximum  
Ratings).  
Setting Output Voltage  
Setting the output voltage depends on the topology used.  
For normal noninverting boost regulator topologies:  
For inverting topologies, VFBN is tied to ground and VFBP  
is connected between R1 and R2. R2 is between VFBP and  
R1  
R2  
VOUT = V  
1+  
FBP  
3471f  
5
LT3471  
U
W U U  
APPLICATIONS INFORMATION  
VREF and R1 is between VFBP and VOUT (see the Applica-  
tions section for examples). In this case:  
pin has reached about 1.1V. The soft-start function will go  
away once the voltage at the SHDN/SS pin exceeds 1.8V.  
SeethePeakSwitchCurrentvsSHDN/SSVoltagegraphin  
the Typical Performance Characteristics section. The rate  
of voltage rise at the SHDN/SS pin can easily be controlled  
with a simple RC network connected between the control  
signal and the SHDN/SS pin. Typical values for the RC  
network are 4.7kand 0.33µF, giving start-up times on  
the order of milliseconds. This RC time constant can be  
adjusted to give different start-up times. If different values  
of resistance are to be used, keep in mind the SHDN/SS  
Current vs SHDN/SS voltage graph along with the Peak  
Switch Current vs SHDN/SS Voltage graph, both found in  
the Typical Performance Characteristics section. The im-  
pedancelookingintotheSHDN/SSpindependsonwhether  
the SHDN/SS is above or below VIN. Normally SHDN/SS  
willnotbedrivenaboveVIN, andthustheimpedancelooks  
like 100kin series with a diode. If the voltage of the  
SHDN/SS pin is above VIN, the impedance looks more like  
50kin series with a diode. This 100kor 50kimped-  
ance can have a slight effect on the start-up time if you  
choose the R in the RC soft-start network too large.  
Another consideration is selecting the soft-start time so  
that the soft-start feature is dominated by the RC network  
and not the capacitor on VREF. (See VREF voltage reference  
section of the Applications Information for details.)  
R1  
R2  
VOUT = VREF  
Select values of R1 and R2 according to the following  
equation:  
VOUT  
VREF  
R1= R2  
A good value for R2 is 15k, which sets the current in the  
resistor divider chain to 1.00V/15k = 67µA.  
Switching Frequency and Inductor Selection  
TheLT3471switchesat1.2MHz,allowingforsmallvalued  
inductors to be used. 4.7µH or 10µH will usually suffice.  
Choose an inductor that can handle at least 1.4A without  
saturating, and ensure that the inductor has a low DCR  
(copper-wire resistance) to minimize I2R power losses.  
Note that in some applications, the current handling  
requirements of the inductor can be lower, such as in the  
SEPIC topology where each inductor only carries one half  
ofthetotalswitchcurrent.Forbetterefficiency,usesimilar  
valued inductors with a larger volume. Many different  
sizes and shapes are available from various manufactur-  
ers. Chooseacorematerialthathaslowlossesat1.2MHz,  
such as ferrite core.  
CAPACITOR SELECTION  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multi-layer ceramic capacitors are an excellent choice, as  
they have extremely low ESR and are available in very  
small packages. X5R dielectrics are preferred, followed by  
X7R, as these materials retain the capacitance over wide  
voltage and temperature ranges. A 4.7µF to 15µF output  
