LT5506 [Linear]

40MHz to 500MHz Quadrature Demodulator with VGA; 40MHz至500MHz的正交解调器与VGA
LT5506
型号: LT5506
厂家: Linear    Linear
描述:

40MHz to 500MHz Quadrature Demodulator with VGA
40MHz至500MHz的正交解调器与VGA

文件: 总12页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5506  
40MHz to 500MHz  
Quadrature Demodulator  
with VGA  
U
FEATURES  
DESCRIPTIO  
TheLT®5506isa40MHzto500MHzmonolithicintegrated  
quadraturedemodulatorwithvariablegainamplifier(VGA),  
designed for low voltage operation. It supports standards  
that use a linear modulation format. The chip consists of  
a VGA, quadrature down-converting mixers and lowpass  
noise filters. The LO port consists of a divide-by-two stage  
and LO buffers. The IC provides all building blocks for IF  
down-conversionto IandQbasebandsignalswithasingle  
supplyvoltageof1.8Vto5.25V. TheVGAgainhasalinear-  
in-dB relationship to the control input voltage. Hard-clip-  
ping amplifiers at the mixer outputs reduce the recovery  
time from a signal overload condition. The lowpass filters  
reduce the out-of-band noise and spurious frequency  
components. The cut-off frequency of the noise filters is  
approximately 8.8MHz. The external 2xLO frequency is  
required to be twice the IF input frequency for the mixers.  
The standby mode provides reduced supply current and  
fast transient response into the normal operating mode  
when the I/Q outputs are AC-coupled to a baseband chip.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Wide Range 1.8V to 5.25V Supply  
Frequency Range: 40MHz to 500MHz  
–4dB to 59dB Variable Power Gain  
THD < 0.12% (–58dBc)  
at 800mVP-P Differential Output Level  
8.8MHz I/Q Lowpass Output Noise Filters  
IF Overload Detector  
Baseband I/Q Amplitude Imbalance: 0.2dB  
Baseband I/Q Phase Imbalance: 0.6°  
6.8dB Noise Figure at Max Gain  
Input IP3 at Low Gain: 0.5dBm  
Low Supply Current: 27mA  
Low Delay Shift Over Gain Control Range: 2ps/dB  
Outputs Biased Up While in Standby  
16-Lead QFN 4mUm x 4mm Package with Exposed Pad  
APPLICATIO S  
IEEE802.11  
High Speed Wireless LAN  
Wireless Local Loop  
U
TYPICAL APPLICATIO  
Total Harmonic Distortion vs  
IF Input Level at 1.8V Supply  
–30  
1.8V  
280MHz  
IF INPUT  
C2  
C1  
f
f
f
= 280MHz  
= 280.1MHz  
= 570MHz  
IF, 1  
IF, 2  
2xLO  
+
1µF  
1nF  
IF  
L1  
15nH  
C3  
10pF  
L2  
15nH  
–35  
–40  
–45  
–50  
–55  
–60  
800mV DIFFERENTIAL OUT  
P-P  
V
CC  
+
I
I
OUT  
IF  
OUT  
IF DET  
+
V
CTRL  
C3  
1.8pF  
GAIN CONTROL  
+
2xLO  
Q
OUT  
2xLO  
C4  
L3  
39nH  
560MHz  
3.3pF  
÷2  
Q
OUT  
INPUT  
2xLO  
–60  
–40  
–30  
–20  
–10  
–50  
LT5506  
EN  
ENABLE  
STBY  
STANDBY  
GND  
C5  
3.3pF  
IF INPUT POWER EACH TONE (dBm)  
5506 TA01  
5506 TA01b  
5506fa  
1
LT5506  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
Supply Voltage ....................................................... 5.5V  
Differential Voltage Between 2xLO+ and 2xLO.......... 4V  
IF+, IF............................................. –500mV to 500mV  
IOUT+, IOUT, QOUT+, QOUT..................VCC – 1.8V to VCC  
Operating Ambient Temperature  
NUMBER  
16 15 14 13  
GND  
1
2
3
4
12 STBY  
LT5506EUF  
+
+
IF  
11 2xLO  
17  
IF  
2xLO  
EN  
10  
9
(Note 2) ...................................................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 125°C  
Voltage on Any Pin  
GND  
5
6
7
8
Not to Exceed ........................ –500mV to VCC + 500mV  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 37°C/W  
EXPOSED PAD (PIN 17) IS GROUND  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
VCC = 3V. f2xLO = 570MHz, P2xLO = –5dBm (Note 5), fIF = 284MHz,  
PIF = –30dBm, I and Q outputs 800mVP-P into 4kdifferential load, TA = 25°C, EN = VCC, STBY = VCC, unless otherwise noted. (Note 3)  
SYMBOL  
IF Input  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
Frequency Range  
Nominal Input Level  
Input Impedance  
40 to 500  
MHz  
dBm  
IF  
R
= 200Differential  
–79 to –22  
SOURCE  
+
IF , IF to GND, EN = V  
IF , IF to GND, EN = GND  
100//1.2pF  
CC  
+
1pF  
NF  
Noise Figure at Max Gain  
Min Gain (Note 4)  
V
V
V
P
P
V
= 1.7V  
