LT5512EUF [Linear]

1kHz-3GHz High Signal Level Down-Converting Mixer; 为1kHz - 3GHz的高信号电平下变频混频器
LT5512EUF
型号: LT5512EUF
厂家: Linear    Linear
描述:

1kHz-3GHz High Signal Level Down-Converting Mixer
为1kHz - 3GHz的高信号电平下变频混频器

文件: 总12页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5512  
1kHz-3GHz High Signal Level  
Down-Converting Mixer  
U
FEATURES  
DESCRIPTIO  
The LT®5512 is a broadband mixer IC optimized for high  
linearity downconverter applications including cable and  
wireless infrastructure. The IC includes a differential LO  
buffer amplifier driving a double-balanced mixer. An inte-  
grated RF buffer amplifier improves LO-RF isolation and  
eliminates the need for precision external bias resistors.  
Broadband RF, LO and IF Operation  
High Input IP3: +21dBm at 900MHz  
+17dBm at 1900MHz  
Typical Conversion Gain: 1dB at 1900MHz  
SSB Noise Figure: 11dB at 900MHz  
14dB at 1900MHz  
Integrated LO Buffer: Insensitive to LO Drive Level  
The LT5512 is a high-linearity alternative to passive diode  
mixers. Unlike passive mixers, which have conversion  
loss and require high LO drive levels, the LT5512 delivers  
conversion gain and requires significantly lower LO drive  
levels.  
Single-Ended or Differential LO Signal  
High LO-RF Isolation  
Enable Function  
4.5V to 5.25V Supply Voltage Range  
4mm × 4mm QFN Package  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
APPLICATIO S  
Cellular/PCS/UMTS Infrastructure  
CATV Downlink Infrastructure  
High Linearity Mixer Applications  
ISM Band Receivers  
U
TYPICAL APPLICATIO  
High Signal-Level Downmixer for Wireless Infastructure  
Output IF Power and Output IM3 vs  
RF Input Power (Two Input Tones)  
5V  
10  
100pF  
1µF  
1850MHz  
TO  
1910MHz  
1850MHz  
TO  
1910MHz  
0
EN  
+
V
V
CC2  
CC1  
IF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
OUT  
1:2  
IF  
VGA  
70MHz  
(TYP)  
LT5512  
RF  
LNA  
220nH  
+
IF  
IF  
1.5pF  
LTC1748  
ADC  
100pF  
IM3  
8.2pF  
RF  
220nH  
T
= 25°C  
A
P
= –10dBm  
= 1830MHz  
= 1899.9MHz  
LO  
f
f
f
LO  
RF1  
RF2  
+
LO  
LO  
= 1900.1MHz  
–21 –18 –15 –12 –9 –6 –3  
0
3
6
5.6nH  
RF INPUT POWER (dBm/TONE)  
100pF  
100pF  
LO  
INPUT  
–10dBm  
5512 F01b  
5512 F01a  
5512f  
1
LT5512  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
TOP VIEW  
Supply Voltage ....................................................... 5.5V  
Enable Voltage ............................... –0.3V to VCC + 0.3V  
LO+ to LODifferential Voltage ............................ ±1.5V  
................................................... (+6dBm equivalent)  
RF+ to RFDifferential Voltage ............................. ±0.7V  
..................................................(+10dBm equivalent)  
Operating Temperature Range .................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 125°C  
Junction Temperature (TJ)................................... 125°C  
NUMBER  
16 15 14 13  
LT5512EUF  
NC  
+
1
2
3
4
12 GND  
+
RF  
11 IF  
17  
RF  
NC  
IF  
10  
9
GND  
5
6
7
8
PART MARKING  
5512  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 37°C/W  
EXPOSED PAD IS GROUND (PIN 17)  
(MUST BE SOLDERED TO PCB)  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
2
2
RF Input Frequency Range  
Requires Appropriate Matching  
Requires Appropriate Matching  
Requires Appropriate Matching  
0.001 to 3000  
0.001 to 3000  
0.001 to 2000  
LO Input Frequency Range  
IF Output Frequency Range  
MHz  
2
MHz  
Downmixer Application: (Test Circuit Shown in Figure 2) VCC = 5VDC, EN = High, TA = 25°C, PRF = –10dBm (–10dBm/tone for two-tone  