capacitor is sufficient for most applications, but systems  
withverylowoutputcurrentsmayneedonlya1µFor2.2µF  
output capacitor. Solid tantalum or OS-CON capacitors  
can be used, but they will occupy more board area than a  
ceramicandwillhaveahigherESR.Alwaysuseacapacitor  
with a sufficient voltage rating.  
Table 1. Inductor Manufacturers  
Sumida  
TDK  
(847) 956-0666  
(847) 803-6100  
(714) 852-2001  
www.sumida.com  
www.tdk.com  
Murata  
www.murata.com  
Soft-Start and Shutdown Features  
To shut down the part, ground both SHDN/SS pins. To  
shut down one switcher but not the other one, ground that  
switcher’s SHDN/SS pin. The soft-start feature provides a  
waytolimittheinrushcurrentdrawnfromthesupplyupon  
start-up. To use the soft-start feature for either switcher,  
slowly ramp up that switcher’s SHDN/SS pin. The rate of  
voltage rise at the output of the switcher’s comparator (A1  
or A3 for switcher 1 or switcher 2 respectively) tracks the  
rate of voltage rise at the SHDN/SS pin once the SHDN/SS  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT3471. A 4.7µF to 10µF input capacitor is  
3471f  
6
LT3471  
U
W U U  
APPLICATIONS INFORMATION  
L1  
2.2µH  
D1  
V
OUT1  
V
IN  
7V  
10  
SW1  
R3  
C
C3  
R
PL  
SS1  
CONTROL 1  
1.8V  
0V  
90.9k  
33pF  
4.7µF  
4.7k  
9
1
2
3
SHDN/SS1  
FB1N  
FB1P  
R4  
15k  
C
SS1  
0.33µF  
V
REF  
V
IN  
8
7
C2  
0.1µF  
V
LT3471  
2.6V TO 4.2V  
Li-Ion  
IN  
10µF  
5
4
R2  
15k  
R
FB2N  
FB2P  
SS2  
CONTROL 2  
1.8V  
0V  
4.7k  
SHDN/SS2  
GND  
SW2  
C
SS2  
0.33µF  
11  
6
C5  
1µF  
C6  
75pF  
L3  
15µH  
R1  
105k  
L2  
10µH  
V
OUT2  
V
IN  
–7V  
C4  
10µF  
D2  
3471 F02  
C1, C2: X5R OR X7R 6.3V  
C3, C4: X5R OR X7R 10V  
C5: XR5 OR X7R 16V  
D1, D2: ON SEMICONDUCTOR MBRM-120  
L1: SUMIDA CR43-2R2  
L2: SUMIDA CDRH4D18-100  
L3: SUMIDA CDRH4D18-150  
C
: OPTIONAL  
PL  
Figure 2. Li-Ion OLED Driver  
Supply Current of Figure 2 During  
Start-Up without Soft-Start RC Network  
Supply Current of Figure 2 During  
Start-Up with Soft-Start RC Network  
ISUPPLY  
0.5A/DIV  
ISUPPLY  
0.5A/DIV  
VOUT1  
2V/DIV  
VOUT1  
2V/DIV  
0.1ms/DIV  
3471 F02b  
0.2ms/DIV  
3471 F02c  
sufficient for most applications. Table 2 shows a list of  
several ceramic capacitor manufacturers. Consult the  
manufacturers for detailed information on their entire  
selection of ceramic parts.  
affect the stability of the overall system. The ESR of any  
capacitor, along with the capacitance itself, contributes a  
zero to the system. For the tantalum and OS-CON capaci-  
tors, this zero is located at a lower frequency due to the  
highervalueoftheESR, whilethezeroofaceramiccapaci-  
tor is at a much higher frequency and can generally be  
ignored.  
Table 2. Ceramic Capacitor Manufacturers  
Taiyo Yuden  
AVX  
(408) 573-4150  
(803) 448-9411  
(714) 852-2001  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
A phase lead zero can be intentionally introduced by  
placing a capacitor (CPL) in parallel with the resistor (R3)  
betweenVOUT andVFB asshowninFigure2.Thefrequency  
of the zero is determined by the following equation.  
3471f  
Murata  
ThedecisiontouseeitherlowESR(ceramic)capacitorsor  
the higher ESR (tantalum or OS-CON) capacitors can  
7
LT3471  
U