= 0.2V  
= 1.7V  
6.8  
0.9  
59  
dB  
dB  
CTRL  
CTRL  
CTRL  
G
G
8
L
Max Gain (Note 4)  
Input IP3, Min Gain  
Input IP3, Max Gain  
Input IP2, Max Gain  
50  
dB  
H
IIP3  
= –22.5dBm (Note 7)  
= –75dBm (Note 7)  
–0.5  
–49  
–8  
dBm  
dBm  
dBm  
IF  
IF  
IIP2  
= 1.7V  
CTRL  
Demodulator I/Q Output  
Nominal Voltage Swing  
(Note 6)  
(Note 6)  
0.8  
V
V
P-P  
Clipping Level  
1.25  
P-P  
DC Common Mode Voltage  
I/Q Amplitude Imbalance  
I/Q Phase Imbalance  
DC Offset  
V
– 1.19  
0.2  
V
CC  
(Note 8)  
0.5  
3
dB  
(Note 8)  
0.6  
Deg  
mV  
kΩ  
(Notes 6, 8)  
Single Ended, C  
28  
Output Driving Capability  
STBY to Turn-On Delay  
I/Q Output 1dB Compression  
I/Q Output IM3  
10pF  
2
1.5  
LOAD  
0.3  
µs  
–11.5  
50  
dBm  
dBc  
P
P
= –25.5dBm, 280MHz  
= –25.5dBm, 280.1MHz (Note 7)  
IF, 1  
IF, 2  
5506fa  
2
LT5506  
ELECTRICAL CHARACTERISTICS  
VCC = 3V. f2×LO = 570MHz, P2×LO = –5dBm (Note 5), fIF = 284MHz,  
PIF = –30dBm, I and Q outputs 800mVP-P into 4kdifferential load, TA = 25°C, EN = VCC, STBY = VCC, unless otherwise noted. (Note 3)  
SYMBOL  
Variable Gain Amplifier (VGA)  
Gain Slope Linearity Error  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CTRL  
= 0V to 1.4V  
±0.5  
±0.3  
100  
0 to 1.7  
43  
dB  
dB  
Temperature Gain Shift  
T = –40°C to 85°C, V  
= 0V to 1.4V  
CTRL  
Gain Control Response Time  
Gain Control Voltage Range  
Gain Control Slope  
Settled within 10% of Final Value  
ns  
V
dB/V  
kΩ  
Gain Control Input Impedance  
Delay Shift Over Gain Control  
To Internal 0.2V  
25  
Measured Over 10dB Step  
2
ps/dB  
Baseband Lowpass Filter  
–3dB Cutoff Frequency  
Group Delay Ripple  
7.2  
8.8  
5
10.4  
MHz  
ns  
2xLO Input  
f
Frequency Range  
Input Power  
80 to 1000  
–5  
MHz  
dBm  
dBm  
2xLO  
P
1:2 Transformer with 240Shunt Resistor (Note 5)  
–20  
2xLO  
Input Power  
LC Balun (Note 5)  
–10  
+
Input Impedance  
DC Common Mode Voltage  
Differential Between 2xLO and 2xLO  
800//0.4pF  
V
CC  
– 0.4  
V
IF Detector  
IF Detector Range  
Referred to IF Input  
–30 to 8  
0.3 to 1.2  
100  
dBm  
V
Output Voltage Range  
Detector Response Time  
For P = –30dBm to 8dBm  
IF  
With External 1.8pF Load,  
ns  
Settling within 10% of Final Value  
Power Supply  
V
Supply Voltage  
Supply Current  
Shutdown Current  
Standby Current  
1.8  
5.25  
36  
V
mA  
µA  
CC  
I
I
I
EN = High, STBY = Low or High  
EN, STBY < 350mV  
26.5  
0.2  
CC  
30  
OFF  
EN = Low; STBY = High  
3.6  
5.5  
mA  
STBY  
Mode  
Enable  
Enable Pin Voltage  
Enable Pin Voltage  
Standby Pin Voltage  
Standby Pin Voltage  
EN = High  
1
1
V
V
V
V
Disable  
Standby  
No Standby  
EN = Low  
0.5  
0.5  
STBY = High  
STBY = Low  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Note 5: If a narrow-band match is used in the 2xLO path instead of a 1:2  
transformer with 240shunt resistor, 2xLO input power can be reduced  
to –10dBm, without degrading the phase imbalance. See Figure 11 and  
Figure 6.  
+
Note 6: Differential between I  
and I  
(or differential between  
OUT  
OUT  
+
Q
OUT  
and Q  
).  
OUT  
Note 3: Tests are performed as shown in the configuration of Figure 6. The  
IF input transformer loss is substracted from the measured values.  
Note 7: The gain control voltage V  
is set in such a way that the  
CTRL  
+
differential output voltage between I  
and I  
(or differential between  
OUT  
OUT  
Note 4: Power gain is defined here as the I (or Q) output power into a 4kΩ  
differential load, divided by the IF input power in dB. To calculate the  
voltage gain between the differential I output (or Q output) and the IF  
input, including ideal matching network, 10 • log(4k/50) = 19dB has to  
be added to this power gain.  
+
Q
OUT  
and Q  
) is 800mV , with the given input power P .  
OUT P-P IF  
Note 8: The typical parameter is defined as the mean of the absolute  
values of the data distribution.  
5506fa  
3
LT5506  
U W  
VCC = 3V. f2×LO = 570MHz, P2×LO = 5dBm  
TYPICAL PERFOR A CE CHARACTERISTICS  
unless otherwise noted. (Note 3)  