IIP3 tests, f = 200kHz), fLO = fRF – 170MHz, PLO = –10dBm, IF output measured at 170MHz, unless otherwise noted. (Notes 2, 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
f
f
= 900MHz  
= 1900MHz  
0
1
dB  
dB  
RF  
RF  
–1  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
T = 40°C to 85°C  
–0.011  
dB/°C  
A
f
f
= 900MHz  
= 1900MHz  
21  
17  
dBm  
dBm  
RF  
RF  
Single-Sideband Noise Figure  
LO to RF Leakage  
f
f
= 900MHz  
= 1900MHz  
11  
14  
dB  
dB  
RF  
RF  
f
f
= 730MHz  
= 1730MHz  
–60  
–53  
dBm  
dBm  
LO  
LO  
LO to IF Leakage  
RF to LO Isolation  
f
= 730MHz and 1730MHz  
–46  
dBm  
LO  
f
f
= 900MHz  
= 1900MHz  
57  
50  
dB  
dB  
RF  
RF  
2RF-2LO Output Spurious Product  
900MHz: f = 815MHz at –12dBm  
–66  
–59  
dBc  
dBc  
RF  
(f = f + f  
)
1900MHz: f = 1815MHz at –12dBm  
RF  
LO  
IF/2  
RF  
3RF-3LO Output Spurious Product  
(f = f + f  
900MHz: f = 786.67MHz at –12dBm  
–83  
–58  
dBc  
dBc  
RF  
)
1900MHz: f = 1786.67MHz at –12dBm  
RF  
LO  
IF/3  
RF  
Input 1dB Compression  
f
f
= 900MHz  
= 1900MHz  
10.1  
6.2  
dBm  
dBm  
RF  
RF  
5512f  
2
LT5512  
1230MHz Cable Infrastructure Downmixer Application: (Test Circuit Shown  
ELECTRICAL CHARACTERISTICS  
in Figure 3) VCC = 5VDC, EN = High, TA = 25°C, RF input = 1230MHz at –10dBm, LO input swept from 1500MHz to 2100MHz,  
PLO = –10dBm, IF output measured from 270MHz to 870MHz, unless otherwise noted.  
PARAMETER  
CONDITIONS  
= 1800MHz, f = 570MHz  
MIN  
TYP  
2.8  
MAX  
UNITS  
dB  
Conversion Gain  
f
LO  
IF  
Input 3rd Order Intercept  
2-Tone RF Input, –10dBm/Tone, f = 1MHz,  
17.9  
dBm  
f
= 1800MHz, f = 570MHz  
LO  
IF  
LO to RF Leakage  
–56  
40  
51  
dBm  
dBm  
dB  
LO to IF Leakage  
RF to LO Isolation  
2RF – LO Output Spurious Product  
Single-Sideband Noise Figure  
f
f
= 570MHz, P = –18dBm, f = 1800MHz  
60  
13.3  
dBc  
dB  
IF  
RF  
LO  
= 1800MHz, f = 570MHz  
LO  
IF  
DC ELECTRICAL CHARACTERISTICS  
(Test Circuit Shown in Figure 2) VCC = 5VDC, EN = High, TA = 25°C  
(Note 3), unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Enable (EN) Low = Off, High = On  
Turn On Time  
3
µs  
µs  
µA  
Turn Off Time  
13  
50  
Input Current  
V
= 5V  
ENABLE DC  
Enable = High (On)  
Enable = Low (Off)  
3
V
DC  
V
DC  
0.3  
Power Supply Requirements (V  
Supply Voltage  
)
CC  
4.50  
5.25  
74  
V
DC  
Supply Current  
57  
mA  
Shutdown Current  
EN = Low  
100  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: External components on the final test circuit are optimized for  
Note 3: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
operation at f = 1900MHz, f = 1730MHz and f = 170MHz (Figure 2).  
RF  
LO  
IF  
U W  
(Test Circuit Shown in Figure 2)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Shutdown Current vs Supply Voltage  
Supply Current vs Supply Voltage  
59  
100  
10  
1
58  
T
A
= 85°C  
57  
56  
55  
54  
53  
52  
51  
50  
49  
T
A
= 85°C  
T
= 25°C  
A
T
A
= 25°C  
T
A
= –40°C  
T
= –40°C  
A
0.1  
4.5  
4.75  
5.0  
5.25  
5.5  
4.5  
5.0  
5.25  
5.5  
4.75  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
5512 G02  
5512 G01  
5512f  
3
LT5512  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (1900MHz Downmixer Application)  
VCC = 5VDC, EN = High, TA = 25°C, 1900MHz RF input matching, RF input = 1900MHz at –10dBm, LO input = 1730MHz at –10dBm, IF  
output measured at 170MHz, unless otherwise noted. (Test circuit shown in Figure 2).  
Conv Gain and IIP3 vs Temperature  
RF = 1900MHz, IF = 170MHz  
Conv Gain, IIP3 and SSB NF vs  
RF Frequency (Low-Side LO)  