W U U  
APPLICATIONS INFORMATION  
1
VREG VOLTAGE REFERENCE  
ƒZ =  
2π R3 CPL  
Pin3oftheLT3471isabandgapvoltagereferencethathas  
been divided down to 1.00V and buffered for external use.  
This pin must be bypassed with at least 0.01µF and no  
more than 1µF. This will ensure stability as well as reduce  
the noise on this pin. The buffer has a built-in current limit  
of at least 1mA (typically 1.4mA). This not only means that  
you can use this pin as an external reference for supple-  
mental circuitry, but it also means that it is possible to  
provide a soft-start feature if this pin is used as one of the  
feedback pins for the error amplifier. Normally the soft-  
start time will be dominated by the RC time constant  
discussed in the soft-start and shutdown section. How-  
ever, because of the finite current limit of the buffer for the  
By choosing the appropriate values for the resistor and  
capacitor, the zero frequency can be designed to improve  
the phase margin of the overall converter. The typical  
target value for the zero frequency is between 35kHz to  
55kHz. Figure 3 shows the transient response of the step-  
up converter from Figure 2 without the phase lead capaci-  
tor CPL. Although adequate for many applications, phase  
margin is not ideal as evidenced by 2-3 “bumps” in both  
the output voltage and inductor current. A 33pF capacitor  
for CPL results in ideal phase margin, which is revealed in  
Figure 4 as a more damped response and less overshoot.  
V
REG pin, it will take some time to charge up the bypass  
capacitor. During this time, the voltage at the VREG pin will  
ramp up, and this action provides an alternate means for  
soft-starting the circuit. If the largest recommended by-  
pass capacitor is used, 1µF, the worst-case (longest) soft-  
start function that would be provided from the VREF pin is:  
VOUT  
200mV/DIV  
AC COUPLED  
IL1  
0.5A/DIV  
AC COUPLED  
1µF 1.00V  
= 1.0ms  
1.0mA  
LOAD CURRENT  
100mA/DIV  
AC COUPLED  
Choose the RC network such that the soft-start time is  
longer than this time, or choose a smaller bypass capaci-  
tor for the VREF pin (but always larger than 0.01µF) so that  
theRCnetworkdominatesthesoft-startingoftheLT3471.  
The voltage at the VREF pin can also be divided down and  
used for one of the feedback pins for the error amplifier.  
This is especially useful in LED driver applications, where  
the current through the LEDs is set using the voltage  
reference across a sense resistor in the LED chain. Using  
a smaller or divided down reference leads to less wasted  
power in the sense resistor. See the Typical Applications  
section for an example of LED driving applications.  
50µs/DIV  
3471 F03  
Figure 3. Transient Response of Figure 2’s Step-Up  
Converter without Phase Lead Capacitor  
VOUT  
200mV/DIV  
AC COUPLED  
IL1  
0.5A/DIV  
AC COUPLED  
LOAD CURRENT  
100mA/DIV  
AC COUPLED  
DIODE SELECTION  
50µs/DIV  
3471 F04  
ASchottkydiodeisrecommendedforusewiththeLT3471.  
For high efficiency, a diode with good thermal character-  
istics at high currents should be used such as the On  
Figure 4. Transient Response of Figure 2’s Step-Up  
Converter with 33pF Phase Lead Capacitor  
3471f  
8
LT3471  
U
W U U  
APPLICATIONS INFORMATION  