(Note 5), fIF = 284MHz, PIF = –30dBm, I and Q outputs 800mVP-P into 4kdifferential load, TA = 25°C, EN = VCC, STBY = VCC  
,
Gain and Noise Figure  
vs Control Voltage at 3V Supply  
Supply Current vs Supply Voltage  
32  
30  
28  
26  
24  
22  
20  
60  
50  
40  
30  
20  
10  
0
85°C  
25°C  
–40°C  
NF  
GAIN AT 25°C  
NF AT 25°C  
GAIN AT –40°C  
NF AT –40°C  
GAIN AT 85°C  
NF AT 85°C  
GAIN  
f
f
= 284MHz  
IF  
2xLO  
= 570MHz  
–10  
1.75  
2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
2.25  
0.3  
0.6  
0.9  
1.2  
1.8  
0
1.5  
V
(V)  
CTRL  
5506 G01  
5506 G02  
Gain and Noise Figure  
vs Control Voltage at 1.8V Supply  
Gain Flatness  
vs Control Voltage at 1.8V Supply  
60  
50  
40  
30  
20  
10  
0
0.5  
0.4  
0.3  
0.2  
25°C  
85°C  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
NF  
GAIN AT –40°C  
NF AT –40°C  
GAIN AT 25°C  
NF AT 25°C  
GAIN AT 85°C  
NF AT 85°C  
–40°C  
GAIN  
f
f
= 284MHz  
IF  
2xLO  
= 570MHz  
–10  
0.3  
0.6  
0.9  
1.2  
1.8  
0
1.5  
0
0.3  
0.9  
(V)  
1.2  
1.5  
0.6  
V
V
(V)  
CTRL  
CTRL  
5506 G03  
5506 G04  
Gain and Noise Figure  
vs IF Frequency  
Gain and Noise Figure  
vs Control Voltage and VCC  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
GAIN, V  
= 1.6V  
CTRL  
NF, V  
= 0.2V  
CTRL  
GAIN, V  
= 0.9V  
CTRL  
NF, V  
= 0.9V  
CTRL  
NF  
GAIN AT 1.8V  
NF AT 1.8V  
GAIN AT 3V  
NF AT 3V  
GAIN AT 5.25V  
NF AT 5.25V  
NF, V  
= 1.6V  
CTRL  
GAIN  
f
f
= 284MHz  
GAIN, V  
= 0.2V  
IF  
2xLO  
CTRL  
100  
= 570MHz  
–10  
–10  
0.3  
0.6  
0.9  
1.5  
0
1.8  
1.2  
10  
1000  
IF FREQUENCY (MHz)  
V
(V)  
CTRL  
5506 G06  
5506 G05  
5506fa  
4
LT5506  
U W  
VCC = 3V. f2×LO = 570MHz, P2×LO = 5dBm  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Note 5), fIF = 284MHz, PIF = –30dBm, I and Q outputs 800mVP-P into 4kdifferential load, TA = 25°C, EN = VCC, STBY = VCC  
unless otherwise noted. (Note 3)  
,
Total Harmonic Distortion  
vs IF Input Power at 3V Supply  
and 800mVP-P Differential Out  
Total Harmonic Distortion  
vs IF Input Power at 1.8V Supply  
and 800mVP-P Differential Out  
Total Harmonic Distortion  
vs IF Input Power and IF  
Frequency  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
f
f
f
= 280MHz  
= 280.1MHz  
= 570MHz  
800mV DIFFERENTIAL OUT  
P-P  
f
f
f
= 280MHz  
= 280.1MHz  
= 570MHz  
IF,1  
IF,2  
2xLO  
IF,1  
IF,2  
2xLO  
3V SUPPLY  
–40°C  
–40°C  
f
= 280MHz  
= 550MHz  
IF  
f
IF  
25°C  
25°C  
85°C  
85°C  
f
IF  
= 40MHz  
–50  
–40  
–20  
–60  
–30  
–50  
–40  
–20  
–50  
–40  
–20  
–60  
–60  
–30  
–30  
IF INPUT POWER EACH TONE (dBm)  
IF INPUT POWER EACH TONE (dBm)  
IF INPUT POWER EACH TONE (dBm)  
5506 G07  
5506 G08  
5506 G09  
LPF Frequency Response  
vs Baseband Frequency  
and Temperature  
Total Harmonic Distortion  
vs IF Input Power at 500mVP-P  
Differential Out  
Total Harmonic Distortion vs IF  
Input Power and Supply Voltage  
–40  
–45  
0
–5  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
f
f
f
= 280MHz  
= 280.1MHz  
= 570MHz  
V
= 3V  
800mV DIFFERENTIAL OUT  
P-P  
IF,1  
IF,2  
2xLO  
CC  
f
f
f
= 280MHz  
IF,1  
IF,2  
= 280.1MHz  
= 570MHz  
2xLO  
25°C  
85°C  
–40°C  
–50  
–55  
–10  
–15  
3V  
–40°C  
25°C  
1.8V  
–60  
–65  
–70  
5.25V  
–20  
85°C  
–20  
–25  
–45  
–40  
–35  
–30  
–25  
–20  
0
10  
15  
20  
25  
5
–50  
–40  
–60  
–30  
IF INPUT POWER EACH TONE (dBm)  
BASEBAND FREQUENCY (MHz)  
IF INPUT POWER EACH TONE (dBm)  
5506 G11  
5505 G12  
5506 G10  
LPF Frequency Response  
vs Baseband Frequency and  
Supply Voltage  
IF Detector Output Voltage vs  
IF Input CW Power at 3V Supply  
IF Detector Output Voltage vs  
IF Input CW Power at 1.8V Supply  
1.4  
1.2  
1.4  
1.2  
0
–5  
f
IF  
= 280MHz  
f
IF  
= 280MHz  
3V  
1.8V  
5.25V  
1.0  
0.8  
1.0  
0.8  
–10  
–15  
–40°C 85°C  
25°C  
–40°C 85°C  
25°C  
0.6  
0.4  
0.2  
0.6  
0.4  
0.2  
–20  
–25  
–40  
–30  
–20  
–10  
0
10  
–40  
–30  
–20  
–10  
0
10  
0
10  
15  
20  
25  
5
IF INPUT CW POWER (dBm)  
IF INPUT CW POWER (dBm)  
BASEBAND FREQUENCY (MHz)  
5506 G15  
5506 G14  
5505 G13  
5506fa  
5
LT5506  
U W  
VCC = 3V. f2×LO = 570MHz, P2×LO = 5dBm  