Conv Gain, IIP3 and SSB NF vs  
RF Frequency (High-Side LO)  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
IIP3  
IIP3  
IIP3  
LOW-SIDE LO  
SSB NF  
SSB NF  
HIGH-SIDE LO  
f
= 170MHz  
= 25°C  
IF  
A
T
f
= 170MHz  
= 25°C  
IF  
A
T
6
6
6
CONV GAIN  
4
4
4
CONV GAIN  
1900  
HIGH-SIDE LO  
LOW-SIDE LO  
2
CONV GAIN  
1900  
2
2
0
0
0
1700  
1800  
2000  
2100  
–50  
–25  
0
25  
50  
75  
100  
1700  
2000  
2100  
1800  
RF FREQUENCY (MHz)  
TEMPERATURE (°C)  
RF FREQUENCY (MHz)  
5512 • G04  
5512 • G05  
5512 • G03  
LO-IF and LO-RF Leakage vs  
LO Input Power  
Conv Gain and IIP3 vs  
LO Input Power  
SSB Noise Figure vs  
LO Input Power  
20  
18  
16  
14  
12  
10  
8
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
f
f
= 1900MHz  
= 170MHz  
= 25°C  
f
= 1730MHz  
= 25°C  
RF  
IF  
A
LO  
A
T
A
= 25°C  
T
T
T
= –40°C  
A
IIP3  
T
= 85°C  
A
HIGH-SIDE LO  
LO-IF  
LOW-SIDE LO  
6
CONV GAIN  
T
= 85°C  
A
T
A
= 25°C  
4
LO-RF  
T
= –40°C  
A
2
0
–18 –16 –14 –12 –10 –8 –6 –4 –2  
–18 –16 –14 –12 –10 –8 –6 –4 –2  
–18 –16 –14 –12 –10 –8 –6 –4 –2  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5512 • G06  
5512 • G07  
5512 • G08  
RF, LO and IF Port Return Loss  
vs Frequency  
Conv Gain and IIP3 vs  
Supply Voltage  
Output IF Power and Output IM3 vs  
RF Input Power (Two Input Tones)  
18  
16  
14  
12  
10  
8
10  
0
0
T
A
= –40°C  
T
A
= 25°C  
T
A
= –40°C  
–5  
–10  
–15  
–20  
–25  
–30  
P
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
= 85°C  
A
T
A
= 85°C  
LO  
IIP3  
T
A
= 85°C  
T
= 25°C  
A
IF  
6
T
A
= –40°C  
CONV GAIN  
IM3  
RF  
4
T
= 25°C  
A
T
A
= 85°C  
T
= –40°C  
A
T
A
= 25°C  
2
T
= 25°C  
A
0
4.5  
4.75  
5.0  
5.25  
5.5  
0
1000 1500 2000 2500 3000  
FREQUENCY (MHz)  
–21  
–9  
–3  
0
500  
–18 –15 –12  
–6  
3
RF INPUT POWER (dBm/TONE)  
SUPPLY VOLTAGE (V)  
5512 • G09  
5512 G11  
5512 G10  
5512f  
4
LT5512  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(1900MHz Downmixer Application, continued)  
CC = 5VDC, EN = High, TA = 25°C, 1900MHz RF input matching, RF input = 1900MHz at –10dBm, LO input = 1730MHz at –10dBm, IF  
output measured at 170MHz, unless otherwise noted. (Test circuit shown in Figure 2).  
V
IF Output Power, 2RF-2LO and  
3RF-3LO vs RF Input Power  
2RF-2LO (Half-IF) Spur Level vs  
LO Input Power  
3RF-3LO Spur Level vs  
LO Input Power  
10  
–10  
–30  
–50  
–70  
–90  
–110  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
T
f
= 25°C  
T
f
= 25°C  
T
f
= 25°C  
A
LO  
RF  
A
A
= 1730MHz  
= –10dBm  
= 1730MHz  
= 1815MHz  
= 1730MHz  
LO  
LO  
LO  
RF  
P
P
f
f
= 1786.67MHz  
OUT  
(RF = 1900MHz)  
P
RF  
= –10dBm  
3RF-3LO  
(RF = 1786.67MHz)  
P
P
= –10dBm  
RF  
2RF-2LO  
(RF = 1815MHz)  
= –16dBm  
RF  
P
RF  
= –16dBm  
–22  
–10  
–4 –1  
–10  
–18 –16  
–12 –10 –8  
–4 –2  
–19 –16 –13  
–7  
2
–18 –16 –14 –12  
–8 –6 –4 –2  
–14  
–6  
RF INPUT POWER (dBm)  
5512 G18  
LO INPUT POWER (dBm)  
5512 G19  
LO INPUT POWER (dBm)  
5512 G20  
(1230MHz Cable Infrastructure Downmixer Application) VCC = 5VDC, EN = High, TA = 25°C, RF input = 1230MHz at –10dBm, LO input  
swept from = 1500MHz to 2100MHz, PLO = –10dBm, IF output measured from 270MHz to 870MHz, unless otherwise noted. (Test circuit  
shown in Figure 3.)  
Conv Gain, IIP3 and SSB NF  
vs IF Output Frequency  
IF Output Power and 2RF-LO Spur  
vs RF Input Power  
LO Leakage vs LO Frequency  
20  
18  
16  
14  
12  
10  
8
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
T
= 85°C  
IIP3  
A
T
= –40°C  
A
T
A
= 25°C  
P
OUT  
T