SemiconductorMBRM120. Thisisa20Vdiode. Wherethe  
switch voltage exceeds 20V, use the MBRM140, a 40V  
diode. These diodes are rated to handle an average for-  
ward current of 1.0A. In applications where the average  
forward current of the diode is less than 0.5A, use the  
Philips PMEG 2005, 3005, or 4005 (a 20V, 30V or 40V  
diode, respectively).  
Compensation—Theory  
Like all other current mode switching regulators, the  
LT3471 needs to be compensated for stable and efficient  
operation. Two feedback loops are used in the LT3471: a  
fast current loop which does not require compensation,  
and a slower voltage loop which does. Standard Bode plot  
analysis can be used to understand and adjust the voltage  
feedback loop.  
LAYOUT HINTS  
As with any feedback loop, identifying the gain and phase  
contribution of the various elements in the loop is critical.  
Figure 6 shows the key equivalent elements of a boost  
converter. Because of the fast current control loop, the  
power stage of the IC, inductor and diode have been  
replaced by the equivalent transconductance amplifier  
The high speed operation of the LT3471 demands careful  
attention to board layout. You will not get advertised  
performance with careless layout. Figure 5 shows the  
recommended component placement.  
g
mp. gmp actsasacurrentsourcewheretheoutputcurrent  
CONTROL 1  
GND  
CONTROL 2  
GND  
is proportional to the VC voltage. Note that the maximum  
C
SS1  
C
SS2  
output current of gmp is finite due to the current limit in the  
IC.  
R
SS1  
R
SS2  
GND  
C4  
From Figure 6, the DC gain, poles and zeroes can be  
calculated as follows:  
C1  
V
OUT2  
L1  
L2  
L3  
2
Output Pole: P1=  
V
CC  
V
OUT1  
D1  
C5  
2 • π RL COUT  
SW1  
10  
SW2  
6
1
Error Amp Pole: P2 =  
2 • π RO CC  
1
Error Amp Zero: Z1=  
2 • π RC CC  
9
8
7
D2  
GND  
C3  
GND  
SHDN/SS1  
SHDN/SS2  
LT3471  
PIN 11 GND  
VREF  
VOUT  
1
2
DC GAIN: A =  
• gma RO • gmp RL •  
1
V
FB1N FB1P  
FB2P FB2N  
REF  
ESR Zero: Z2 =  
1
2
3
4
5
2 • π RESR COUT  
R4  
R2  
V
2 RL  
IN  
R3  
V
R1  
V
RHP Zero: Z3 =  
OUT1  
OUT2  
2 • π VOUT2 L  
C2  
fS  
3
High Frequency Pole: P3 >  
3471 F05  
1
Figure 5. Suggested Layout Showing a Boost on SW1 and an  
Inverter on SW2. Note the Separate Ground Returns for All High  
Current Paths (Using a Multilayer Board)  
PhaseLeadZero:Z4 =  
2 • π R1CPL  
1
PhaseLeadPole:P4 =  
R1R2  
R1+R2  
2 • π CPL •  
3471f  
9
LT3471  
U
W U U  
APPLICATIONS INFORMATION  
Table 3. Bode Plot Parameters  
Parameter  
Value  
20  
Units  
Comment  
g
mp  
V
OUT  
R
L
Application Specific  
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Adjustable  
+
C
R
R
L
PL  
ESR  
C
4.7  
10  
µF  
OUT  
C
OUT  
1.00V  
REFERENCE  
R
mΩ  
MΩ  
pF  
ESR  
+
V
C
R
0.9  
90  
g
O
ma  
R1  
R2  
R
R
O
C
C
C
C
C
33  
pF  
C
PL  
3471 F06  
R
55  
kΩ  
kΩ  
kΩ  
V
Not Adjustable  
Adjustable  
C
C : COMPENSATION CAPACITOR  
C
C
C
: OUTPUT CAPACITOR  
R1  
R2  
90.9  
15  
OUT  
: PHASE LEAD CAPACITOR  
PL  
ma  
mp  
Adjustable  
g
g
: TRANSCONDUCTANCE AMPLIFIER INSIDE IC  
: POWER STAGE TRANSCONDUCTANCE AMPLIFIER  
V
OUT  
7
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Application Specific  
Not Adjustable  
R : COMPENSATION RESISTOR  
C
L
O