TYPICAL PERFOR A CE CHARACTERISTICS  
unless otherwise noted. (Note 3)  
(Note 5), fIF = 284MHz, PIF = –30dBm, I and Q outputs 800mVP-P into 4kdifferential load, TA = 25°C, EN = VCC, STBY = VCC  
,
IF Detector Output Voltage  
vs IF Input CW Power and  
Supply Voltage  
IF Detector Output Voltage vs IF  
Input CW Power and IF Frequency  
Phase Relation Between I and Q  
Outputs vs LO Input Power  
95  
94  
93  
92  
91  
90  
89  
88  
1.4  
1.6  
1.4  
f
IF  
f
IF  
f
IF  
f
IF  
f
IF  
= 284MHz, 25°C  
= 284MHz, –40°C  
= 284MHz, 85°C  
= 40MHz, 25°C  
= 550MHz, 25°C  
f
IF  
= 280MHz  
V
CC  
= 3V  
1.2  
f
= 280MHz  
= 550MHz  
IF  
5.25V  
1.8V  
3V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.0  
0.8  
f
IF  
f
IF  
= 40MHz  
0.6  
0.4  
0.2  
–30  
–20  
–10  
10  
–20  
–5  
0
5
10  
–40  
0
–15  
–10  
–40  
–30  
–20  
–10  
0
10  
IF INPUT CW POWER (dBm)  
IF INPUT CW POWER (dBm)  
LO INPUT POWER (dBm)  
5506 G17  
5506 G18  
5506 G16  
U
U
U
PI FU CTIO S  
GND (Pins 1, 4, 17): Ground. Pins 1 and 4 are connected  
to each other internally. The Exposed Pad (Pin 17) is not  
connectedinternallytoPins1and4.Forchipfunctionality,  
the Exposed Pad and either Pin 1 or Pin 4 must be  
connected to ground. For best RF performance, Pin 1,  
Pin 4 and the Exposed Pad should be connected to RF  
ground.  
IF+, IF(Pins 2, 3): Differential Inputs for the IF Signal.  
Each pin must be DC grounded through an external  
inductor or RF transformer with central ground tap. This  
pathshouldhaveaDCresistancelowerthan2toground.  
EN (Pin 9): Enable Input. When the enable pin voltage is  
higher than 1V, the IC is completely turned on. When the  
input voltage is less than 0.5V, the IC is turned off, except  
the part of the circuit associated with standby mode.  
2xLO, 2xLO+ (Pins 10, 11): Differential Inputs for the  
2xLO Input. The 2xLO input frequency must be twice that  
of the IF frequency. The internal bias voltage is VCC – 0.4V.  
STBY (Pin 12): Standby Input. When the STBY pin is  
higher than 1V, the standby mode circuit is turned on to  
prebias the I/Q buffers. When the STBY pin is less than  
0.5V, the standby mode circuit is turned off.  
VCC (Pins 5 and 8): Power Supply. These pins should be  
decoupled to ground using 1000pF and 0.1µF capacitors.  
+
QOUT, QOUT (Pins 13, 14): Differential Baseband Out-  
puts of the Q Channel. Internally biased at VCC – 1.19V.  
VCTRL (Pin 6): VGA Gain Control Input. This pin controls  
the IF gain and its typical input voltage range is 0.2V to  
1.7V. It is internally biased via a 25k resistor to 0.2V,  
setting a low gain if the VCTRL pin is left floating.  
IOUT, IOUT+ (Pins 15, 16): Differential Baseband Outputs  
of the I Channel. Internally biased at VCC – 1.19V.  
IF DET (Pin 7): IF Detector Output. For strong IF input  
signals, the DC level at this pin is a function of the IF input  
signal level.  
5506fa  
6
LT5506  
W
BLOCK DIAGRA  
+
+
CLIPPER  
VGA  
16 I  
2
3
IF  
OUT  
I-MIXER  
LPF  
LPF  
I
15  
7
IF  
OUT  
90°  
IF DET  
V
6
CTRL  
+
2×LO  
Q-MIXER  
11  
+
Q
14  
13  
OUT  
÷2  
Q
0°  
OUT  
CLIPPER  
2×LO 10  
9
12  
STBY  
5506 BD  
EN  
U
W
U U  
APPLICATIO S I FOR ATIO  
The LT5506 consists of variable gain amplifier (VGA),  
I/Q demodulator, quadrature LO generator, hard clipping  
amplifiers (clippers), lowpass filters (LPFs) and bias  
circuitry.  
differential AC input impedance of the LT5506 is about  
200, thus a 1:4 (impedance ratio) RF transformer with  
central tap can be used. In Figure 6, the evaluation board  
schematic is shown using a 1:4 transformer. The mea-  
suredinputsensitivityofthisboardisabout82.6dBmfor  
a10dBsignal-to-noiseratio. InthecaseofanLCmatching  
circuit, the circuit of Figure 1 can be used. In Table 1 the  
values are given for a range of IF frequencies. The match-  
ing circuit of Figure 1 approaches 180° phase shift be-  
tween IF+ and IFin a broad range around its center  
frequency. However, some amplitude mismatch occurs if  
the circuit is not tuned to the center frequency. This leads  
to reduced circuit linearity performance, because one of  