= 85°C  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
= –40°C  
A
T
= 25°C  
A
SSB NF  
LO-IF  
T
A
= 25°C  
T
= –40°C  
A
2RF-LO  
T = 85°C  
A
6
CONV GAIN  
T
A
= 25°C  
LO-RF  
T
= –40°C  
A
4
f
f
= 1800MHz  
LO  
IF  
2
T
= 25°C  
A
T
= 85°C  
= 570MHz  
A
0
270  
370  
470  
570  
670  
770  
870  
1500  
1700 1800 1900 2000 2100  
1600  
–21  
0
–18 –15 –12 –9  
–6  
–3  
5512 G13  
LO FREQUENCY (MHz)  
RF INPUT POWER (dBm)  
5512 G14  
IF OUTPUT FREQUENCY (MHz)  
5512 G12  
Conv Gain, IIP3 and SSB NF  
vs LO Input Power  
Conv Gain and IIP3 vs  
Temperature  
RF, LO and IF Port Return Losses  
vs Frequency  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
0
–5  
T
= 85°C  
A
5.5V  
DC  
T
= 25°C  
4.5V  
A
IIP3  
IIP3  
DC  
T
= –40°C  
IF  
A
RF  
LO  
–10  
–15  
–20  
–25  
–30  
5V  
DC  
SSB NF  
T
= 25°C  
A
f
f
= 1800MHz  
f
f
= 1800MHz  
LO  
= 570MHz  
IF  
LO  
IF  
= 570MHz  
CONV GAIN  
6
6
T
A
= 25°C  
T
= 85°C  
CONV GAIN  
A
T
= –40°C  
4
A
4
4.5, 5.0 AND 5.5V  
DC  
2
2
–20  
–15  
–10  
–5  
0
–50 –35 –20 –5 10 25 40 55 70 85  
TEMPERATURE (°C)  
0
500  
1000  
FREQUENCY (MHz)  
1500  
2000  
2500  
5512 G17  
5512f  
LO INPUT POWER (dBm)  
5512 G15  
5512 G16  
5
LT5512  
U
U
U
PI FU CTIO S  
NC (Pins 1, 4, 8, 13, 16): Not connected internally. These  
pinsshouldbegroundedonthecircuitboardforimproved  
LO to RF and LO to IF isolation.  
RF+, RF(Pins 2, 3): Differential Inputs for the RF Signal.  
These pins must be driven with a differential signal. Each  
pin must be connected to a DC ground capable of sinking  
15mA (30mA total). This DC bias return can be accom-  
plished through the center-tap of a balun, or with shunt  
inductors. An impedance transformation is required to  
match the RF input to 50(or 75).  
externally connected to the other VCC pins, and decoupled  
with 100pF and 0.01µF capacitors.  
GND (Pins 9 and 12): Ground. These pins are internally  
connected to the backside ground for better isolation.  
They should be connected to RF ground on the circuit  
board, although they are not intended to replace the  
primary grounding through the backside contact of the  
package.  
IF, IF+ (Pins 10, 11): Differential Outputs for the IF  
Signal. An impedance transformation may be required to  
match the outputs. These pins must be connected to VCC  
through impedance matching inductors, RF chokes or a  
transformer center-tap.  
LO, LO+ (Pins 14, 15): Differential Inputs for the Local  
Oscillator Signal. They can also be driven single-ended by  
connecting one to an RF ground through a DC blocking  
capacitor. These pins are internally biased to 2V; thus, DC  
blocking capacitors are required. An impedance transfor-  
mation is required to match the LO input to 50(or 75).  
EN (Pin 5): Enable Pin. When the input voltage is higher  
than 3V, the mixer circuits supplied through Pins 6, 7, 10,  
and 11 are enabled. When the input voltage is less than  
0.3V, all circuits are disabled. Typical enable pin input  
current is 50µA for EN = 5V and 0µA when EN = 0V.  
V
CC1 (Pin 6): Power Supply Pin for the LO Buffer Circuits.  
Typical current consumption is 22mA. This pin should be  
externally connected to the other VCC pins, and decoupled  
with 100pF and 0.01µF capacitors.  
VCC2 (Pin 7): Power Supply Pin for the Bias Circuits.  
Typical current consumption is 4mA. This pin should be  
GROUND (Pin 17) (Backside Contact): Circuit Ground  
Return for the Entire IC. This must be soldered to the  
printed circuit board ground plane.  
W
BLOCK DIAGRA  
BACKSIDE  
GROUND  
17  
LINEAR  
GND  
+
12  
DOUBLE-BALANCED  