R : OUTPUT RESISTANCE DEFINED AS V  
R : OUTPUT RESISTANCE OF g  
DIVIDED BY I  
LOAD(MAX)  
OUT  
V
IN  
3.3  
50  
V
ma  
R1, R2: FEEDBACK RESISTOR DIVIDER NETWORK  
: OUTPUT CAPACITOR ESR  
g
g
µmho  
mho  
µH  
ma  
R
ESR  
9.3  
2.2  
1.2  
mp  
L
Figure 6. Boost Converter Equivalent Model  
f
MHz  
S
The Current Mode zero is a right half plane zero which can  
be an issue in feedback control design, but is manageable  
with proper external component selection.  
From Figure 7, the phase is –115° when the gain reaches  
0dB giving a phase margin of 65°. This is more than  
adequate. The crossover frequency is 50kHz.  
Using the circuit of Figure 2 as an example, Table 3 shows  
the parameters used to generate the Bode plot shown in  
Figure 7.  
70  
60  
50  
40  
30  
20  
10  
0
0
–50  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–10  
GAIN  
–20  
PHASE  
–30  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
3471 F07  
Figure 7. Bode Plot of 3.3V to 7V Application  
3471f  
10  
LT3471  
U
TYPICAL APPLICATIO S  
Li-Ion OLED Driver  
L1  
2.2µH  
D1  
V
OUT1  
V
9
IN  
7V  
10  
SW1  
R3  
C6  
C3  
4.7µF  
R
500mA WHEN V = 4.2V  
SS1  
IN  
IN  
CONTROL 1  
1.8V  
0V  
90.9k  
33pF  
4.7k  
350mA WHEN V = 3.3V  
1
SHDN/SS1  
FB1N  
250mA WHEN V = 2.6V  
IN  
2
R4  
15k  
C
FB1P  
SS1  
3
0.33µF  
V
REF  
V
V
IN  
8
7
CONTROL  
0V TO 1V  
C2  
0.1µF  
V
LT3471  
2.6V TO 4.2V  
Li-Ion  
IN  
C1  
10µF  
R5  
20k  
5
4
R2  
15k  
FB2N  
FB2P  
CONTROL 2  
1.8V  
0V  
R
4.7k  
SS2  
SHDN/SS2  
GND  
R6  
10k  
SW2  
C
SS2  
0.33µF  
11  
6
C5  
1µF  
C6  
75pF  
L3  
15µH  
R1  
105k  
L2  
15µH  
V
OUT2  
V
IN  
–7V TO –4V  
–7V WHEN V  
–4V WHEN V  
C4  
= 0V  
D2  
CONTROL  
CONTROL  
10µF  
= 1  
3471 TA02  
–7V, 300mA WHEN V = 4.2V  
IN  
–7V, 250mA WHEN V = 3.3V  
IN  
–7V, 200mA WHEN V = 2.6V  
IN  
C1, C2: X5R OR X7R 6.3V  
C3, C4: X5R OR X7R 10V  
C5: XR5 OR X7R 16V  
C6: OPTIONAL  
D1, D2: ON SEMICONDUCTOR MBRM-120  
L1: SUMIDA CR43-2R2  
L2: SUMIDA CDRH4D18-100  
L3: SUMIDA CDRH4D18-150  
Li-Ion OLED Driver Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
V
= 7V  
OUT  
V
= 4.2V  
IN  
V
IN  
= 3.3V  
V
= 2.6V  
IN  
V
= 4.2V  
IN  
= 3.3V  
V
IN  
V
= 2.6V  
IN  
V
= –7V  
100  
OUT  
50  
0
400  
500  
200  
300  
(mA)  
I
OUT  
3471 TA02b  
3471f  
11  
LT3471  
U
TYPICAL APPLICATIO S  
Single Li-Ion Cell to 5V, 12V Boost Converter  
L1  
3.3µH  
V
OUT1  
D1  
5V  
V
900mA IF V = 4.2V  
IN  
IN  
10  
630mA IF V = 3.3V  
IN  
R1  
C5  
100pF  
C3  
10µF  
R
SS1  
CONTROL 1  
1.8V  
OV  
425mA IF V = 2.6V  
IN  
20k  
4.7k  
SW1  
9
1
2
3
SHDN/SS1  
FB1N  
FB1P  
R2  
4.99k  
C
SS1  
0.33µF  
V
REF  
8
7
V
C2  
0.1µF  
IN  
V
LT3471  
IN  
2.6V TO 4.2V  
C1  
4
5
4.7µF  
R
FB2P  
FB2N  
SS2  
CONTROL 2  
1.8V  
0V  
4.7k  
SHDN/SS2  
GND  
SW2  
C
SS2  
0.33µF  
11  
6
L2  
6.8µH  
V
OUT2  
D2  
12V  
300mA IF V = 4.2V  
V
IN  
IN  
C4  
10µF  
C6  
220pF  
210mA IF V = 3.3V  
IN  
R3  
54.9k  
145mA IF V = 2.6V  
IN  
R4  
4.99k  
3471 TA03  
C1-C3: X5R OR X7R 6.3V  
C4: X5R OR X7R 16V  
D1, D2: ON SEMICONDUCTOR MBRM-120  
L1: SUMIDA CR43-3R3  
L2: SUMIDA CR43-6R8  
3471f  
12  
LT3471  
U
TYPICAL APPLICATIO S  
Li-Ion 20 White LED Driver  
L1  
2.2µH  
D1  
V
9
IN  
C3  
I
OUT1  
10  
SW1  