theinputscarriesahighersignalcomparedtotheperfectly  
balanced case. A 10% frequency shift from the center  
frequency results in about a 2dB gain difference between  
the IF+ and IFinputs. This results in a 1.5dB higher IM3  
contribution from the input stage which leads to a 0.75dB  
drop in IIP3. Moreover, the IIP2 of the circuit is also  
reducedwhichcanleadtoahighersecondorderharmonic  
contribution. The circuit can be driven single ended, but  
this is not recommended because it leads to a 3dB drop in  
gain and a considerable increase in IM5 and IM7 compo-  
nents. The single-ended noise figure increases by 4dB if  
one IF input is directly grounded and increases by 1.5dB  
if one IF input is grounded via a 1µH inductor. An IF input  
cannot be left open or connected via a resistor to ground  
because this will disturb the internal biasing, reducing the  
gain, noise and linearity performance. For optimal perfor-  
mance,itisimportanttokeeptheDCimpedancetoground  
The IF signal is fed to the inputs of the VGA. The VGA gain  
is typically set by an external signal in such a way that the  
amplified IF signal delivered to the I/Q mixers is constant.  
The IF signal is then converted into I/Q baseband signals  
using the I/Q down-converting mixers. The quadrature LO  
signals that drive the mixers are internally generated from  
the on-chip divide-by-two circuit. The I/Q signals are  
passed through a pair of hard-clipping amplifiers (clip-  
pers), which protect the subsequent lowpass filters from  
overloading. After externally setting the required gain,  
these amplifiers should not clip. However, in the event of  
overload, they reduce the settling time of the (optional)  
externalACcouplingcapacitorsbypreventingasymmetri-  
cal charging and discharging effects. The second order  
baseband lowpass filters remove the out-of-band noise  
and harmonic content generated by the mixers and the  
clippers. The I/Q baseband outputs are buffered by output  
drivers.  
VGA and Input Matching  
The VGA has a nominal 60dB gain control range with a  
frequency range of 40MHz to 500MHz. The inputs of the  
VGA must have a DC return to ground. This can be done  
usingatransformerwithacentraltap(onsecondary)oran  
LC matching circuit with a matched impedance at the  
frequency of interest and near zero impedance at DC. The  
5506fa  
7
LT5506  
U
W
U U  
APPLICATIO S I FOR ATIO  
C3  
L1  
IF  
INPUT  
56pF  
+
V
TO IF  
C1  
10pF  
TO IF  
BIAS  
56nH  
IF  
INPUT  
+
TO IF  
TO IF  
75Ω  
1mA  
1mA  
75Ω  
L1  
15nH  
L2  
15nH  
C1  
5.6pF  
L3  
120nH  
L2  
56nH  
C2  
5.6pF  
+
IF  
IF  
5506 F02  
5506 F01  
(2a)  
(2b)  
Figure 2a. Simplified IF Input Matching Network at 280MHz  
and Figure 2b. Simplified Circuit Schematic of the IF Inputs  
Figure 1. IF Input Matching Network at 280MHz  
Thismatchingnetworkcandeliverequalamplitudestothe  
IF+ and IFinputs for a narrow frequency region, but the  
phasedifferencebetweentheinputswillnotbeexactly180  
degrees. In practice, the phase shift will be around 145  
degrees, depending on the quality factor of the network.  
This will result in a reduction in the gain. The higher the  
chosen quality factor, the closer the phase difference will  
approach 180 degrees. However, a higher quality factor  
will reduce bandwidth and create more loss in the match-  
ing network. For minimum board space, 0402 compo-  
nents are used. The measured noise figure for maximum  
gain with this matching network is about 8dB, and the  
maximum gain about 57dB. Assuming 0402 inductors  
with Q = 35, the insertion loss of this network is about  
2.5dB. The tolerance for the components in Figure 2a can  
be 10% for a return loss higher than 10dB and a gain  
reductionduetomismatchlessthan0.5dB. Themeasured  
input sensitivity for this matching network (see also Fig-  
ure 11) is about –82.7dBm for a 10dB signal-to-noise  
ratio.  
Table 1. The Component Values of Matching Network L1, L2, L3,  
C1, C2 and C3.  
f (MHz)  
L1, L2(nH)  
C1, C2(pF)  
34  
L3(nH)  
1800  
470  
C3(pF)  
820  
220  
220  
220  
56  
IF  
50  
340  
159  
106  
80  
100  
150  
200  
250  