MIXER  
AMPLIFIER  
+
2
3
RF  
15mA  
11 IF  
15mA  
IF  
10  
9
+
RF  
GND  
HIGH-SPEED  
LO BUFFER  
LO 15  
BIAS  
14  
LO  
5
EN  
6
7
V
CC1  
V
CC2  
5512 BD  
Figure 1.  
5512f  
6
LT5512  
TEST CIRCUITS  
C6  
C7  
LO  
IN  
RF  
GND  
1500MHz  
TO  
ER = 4.4  
0.018"  
0.062"  
2300MHz  
L3  
DC  
0.018"  
GND  
17 16  
15 14  
13  
NC  
+
NC LO LO  
1
2
3
4
12  
11  
10  
9
RF  
IN  
NC  
T1  
T2  
GND  
TL1  
C4  
1700MHz  
TO  
IF  
OUT  
170MHz  
1
5
4
1
2
3
6
L1  
+
+
IF  
RF  
RF  
2100MHz  
LT5512  
C8  
IF  
3
C5  
4
L2  
TL2  
NC  
GND  
EN  
V
V
NC  
CC1 CC2  
5
6
7
8
EN  
R1  
V
CC  
900MHz MATCHING:  
T1 = LDB21881M05C-001  
C4 = 3.9pF  
C3  
C1  
C2  
GND  
5512 F02  
L3 = 22nH  
REF DES  
VALUE  
SIZE  
0402  
0402  
0603  
0402  
0402  
PART NUMBER  
REF DES  
L1, L2  
L3  
VALUE  
47nH  
5.6nH  
10  
SIZE  
PART NUMBER  
C1, C5, C6, C7 100pF  
Murata GRP1555C1H101J  
Murata GRP155R71C103K  
0402  
0402  
0402  
Coilcraft 0402CS-47NX  
Toko LL1005-FH5N6  
C2  
C3  
C4  
C8  
0.01µF  
1.0µF  
1.5pF  
6.8pF  
Taiyo Yuden LMK107F105ZA  
Murata GRP1555C1H1R5C  
Murata GRP1555C1H6R8D  
R1  
T1  
2:1  
Murata LDB211G9010C-001  
Mini-Circuits TC8-1  
T2  
8:1  
TL1, TL2  
Z = 72Ω  
O
θ = 8.1°  
(W = 0.4mm, L = 2mm)  
Figure 2. Test Schematic for 1900MHz Downconverter (PCS/UMTS Applications)  
C6  
C7  
LO  
IN  
1500MHz  
TO  
2100MHz  
L3  
17 16  
15 14  
13  
NC  
+
NC LO LO  
T2  
1
2
3
4
12  
11  
10  
9
C9  
IF  
OUT  
L1  
L2  
NC  
T1  
GND  
6
4
TL1  
C4  
1
270MHz  
TO  
RF  
IN  
1230MHz  
2
1
6
+
+
C5  
IF  
RF  
RF  
2
870MHz  
3
4
LT5512  
C10  
IF  
3
5
TL2  
NC  
GND  
N/C  
EN  
V
V
NC  
CC1 CC2  
5
6
7
8
EN  
R1  
V
CC  
C3  
C1  
C2  
GND  
5512 F03  
REF DES  
C1, C5, C6,  
C7, C9, C10  
C2  
VALUE  
SIZE  
PART NUMBER  
REF DES  
L1, L2  
L3  
VALUE  
12nH  
8.2nH  
10  
SIZE  
PART NUMBER  
0402  
0402  
0402  
Toko LL1005-FH12N  
Toko LL1005-FH8N2  
100pF  
0.01µF  
1.0µF  
0402  
0402  
0603  
0402  
Murata GRP1555C1H101J  
Murata GRP155R71C103K  
Taiyo Yuden LMK107F105ZA  
Murata GRP1555C1H2R7C  
R1  
C3  
T1  
1:1  
Murata LDB311G2705C-428  
M/A-COM ETC1.6-4-2-3  
(W = 0.4mm, L = 2.0mm)  
C4  
2.7pF  
T2  
4:1  
TL1, TL2  
Z = 72Ω  
O
θ = 5.4°  
Figure 3. Test Schematic for 1230MHz Downconverter (Cable Infrastructure Downlink Transmitter Applications)  
5512f  
7
LT5512  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT5512 consists of a double-balanced mixer, RF differential input impedance up to the desired value for the  
buffer amplifier, high-speed limiting LO buffer, and bias/ balun input. The following example shows how to design  
enable circuits. The RF, LO and IF ports are differential. All the low-pass impedance transformation network for the  
three ports can be matched from 1kHz to 3GHz, although RF input.  
the IC has been optimized for downconverter applications  
FromTable1,thedifferentialinputimpedanceat1900MHz  
where the RF and LO input signals are high frequency and  
is 20.6 + j22.8. As shown in Figure 5, the 22.8reactance  
theIFoutputfrequencyrangesfrom1kHzupto2GHz. Low  
side or high side LO injection can be used.  
is split, with one half on each side of the 20.6load  
resistor. The matching network will consist of additional  
inductance in series with the internal inductance and a  
RF Input Port  
capacitor in parallel with the desired 100source imped-  
The RF input buffer has been designed to simplify imped-  
ance matching while improving LO-RF isolation and noise  
figure.AsimplifiedschematicisshowninFigure4withthe  
associated external impedance matching elements for a  