0.22µF  
R
20mA  
SS1  
CONTROL 1  
1.8V  
4.7k  
1
2
3
SHDN/SS1  
FB1N  
FB1P  
OV  
C
SS1  
0.33µF  
V
REF  
R1  
90.9k  
8
7
V
C2  
0.1µF  
IN  
V
LT3471  
10 WHITE LEDs  
IN  
2.6V TO 4.2V  
C1  
4
5
4.7µF  
R2  
10k  
R
4.7k  
FB2P  
FB2N  
SS2  
CONTROL 2  
1.8V  
OV  
SHDN/SS2  
GND  
SW2  
C
SS2  
0.33µF  
11  
6
4.99  
L2  
2.2µH  
D2  
V
IN  
C4  
I
OUT2  
0.22µF  
20mA  
C1, C2: X5R OR X7R 6.3V  
C3, C4: X5R OR X7R 50V  
D1, D2: ON SEMICONDUCTOR MBRM-140  
L1, L2: SUMIDA CDRH2D-2R2  
10 WHITE LEDs  
4.99Ω  
3471 TA04  
3471f  
13  
LT3471  
U
TYPICAL APPLICATIO S  
Li-Ion or 4-Cell Alkaline to 3.3V and 5V SEPIC  
C3  
4.7µF  
L1  
10µH  
V
OUT1  
D1  
3.3V  
V
640mA AT V = 6.5V  
IN  
IN  
550mA AT V = 5V  
C4  
15µF  
IN  
L2  
470mA AT V = 4V  
IN  
C7  
56pF  
10µH  
410mA AT V = 3.3V  
IN  
10  
SW1  
R1  
R
340mA AT V = 2.6V  
IN  
SS1  
CONTROL 1  
34.8k  
4.7k  
9
1
2
3
1.8V  
SHDN/SS1  
FB1N  
FB1P  
OV  
R2  
15k  
C
SS1  
0.33µF  
V
REF  
8
7
C2  
0.1µF  
V
IN  
V
IN  
LT3471  
2.6V TO 6.5V  
C1  
4
5
4.7µF  
R
SS2  
4.7k  
FB2P  
FB2N  
CONTROL 2  
1.8V  
OV  
SHDN/SS2  
GND  
SW2  
C
SS2  
0.33µF  
11  
6
C5  
10µF  
L3  
10µH  
V
OUT2  
D2  
5V  
500mA AT V = 6.5V  
V
IN  
IN  
C6  
15µF  
420mA AT V = 5V  
IN  
C8  
R3  
L4  
10µH  
360mA AT V = 4V  
56pF 60.4k  
C1, C3, C5: X5R OR X7R 10V  
C4, C6: X5R OR X7R 6.3V  
D1, D2: ON SEMICONDUCTOR MBRM-120  
L1-L4: MURATA LQH43CN100K032  
IN  
300mA AT V = 3.3V  
IN  
250mA AT V = 2.6V  
IN  
R4  
15k  
3471 TA05  
3471f  
14  
LT3471  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
6
0.38 ± 0.10  
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3471f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
15  
LT3471  
U
TYPICAL APPLICATIO  
5V to ±12V Dual Supply Boost/Inverting Converter  
L1  
10µH  
D1  
V
OUT1  
12V  
320mA  
V
9
IN  
10  
SW1  
R1  
C6  
C3  
4.7µF  
CONTROL 1  
54.9k  
56pF  
4.7k  
1
2
3
1.8V  
SHDN/SS1  
FB1N  
FB1P  
OV  
R2  
4.99k  
0.33µF  
V
REF  
R3  
15k  
8
7
V
C2  
0.1µF  
IN  
5V  
V
IN  
LT3471  
C1  
4.7µF  
4
5
FB2P  
FB2N  
CONTROL 2  
4.7k  
1.8V  
SHDN/SS2  
GND  
OV  
C7  
56pF  
SW2  
0.33µF  
11  
6
R4  
182k  
V
OUT2  
–12V  
V
IN  
L2  
10µH  
L3  
10µH  
200mA  
C4  
4.7µF  
D2  
C5  
1µF  
3471 TA06  
C1, C2: X5R OR X7R 6.3V  
C3, C4: X5R OR X7R 16V  
C5: X5R OR X7R 25V  
L1: SUMIDA CR43-10  
L2, L3: SUMIDA CLS63-10  
D1, D2: ON SEMICONDUCTOR MBRM-120  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1611  
550mA (I ), 1.4MHz, High Efficiency Micropower Inverting  
V : 1.1V to 10V, V  
= –34V, I = 3mA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
DC/DC Converter  
ThinSOT Package  
LT1613  
550mA (I ), 1.4MHz, High Efficiency Step-Up  
V : 0.9V to 10V, V  
= 34V, I = 3mA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
DC/DC Converter  
ThinSOT Package  
LT1614  
750mA (I ), 600kHz, High Efficiency Micropower Inverting  
V : 1V to 12V, V  
= –24V, I = 1mA, I < 10µA,  
OUT(MAX) Q SD  
SW  
IN  
DC/DC Converter  
MS8, S8 Packages  
LT1615/LT1615-1  
LT1617/LT1617-1  
LT1930/LT1930A  
LT1931/LT1931A  
LT1943 (Quad)  
LT1945 (Dual)  
LT1946/LT1946A  
LT3436  
300mA/80mA (I ), High Efficiency Step-Up DC/DC Converters  
V
= 1V to 15V, V  
= 34V, I = 20µA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