300  
350  
400  
450  
500  
15.9  
10.6  
8.0  
470  
470  
64  
6.4  
120  
53  
5.3  
120  
56  
45  
4.5  
120  
56  
40  
4.0  
120  
56  
35  
3.5  
120  
56  
32  
3.2  
120  
56  
of both IF inputs lower than 2. In the matching network  
of Figure 1, inductor L3 is used for supplying the DC bias  
current to the IF+ input. To keep the DC resistance of L3  
below 2, 120nH is used. This disturbs the matching  
network slightly by causing the frequency where the S11  
is minimal to be lower than the frequency where the  
amplitudes of IF+ and IFare equal. To compensate for  
this, the value of coupling capacitor C3 is lowered and will  
contribute some correcting reactance. For low frequen-  
cies, it might not be possible to find any practical inductor  
value for L3 with DC resistance smaller than 2. In that  
case it is recommended to use a transformer with central  
tap. The tolerance for the components in Figure 1 can be  
10% for a return loss higher than 16dB and a gain  
reduction due to mismatch less than 0.3dB.  
The gain of the VGA is set by the voltage at the VCTRL pin.  
For high gain settings, both the noise figure and the input  
IP3 will be low. From a noise figure point of view, it is  
advantageous to work as closely as possible to the maxi-  
mum gain point. However, if the voltage at the VCTRL pin  
is increased beyond the maximum gain point (where  
additional increase in control voltage does not give an  
increase in gain), the response time of the gain control  
circuit is increased. If control speed is crucial, a few dB of  
gain margin should be allowed from the highest gain point  
to be sure that at all temperatures, the maximum gain  
settingisnotcrossed.Atlowgainsettings,thenoisefigure  
and the input IP3 will be high. Optionally, the control  
5506fa  
It is possible to simplify the input matching circuit and  
compromise the performance. In Figure 2a, the simplified  
matching network is given.  
8
LT5506  
W U U  
APPLICATIO S I FOR ATIO  
U
V
V
CC  
CC  
voltage VCTRL can be set lower than 0.2V. The normal  
range is from VCTRL = 0.2V to 1.7V, which results in a  
nominal gain range from 0.9dB to 59dB. The linear-in-dB  
gain relation with the VCTRL voltage still holds for control  
voltages as low as –0.4 V. This results in an extended gain  
control range of –19.7dB to 59dB. The VCTRL pin is a very  
sensitive input because of its high input impedance and  
therefore should be well shielded. Signal pickup on the  
+
400mV  
+
8k  
8k  
2xLO  
2xLO  
IF DET  
1k  
3.8k  
V
CTRL pincanleadtospursandincreasednoisefloorinthe  
5506 F03  
(3b)  
(3a)  
I/Q baseband outputs. It can degrade the linearity perfor-  
mance and it can cause asymmetry in the two-tone test. If  
control speed is not important, 1µF bypass capacitors are  
recommended between VCTRL and ground.  
Figure 3a. Simplified Circuit Schematic of the  
IF DET Output and Figure 3b. The 2xLO Inputs  
3.3pF  
100pF  
A fast responding peak detector is connected to the VGA  
input, sensitive to signal levels above the signal levels  
where the VGA is operating in the linear range. It is active  
from –22dBm up to 5dBm IF input signal levels. The DC  
output voltage of this detector (IF DET) can be used by the  
baseband controller to quickly determine the presence of  
a strong input level at the desired channel, and adjust gain  
accordingly. Figure 3a shows the simplified circuit sche-  
matic of the IF DET output.  
2xLO  
2xLO  
+
+
TO 2xLO  
TO 2xLO  
INPUT  
INPUT  
56Ω  
39nH  
1:4  
2xLO  
INPUT  
+
TO 2xLO  
TO 2xLO  
100pF  
TO 2xLO  
240Ω  
3.3pF  
TO 2xLO  
5506 F04  
(4b)  
(4c)  
(4a)  
Figure 4. 2xLO Input Matching Networks for 4a) Narrow Band  
Tuned to 570MHz, 4b) Wide Band, 4c) Single-Ended Wide Band  
I/Q Demodulators  
minimized. Figure 3b shows the simplified circuit sche-  
matic of the 2xLO inputs. Depending on the application,  
different2xLOinputmatchingnetworkscanbechosen.In  
Figure 4, three examples are given. The first network pro-  
vides the best 2xLO input sensitivity because it can boost  
up the 2xLO differential input signal using a narrow-band  