1.9GHz application. Each RF input requires a low resis-  
tance DC return to ground capable of sinking 15mA. This  
can be accomplished with the center-tap of a balun as  
shown in Figure 4, or bias chokes connected from Pins 2  
and 3 to ground.  
ance. The capacitance (C4) and inductance are calculated  
as follows.  
n = RS/RL = 100/20.6 = 4.85  
Q = n – 1 = 1.963  
XC = RS/Q = 100/1.963 = 50.9Ω  
C4 = 1/(ωXc) = 1.6pF (use 1.5pF)  
XL = (RL • Q) = (20.6 • 1.963) = 40.4Ω  
XEXT = XL – XINT = 40.4 – 22.8 = 17.6Ω  
LEXT = (XEXT/ω) = 1.47nH  
LT5512  
V
BIAS  
The external inductance is split in half (0.74nH), with each  
halfconnectedbetweenthepinandtheshuntcapacitor, as  
shown in Figure 5. The inductance is implemented with  
short (2mm) high-impedance printed transmission lines,  
which yield a compact board layout. Finally, the 2:1balun  
transforms the 100differential impedance down to a  
50single-ended input for the RF signal.  
V
CC  
15mA  
15mA  
2
3
TL1  
= 72Ω  
θ = 8.1° AT 1.9GHz  
TL2  
C4  
1.5pF  
Z
Z = 72Ω  
O
O
θ = 8.1° AT 1.9GHz  
Table 1. RF Input Differential Impedance  
100Ω  
Frequency  
(MHz)  
10  
Differential Input  
Impedance  
18.2 + j0.14  
18.0 + j0.26  
18.1 + j2.8  
Differential S11  
Mag  
2
3
4
1
Angle  
179.6  
178.6  
172.6  
166.3  
150.8  
124.3  
116.9  
109.2  
101.7  
5
T1  
1:2  
0.467  
0.470  
0.471  
0.473  
0.479  
0.503  
0.512  
0.522  
0.530  
44  
LDB211G9010C-001  
RF  
IN  
5512 F04  
50Ω  
240  
Figure 4. RF Input with External  
Matching for a 1.9GHz Application  
450  
18.1 + j5.2  
950  
18.7 + j11.3  
20.6 + j22.8  
21.4 + j26.5  
22.5 + j30.5  
24.1 + j34.7  
1900  
2150  
2450  
2700  
Table 1 lists the differential input impedance and differen-  
tial reflection coefficient between Pins 2 and 3 for several  
common RF frequencies. As shown in Figures 4 and 5,  
low-pass impedance matching is used to transform the  
5512f  
8
LT5512  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 2. LO Input Differential Impedance  
1/2 X  
1/2 X  
EXT  
INT  
Frequency  
(MHz)  
750  
Differential Input  
Impedance  
263 – j172  
213 – j178  
175 – j173  
146 – j164  
125 – j153  
108 – j142  
95 – j131  
Differential S11  
2
3
j11.4  
RS  
RL  
Mag  
0.766  
0.760  
0.752  
0.743  
0.733  
0.722  
0.709  
0.695  
0.68  
Angle  
–10.2  
–13.4  
–16.6  
–19.8  
–22.8  
–25.8  
–28.9  
–31.8  
–34.6  
C4  
100Ω  
1/2 X  
1/2 X  
20.6Ω  
EXT  
INT  
j11.4  
LT5512  
5512 F05  
1000  
1250  
1500  
1750  
2000  
2250  
2500  
2750  
Figure 5. 1.9GHz RF Input Matching  
It is also possible to eliminate the RF balun and drive the  
RF inputs differentially. In this case, inductors from Pins  
2 and 3 to ground would be required to bias the input  
stage. Thevalueoftheinductorsshouldbehighenoughto  
avoid reducing the input impedance at the frequency of  
interest.  
86 – j122  
78 – j113  
Single-ended LO drive can be used if a differential LO  
source is not available, or the added expense of a LO balun  
is undesirable. In this case, one LO input is AC-coupled to  
ground through a 100pf DC blocking capacitor as shown  
in Figure 7. The other input is matched to 50using a  
series inductor and a second DC blocking capacitor. The  
LT5512ischaracterizedandproductiontestedwithsingle-  
ended LO drive.  
LO Input Port  
The LO buffer amplifier consists of high-speed limiting  
differentialamplifiers,designedtodrivethemixerquadfor  
high linearity. The LO+ and LOpins are designed for  
differential or single-ended drive. An external balun is  
optional. Both LO pins are internally biased to 2VDC.  