ThinSOT Package  
350mA/100mA (I ), High Efficiency Micropower Inverting  
V
= 1.2V to 15V, V  
= –34V, I = 20µA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
DC/DC Converters  
ThinSOT Package  
1A (I ), 1.2MHz/2.2MHz, High Efficiency  
V : 2.6V to 16V, V  
= 34V, I = 4.2mA/5.5mA,  
Q
SW  
IN  
OUT(MAX)  
Step-Up DC/DC Converters  
I
< 1µA, ThinSOT Package  
SD  
1A (I ), 1.2MHz/2.2MHz High Efficiency Micropower Inverting  
V
= 2.6V to 16V, V  
= –34V, I = 5.8mA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
DC/DC Converters  
ThinSOT Package  
Quad Boost, 2.6A Buck, 2.6A Boost, 0.3A Boost, 0.4A Inverter  
1.2MHz TFT DC/DC Converter  
V
= 4.5V to 22V, V  
= 40V, I = 10µA, I < 35µA,  
Q SD  
IN  
TSSOP28E Package  
Dual Output, Boost/Inverter, 350mA (I ), Constant Off-Time,  
V
= 1.2V to 15V, V  
= ±34V, I = 40µA, I < 1µA,  
Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converter  
10-Lead MS Package  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency  
V : 2.45V to 16V, V  
MS8 Package  
= 34V, I = 3.2mA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
Step-Up DC/DC Converters  
3A (I ), 1MHz, 34V Step-Up DC/DC Converter  
V : 3V to 25V, V  
TSSOP16E Package  
= 34V, I = 0.9mA, I < 6µA,  
SW  
IN  
OUT(MAX) Q SD  
LT3462/LT3462A  
LT3463/LT3463A  
300mA (I ), 1.2MHz/2.7MHz, High Efficiency Inverting  
V
= 2.5V to 16V, V  
= –38V, I = 2.9mA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
DC/DC Converters with Integrated Schottkys  
ThinSOT Package  
Dual Output, Boost/Inverter, 250mA (I ), Constant Off-Time,  
V
= 2.3V to 15V, V  
= ±40V, I = 40µA, I < 1µA,  
Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converters with Integrated  
Schottkys  
DFN Package  
LT3464  
85mA (I ), High Efficiency Step-Up DC/DC Converter with  
V
= 2.3V to 10V, V  
= 34V, I = 25µA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
Integrated Schottky and PNP Disconnect  
ThinSOT Package  
3471f  
LT/TP 0804 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT3471EDD#TRPBF

LT3471 - Dual 1.3A, 1.2MHz Boost/Inverter in 3mm x 3mm DFN; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3472

Inverting Micropower DC/DC Converter with Schottky in ThinSOT Package
Linear

LT3472EDD

Boost and Inverting DC/DC Converter for CCD Bias
Linear

LT3472EDD#PBF

LT3472 - Boost and Inverting DC/DC Converter for CCD Bias; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3472EDD#TRPBF

LT3472 - Boost and Inverting DC/DC Converter for CCD Bias; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3473

20mA LED Driver and OLED Driver with Integrated Schottky in 3mm x 2mm DFN
Linear

LT3473A

20mA LED Driver and OLED Driver with Integrated Schottky in 3mm x 2mm DFN
Linear

LT3473AEDE

Micropower 1A Boost Converter with Schottky and Output Disconnect
Linear

LT3473AEDE#PBF

LT3473 - Micropower 1A Boost Converter with Schottky and Output Disconnect; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3473AEDE#TRPBF

LT3473 - Micropower 1A Boost Converter with Schottky and Output Disconnect; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3473A_15

Micropower 1A Boost Converter with Schottky and Output Disconnect
Linear

LT3473EDD

Micropower 1A Boost Converter with Schottky and Output Disconnect
Linear