resonantapproach.Thesecondnetworkgivesawide-band  
match, but the 2xLO input sensitivity is about 2dB lower.  
Thethirdnetworkgivesasimpleandlessexpensivewide-  
bandmatch,but2xLOinputsensitivitydropsbyabout9dB.  
The IF input sensitivity doesn’t change significantly using  
either of the three 2xLO matching networks.  
The quadrature demodulators are double balanced mix-  
ers, down-converting the amplified IF signal from the VGA  
into I/Q baseband signals. The quadrature LO signals are  
generated internally from a double frequency external CW  
signal. The nominal output voltage of the differential I/Q  
baseband signals should be set to 0.8VP-P or lower,  
depending on the linearity requirements. The magnitudes  
of I and Q are well matched and their phases are 90° apart.  
Quadrature LO Generator  
The quadrature LO generator consists of a divide-by-two  
circuit and LO buffers. An input signal (2xLO) with twice  
the desired IF signal frequency is used as the clock for the  
divide-by-twocircuit,producingthequadratureLOsignals  
for the demodulators. The outputs are buffered and then  
drivethedown-convertingmixers. Withafullydifferential  
approach, the quadrature LO signals are well matched.  
Second harmonic content (or higher order even harmon-  
ics)intheexternal2xLOsignalcandegradethe90° phase  
shift between I and Q. Therefore, such content should be  
Baseband Circuit  
The baseband circuit consists of I/Q hard limiters (clip-  
pers), I/Q lowpass filters and I/Q output buffers. The hard  
limiter operates as a linear amplifier normally. However, if  
a high level input temporarily overloads the linear ampli-  
fier, then the circuit will limit symmetrically, which will  
help to prevent the filter and output buffer from overload-  
ing. This speeds up recovery from an overload event,  
5506fa  
9
LT5506  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 2. The Logic of Different Operating Modes  
which can occur during the gain settling. It also helps to  
reduce the high frequency spectral content at the I/Q  
outputs during overload. The second order integrated  
lowpass filters are used for filtering the down-converted  
baseband signals for both the I channel and the Q channel.  
They serve as antialiasing and pulse-shaping filters. The  
I/Q filters are well matched in gain response and group  
delay. The 3dB corner frequency is typically 8.8MHz with  
a group delay ripple of 5ns. The I/Q outputs can drive 2kΩ  
in parallel with a maximum capacitive loading of 10pF,  
from all four pins to ground. The outputs are internally  
biased at VCC – 1.19V. Figure 5 shows the simplified  
output circuit schematic of the I channel or Q channel.  
EN  
STBY  
Comments  
Low  
Low  
High  
Low  
Shutdown Mode  
Standby Mode  
High  
Low or High  
Normal Operation Mode  
the EN pin and STBY pin. In both normal operating mode  
and standby mode, the maximum discharging current is  
about 300µA, and the maximum charging current is more  
than 4mA. In Figure 5 the simplified circuit schematic of  
the STBY (or EN) input is shown.  
V
CC  
V
CC  
+
TheI/QbasebandoutputscanbeDC-coupledtotheinputs  
ofabasebandchip.ForAC-coupledapplicationswithlarge  
capacitors, the STBY pin can be used to pre-bias the  
outputs to nominal VCC – 1.19V at much reduced current.  
Thismodedrawsonly3.6mAsupplycurrent. WhentheEN  
pin is then driven high (>1V), the chip is quickly switched  
to normal operating mode, avoiding the introduction of  
large charging time constants. Table 2 shows the logic of  
I CHANNEL (OR  
Q CHANNEL):  
DIFFERENTIAL  
SIGNALS  
I
OUT  
+
(OR Q  
)
OUT  
I
OUT  
(OR Q  
)
OUT  
22k  
FROM LPF  
STBY  
(OR EN)  
300µA  
300µA  
5506 F05  
Figure 5. Simplified Circuit Schematic of I Channel  
(or Q Channel) Outputs and STBY (or EN) Input  
+
+
I
I
Q
OUT  
Q
OUT  
OUT OUT  
V
CC3  
C37  
0.1µF  
C35  
4.7µF  
C36  
4.7µF  
C38  
0.1µF  
R43  
2k  
R50  
2k  
C34  
0.1µF  
C27  
0.1µF  
R45  
1k  
R41  
1k  
C31  
1µF  
C30  
1µF  
3
2
3
2
7
7
R47  
49.9Ω  
R44  
49.9Ω  
+
+
J1  
J2  
U3  
U2  
6
6
R46  
R39  
Q
OUT  
I
OUT  
LT1809CS  
LT1809CS  
3.09k  
3.09k  
4
4
R49  
2k  
R42  
2k  
C33  
0.1µF  
C28  
0.1µF  
C32  
2.2pF  
C29  
2.2pF  
R48  
R40  
3.09k  
3.09k  
16 15 14  
13  
V
CC2  
R35  
20k  
+
+
I
I
Q
Q
OUT OUT  
OUT OUT  
T1, 1:4,TR-R  
JTX-4-10T  
C43  
22nF  
T2, 1:4, TR-R C45  
JTX-4-10T  
22nF J4  
MINI-CIRCUITS  
1
2
3
4
12  
J3  
GND  
STBY  
+
MINI-CIRCUITS  
IF  
IN  
2XLO  
11  
10  
9
+
1
6
IF  
2XLO  
2XLO  
U1  
LT5506  
R52  
240Ω  
IF  
6
1
GND  
EN  
R36  
20k  
IF  
DET  
7
V
V
V
CC CTRL  
CC  
1 = EN  
2 = STBY  
5
6
8
0
GND  
V
CC1  
C15  
1nF  
C22  
1µF  
C16  
1nF  
C39  
1µF  
5506 F04  
SW1  
V
CTRL  
OVERLOAD  
R51  
100Ω  
C25  
1.5pF  
C26  
1.8pF  
NOTE: OUTPUT BUFFERS U2 AND U3 WITH ASSOCIATED  
COMPONENTS ARE INCLUDED FOR MEASUREMENT PURPOSES ONLY.  
BOARD NUMBER: DC468A (NARROW-BAND VERSION: DC535A)  
C43, C45, C22, R51, C25, C26 AND C39 ARE OPTIONAL  
Figure 6. Evaluation Circuit Schematic with I/Q Output Buffers  
5506fa  
10  
LT5506  
W U U  
APPLICATIO S I FOR ATIO  
U
Figure 8. Component Side Layout of Evaluation Board  
Figure 7. Component Side Silkscreen of Evaluation Board  
Figure 10. Bottom Side Layout of Evaluation Board  
Figure 9. Bottom Side Silkscreen of Evaluation Board  
5506fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT5506  
W U U  
U
APPLICATIO S I FOR ATIO  
15nH  
1.8V  
5, 8  
RX INPUT:  
1µF  
1nF  
2.4GHz TO 2.5GHz  
10pF  
280MHz  
V
2
CC  
IF SAW BP FILTER  
BASEBAND  
HARD  
CLIPPER  
VGA  
RX  
PROCESSOR  
I-MIXER  
LPF  
FRONT END  
16  
15  
15nH  
3
A/D  
I-OUTPUTS  
IF DET  
1ST LO,  
2.12GHz  
0°  
TO 2.22GHz  
7
A/D  
D/A  
MAIN  
V
CTRL  
6
SYNTHESIZER  
Q-MIXER  
14  
2ND LO,  
560MHz  
–10dBm  
A/D  
13 Q-OUTPUTS  
90°  
11  
AUX  
SYNTHESIZER  
LPF  
HARD  
CLIPPER  
3.3pF  
3.3pF  
39nH  
10  
f/2  
12  
9
STBY  
LT5506  
EN  
5506 F11  
0,1,4  
Figure 11. 2.4GHz to 2.5GHz Receiver Application (RX IF = 280MHz)  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
BOTTOM VIEW—EXPOSED PAD  
0.75 ± 0.05  
R = 0.115  
TYP  
0.55 ± 0.20  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
0.72 ±0.05  
PIN 1  
TOP MARK  
1
2
4.35 ± 0.05  
2.90 ± 0.05  
2.15 ± 0.05  
(4 SIDES)  
2.15 ± 0.10  
(4-SIDES)  
PACKAGE  
OUTLINE  
(UF) QFN 0503  
0.30 ± 0.05  
0.65 BSC  
0.200 REF  
0.30 ±0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT5500  
LT5502  
LT5503  
LT5504  
LTC5505  
LTC5507  
LT5511  
LT5512  
1.8GHz to 2.7GHz Receiver Front End  
400MHz Quadrature IF Demodulator with RSSI  
1.2GHz to 2.7GHz Direct IQ Modulator and Mixer 1.8V to 5.25V Supply, Four Step RF Power Control, 120MHz Modulation Bandwidth  
800MHz to 2.7GHz RF Measuring Receiver 2.7V to 5.25V Supply, 80dB Dynamic Range, Temperature Compensated  
RF Power Detectors with >40dB Dynamic Range 2.7V to 6V Supply, 300MHz to 3.5GHz, Temperature Compensated  
1.8V to 5.25V Supply, Dual-Gain LNA, Mixer  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dBm Limiting Gain, 90dB RSSI Range  
100kHz to 1000MHz RF Power Detector  
High Signal Level Upconverting Mixer  
High Signal Level Downconverting Mixer  
2.7V to 6V Supply, 40dB Dynamic Range, Temperature Compensated  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC-3GHz, 21dBm IIP3, Integrated LO Buffer  
5506fa  
LT/TP 1003 1K REV A • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LT5506EUF

40MHz to 500MHz Quadrature Demodulator with VGA
Linear

LT5506EUF#PBF

暂无描述
Linear

LT5506EUF#TR

LT5506 - 40MHz to 500MHz Quadrature Demodulator with VGA; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT550Z

GREEN OVAL LAMP LED
SEOUL

LT551

INFRARED LAMP LED
SEOUL

LT5511

40MHz to 900MHz Quadrature Demodulator
Linear

LT5511EFE

High Signal Level Upconverting Mixer
Linear

LT5511EFE#TR

LT5511 - High Signal Level Upconverting Mixer; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5512

1kHz-3GHz High Signal Level Down-Converting Mixer
Linear

LT5512EUF

1kHz-3GHz High Signal Level Down-Converting Mixer
Linear

LT5512EUF#TR

LT5512 - 1kHz-3GHz High Signal Level Active Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5514

Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain
Linear