The LO input has been designed for simple impedance  
matching for frequencies up to 3GHz. A simplified sche-  
matic is shown in Figure 6 with the associated external  
impedance matching. The matching technique is similar  
to that described earlier for the RF port, except the match  
is not nearly as critical. Table 2 lists the differential input  
impedance and differential reflection coefficient between  
the LO+ and LOpins (Pin 15 to Pin 14). As shown, the real  
part of the series impedance is close to 100. Series  
inductors (L3, L4) are used to tune out the capacitive  
portion of the differential impedance.  
2V  
+
LO  
15  
L3  
LO  
IN  
50  
C6  
100pF  
V
C7  
100pF  
CC  
14  
LO  
LT5512  
5512 F07  
Figure 7. Single-Ended LO Input Matching  
The differential port impedance listed in Table 2 can be  
usedtocomputethevalueoftheseriesmatchinginductor,  
L3. Alternatively, Figure 8 shows measured LO input  
return loss for various values of L3.  
T3  
1:2  
LDB211G9010C-001  
+
LO  
15  
2V  
1
4
L3  
C11  
LO  
IN  
50  
V
CC  
2
3
L4  
5
14  
LO  
LT5512  
5512 F06  
Figure 6. LO Input with External Matching Elements  
5512f  
9
LT5512  
W U U  
U
APPLICATIO S I FOR ATIO  
0
An alternative matching network for a broadband CATV IF  
(270MHz to 870MHz) is shown in Figure 3. Here, a low-  
pass impedance transformer consisting of the internal  
capacitance, with L1 and L2, transforms the 371output  
resistance at 870MHz to 200. A 4:1 balun then com-  
pletes the match down to 50. Supply voltage is applied  
through the center-tap of the transformer.  
–5  
–10  
4.7nH  
5.6nH  
6.8nH  
–15  
–20  
–25  
–30  
8.2nH  
Table 3. IF Output Differential Impedance (Parallel Equivalent)  
Frequency  
(MHz)  
10  
Differential Output  
Impedance  
Differential S11  
10nH  
2000  
Mag  
Angle  
0
0
3000 3500  
4000  
500 1000 1500  
2500  
FREQUENCY (MHz)  
396 || – j10k  
394 || – j5445  
393 || – j2112  
392 || – j1507  
387 || – j798  
377 || – j478  
371 || – j416  
363 || – j359  
363 || – j295  
346 || – j244  
317 || – j192  
0.766  
0.775  
0.774  
0.773  
0.772  
0.768  
0.766  
0.762  
0.764  
0.756  
0.743  
1573 F08  
70  
–1.1  
Figure 8. Single-Ended LO Port Return Loss  
vs Frequency for Various Values of L3  
170  
–2.8  
240  
–3.9  
450  
–7.3  
IF Output Port  
750  
–12.2  
–14.0  
–16.2  
–19.6  
–23.6  
–29.9  
The IF outputs, IF+ and IF, are internally connected to the  
collectors of the mixer switching transistors as shown in  
Figure 9. These differential outputs should be combined  
externally through an RF balun or 180° hybrid to achieve  
optimum performance. Both pins must be biased at the  
supply voltage, which can be applied through matching  
inductors (see Figure 2), or through the center-tap of an  
output transformer (see Figure 3). These pins are pro-  
tected with ESD diodes; the diodes allow peak AC signal  
swing up to 1.3V above VCC.  
860  
1000  
1250  
1500  
1900  
LT5512  
11  
+
IF  
L1  
TO  
As shown in Table 3, the IF output differential impedance  
is approximately 390in parallel with 0.44pF. A simple  
band-pass IF matching network suitable for wireless ap-  
plications is shown in Figure 9. Here, L1, L2 and C8 set the  
desired IF output frequency. The 390differential output  
can then be applied directly to a differential filter, or an 8:1  
balun for impedance transformation down to 50. To  
achieve maximum linearity, C8 should be located as close  
as possible to the IF+/IF– pins. Even small amounts of  
inductance in series with C8 (such as through a via) can  
significantly degrade IIP3. For high IF frequencies, the  
value of C8 should be reduced by the value of internal  
capacitance(seeTable 3).Thismatchingnetworkissimple  
and offers good selectivity for narrow band IF applica-  
tions.  
DIFFERENTIAL  
FILTER OR  
BALUN  
V
400Ω  
C8  
CC  
L2  
IF  
10  
5512 F09  
Figure 9. IF Output Equivalent Circuit  
with Band-Pass Matching Elements  
5512f  
10  
LT5512  
U
PACKAGE DESCRIPTIO  
UF16 Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 ±0.05  
4.35 ± 0.05  
2.90 ± 0.05  
2.15 ± 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 ±0.05  
0.65 BCS  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
0.75 ± 0.05  
R = 0.115  
TYP  
0.55 ± 0.20  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
PIN 1  
1
2
2.15 ± 0.10  
(4-SIDES)  
(UF) QFN 0102  
0.30 ± 0.05  
0.65 BSC  
0.200 REF  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5512f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT5512  
W U U  
U
APPLICATIO S I FOR ATIO  
5512 F10b  
5512 F10a  
Figure 10. 1900MHz Evaluation Board Layout  
5512 F11  
Figure 11. 1230MHz Cable Infrastructure Evaluation Board Layout  
(Wide Output Range Down-Converting Mixer for Downlink Transmitter)  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT5502  
400MHz Quadrature Demodulator with RSSI  
1.8V to 5.25V Supply, 70MHz to 400MHz IF,  
84dB Limiting Gain, 90db RSSI Range  
LT5504  
LTC5505  
LT5506  
800MHz to 2.7GHz RF Measuring Receiver  
300MHz to 3.5GHz RF Power Detector  
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.5V Supply  
>40dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply  
500MHz Quadrature IF Demodulator with VGA  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB  
Linear Power Gain  
LTC5507  
LTC5508  
LTC5509  
LT5511  
LT5515  
LT5516  
LT5522  
LTC5532  
100kHz to 1GHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
High Signal Level Up Converting Mixer  
48dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, SC70 Package  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator 20dBm IIP3, Integrated LO Quadrature Generator  
0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator 21.5dBm IIP3, Integrated LO Quadrature Generator  
600MHz to 2.7GHz Down Converting Mixer  
300MHz to 7GHz Precision RF Power Detector  
25dBm IIP3, 50Single-Ended RF and LO Ports  
Precision V Offset Control, Adjustable Gain and Offset Voltage  
OUT  
5512f  
LT/TP 1103 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LT5512EUF#TR

LT5512 - 1kHz-3GHz High Signal Level Active Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5514

Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain
Linear

LT5514EFE

Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain
Linear

LT5514EFE#PBF

LT5514 - Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C
Linear

LT5514EFE#TR

LT5514 - Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C
Linear

LT5514EFE#TRPBF

LT5514 - Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C
Linear

LT5515

40MHz to 900MHz Quadrature Demodulator
Linear

LT5515EUF

1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator
Linear

LT5516

800MHz to 1.5GHz Direct Conversion Quadrature Demodulator
Linear

LT5516EUF

800MHz to 1.5GHz Direct Conversion Quadrature Demodulator
Linear

LT5516EUF#PBF

LT5516 - 800MHz to 1.5GHz Direct Conversion Quadrature Demodulator; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5516EUF#TR

LT5516 - 800MHz to 1.5GHz Direct Conversion Quadrature Demodulator; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear