LT5519 [Linear]

0.7GHz to 1.4GHz High Linearity Upconverting Mixer; 0.7GHz至1.4GHz高线性度上变频混频器
LT5519
型号: LT5519
厂家: Linear    Linear
描述:

0.7GHz to 1.4GHz High Linearity Upconverting Mixer
0.7GHz至1.4GHz高线性度上变频混频器

文件: 总12页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5519  
0.7GHz to 1.4GHz  
High Linearity  
Upconverting Mixer  
U
FEATURES  
DESCRIPTIO  
The LT®5519 mixer is designed to meet the high linearity  
requirements of wireless and cable infrastructure trans-  
mission systems. A high speed, internally 50matched,  
LO amplifier drives a double-balanced mixer core, allow-  
ing the use of a low power, single-ended LO source. An RF  
output transformer is integrated, thus eliminating the  
need for external matching components at the RF output,  
whilereducingsystemcost, componentcount, boardarea  
and system-level variations. The IF port can be easily  
matched to a broad range of frequencies for use in many  
different applications.  
Wide RF Frequency Range: 0.7GHz to 1.4GHz  
17.1dBm Typical Input IP3 at 1GHz  
On-Chip RF Output Transformer  
On-Chip 50Matched LO and RF Ports  
Single-Ended LO and RF Operation  
Integrated LO Buffer: –5dBm Drive Level  
Low LO to RF Leakage: – 44dBm Typical  
Noise Figure: 13.6dB  
Wide IF Frequency Range: 1MHz to 400MHz  
Enable Function with Low Off-State Leakage Current  
Single 5V Supply  
Small 16-Lead QUFN Plastic Package  
The LT5519 mixer delivers +17.1dBm typical input 3rd  
order intercept point at 1GHz with IF input signal levels of  
–10dBm. The input 1dB compression point is typically  
+5.5dBm. The IC requires only a single 5V supply.  
APPLICATIO S  
Wireless Infrastructure  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Cable Downlink Infrastructure  
Point-to-Point and Point-to-Multipoint Data  
Communications  
High Linearity Frequency Conversion  
U
TYPICAL APPLICATIO  
5V  
DC  
1µF  
1000pF  
RF Output Power, IM3 and IM2  
vs IF Input Power (Two Input Tones)  
39nH  
10  
0
EN  
BIAS  
V
V
V
CC3  
CC1  
CC2  
P
OUT  
10pF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
100Ω  
BPF  
220pF  
LT5519  
4:1  
f
= 1000MHz  
RF  
LO  
LO  
IF1  
IF2  
+
+
IF  
IF  
RF  
RF  
P
= –5dBm  
= 1140MHz  
= 140MHz  
= 141MHz  
BPF  
33pF  
f
f
PA  
IM3  
IM2  
f
220pF  
100Ω  
T
= 25°C  
A
GND  
5pF  
5pF  
85Ω  
–16  
–12  
–8  
–4  
0
4
+
LO  
LO  
(OPTIONAL)  
IF INPUT POWER (dBm/TONE)  
5519 F01a  
LO INPUT  
–5dBm  
5519 F01b  
Figure 1. Frequency Conversion in Wireless Infrastructure Transmitter  
5519f  
1
LT5519  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
Supply Voltage ....................................................... 5.5V  
Enable Voltage ............................. –0.3V to (VCC + 0.3V)  
LO Input Power (Differential)............................ +10dBm  
LO+ to LODifferential DC Voltage .......................... ±1V  
LO+ and LODC Common Mode Voltage...... –1V to VCC  
IF Input Power (Differential) ............................. +10dBm  
IF+ and IFDC Currents ........................................ 25mA  
RF+ to RFDifferential DC Voltage...................... ±0.13V  
RF+ and RFDC Common Mode Voltage...... –1V to VCC  
Operating Temperature Range .................–40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Junction Temperature (TJ).................................... 125°C  
16 15 14 13  
GND  
GND  
1
2
3
4
12  
11  
10  
9
LT5519EUF  
+
+
RF  
IF  
17  
RF  
IF  
GND  
GND  
5
6
7
8
UF PART  
MARKING  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
5519  
TJMAX = 125°C, θJA = 37°C/W  
EXPOSED PAD (PIN 17) IS GND  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
IF Input Frequency Range  
LO Input Frequency Range  
RF Output Frequency Range  
1 to 400  
300 to 1800  
700 to 1400  
MHz  
MHz  
1GHz Application: VCC = 5VDC, EN = High, TA = 25°C, IF input = 140MHz at –10dBm, LO input = 1.14GHz at –5dBm, RF output measured  
at 1GHz, unless otherwise noted. (Test circuit shown in Figure 2) (Notes 2, 3)  
PARAMETER  
CONDITIONS  
Z = 50, with External Matching  
MIN  
TYP  
20  
MAX  
UNITS  
dB  
IF Input Return Loss  
LO Input Return Loss  
RF Output Return Loss  
LO Input Power  
O
Z = 50Ω  
O
17  
dB  
Z = 50Ω  
O
20  
dB  
–10 to 0  
–0.6  
17.1  
48  
dBm  
dB  
Conversion Gain  
Input 3rd Order Intercept  
Input 2nd Order Intercept  
LO to RF Leakage  
–10dBm/Tone, f = 1MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
–10dBm, Single Tone  
–44  
–40  
5.5  
LO to IF Leakage  
Input 1dB Compression  
IF Common Mode Voltage  
Noise Figure  
Internally Biased  
Single-Side Band  
1.77  
13.6  
V
DC  
dB  
5519f  
2
LT5519  
DC ELECTRICAL CHARACTERISTICS  
(Test Circuit Shown in Figure 2) VCC = 5VDC, EN = High, TA = 25°C, unless otherwise noted. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Enable (EN) Low = OFF, High = ON  
Turn-On Time (Note 4)  
Turn-Off Time (Note 4)  
Input Current  
2
6
1
µs  
µs  
µA  
V
= 5V  
10  
ENABLE  
DC  
Enable = High (ON)  
Enable = Low (OFF)  
3
V
DC  
V
DC  
0.5  
Power Supply Requirements (V  
Supply Voltage  
)
CC  
4.5 to 5.25  
V
DC  
Supply Current  
V
= 5V  
60  
1
70  
mA  
CC  
DC  
Shutdown Current  
EN = Low  
100  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 3: Specifications over the –40°C to 85°C temperature range are  
of a device may be impaired.  
Note 2: External components on the final test circuit are optimized for  
assured by design, characterization and correlation with statistical process  
controls.  
operation at f = 1GHz, f = 1.14GHz and f = 140MHz.  
Note 4: Turn-On and Turn-Off times are based on the rise and fall times of  
the RF output envelope from –40dBm to full power with an IF input power  
of –10dBm.  
RF  
LO  
IF  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Test Circuit Shown in Figure 2)  
Shutdown Current  
vs Supply Voltage  
Supply Current vs Supply Voltage  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
66  
64  
62  
60  
T
= 85°C  
A
T
= 25°C  
A
T
= 85°C  
A
58  
56  
T
= –40°C  
A
54  
52  
50  
T
= –40°C  
A
T
= 25°C  
A
4
4.5  
4.75  
5
5.25  
5.5  
4.25  
4.5  
5
4.25  
4
5.25  
5.5  
4.75  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
5519 G02  
5519 G01  
5519f  
3
LT5519  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V
CC = 5VDC, EN = High, TA = 25°C, IF input = 140MHz at –10dBm, LO input = 1.14GHz at –5dBm, RF output measured at 1000MHz,  
unless otherwise noted. For 2-tone inputs: 2nd IF input = 141MHz at –10dBm. (Test Circuit Shown in Figure 2.)  
Conversion Gain and SSB Noise  
Figure vs RF Output Frequency  
IIP3 and IIP2  
LO-RF Leakage  
vs RF Output Frequency  
vs RF Output Frequency  
18  
16  
14  
12  
10  
8
25  
23  
60  
50  
–10  
–20  
–30  
–40  
–50  
–60  
LOW SIDE LO  
HIGH SIDE LO  
LOW SIDE LO  
HIGH SIDE LO  
IIP2  
NF  
21  
19  
40  
30  
6
HIGH SIDE LO  
4
HIGH SIDE LO  
IIP3  
2
17  
15  
13  
20  
10  
0
0
LOW SIDE LO  
GAIN  
LOW SIDE LO  
–2  
–4  
–6  
LOW SIDE AND HIGH SIDE LO  
500  
700  
900  
1100  
1300  
1500  
500  
700  
900  
1100  
1300  
1500  
500  
700  
900  
1100  
1300  
1500  
RF OUTPUT FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
5519 G03  
5519 G04  
5519 G05  
Conversion Gain and SSB Noise  
Figure vs LO Input Power  
LO-RF Leakage  
vs LO Input Power  
IIP3 and IIP2 vs  
LO Input Power  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
21  
20  
60  
50  
0
T
= –40°C  
A
T
= 85°C  
T
= 25°C  
A
NF  
T
= 25°C  
A
T
= 85°C  
A
–10  
A
IIP2  
19  
18  
40  
30  
–20  
–30  
T
= –40°C  
A
6
IIP3  
T
A
= 85°C  
T
= 25°C  
A
4
GAIN  
T
= 25°C  
17  
16  
15  
20  
10  
0
A
–40  
–50  
–60  
T
= –40°C  
2
6
A
T
= –40°C  
A
T = –40°C  
A
0
4
T
= 25°C  
A
T
= 85°C  
A
–2  
–4  
2
T
= 85°C  
A
0
–16  
–12  
–8  
–6  
–4  
–2  
–16  
–12  
–8  
–4  
0
4
–16  
–12  
–8  
–4  
0
4
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5519 G06  
5519 G07  
5519 G08  
IIP3 and IIP2 vs  
LO Input Power  
RF Output Power and Output IM2 vs  
IF Input Power (Two Input Tones)  
RF Output Power and Output IM3 vs  
IF Input Power (Two Input Tones)  
10  
0
21  
20  
60  
10  
0
LOW SIDE LO  
T
= –40°C  
T
= –40°C  
A
A
IIP2  
P
P
OUT  
OUT  
50  
T
= 25°C  
T
= 25°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
A
T
= 85°C  
A
T
= 85°C  
HIGH SIDE LO  
A
19  
18  
40  
30  
T
= 25°C  
A
T
= –40°C  
T
= 85°C  
A
A
HIGH SIDE LO  
LOW SIDE LO  
IIP3  
T
= –40°C  
A
17  
16  
15  
20  
10  
0
T
= 25°C  
IM3  
IM2  
A
T
= 85°C  
A
–16  
–12  
–8  
–4  
0
4
–16  
–12  
–8  
–4  
0
4
–16  
–12  
–8  
–4  
0
4
LO INPUT POWER (dBm)  
IF INPUT POWER (dBm/TONE)  
IF INPUT POWER (dBm/TONE)  
5519 G10  
5519 G09  
5519 G11  
5519f  
4
LT5519  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VCC = 5VDC, EN = High, TA = 25°C, IF input = 140MHz at –10dBm, LO input = 1.14GHz at –5dBm, RF output measured at 1000MHz,  
unless otherwise noted. For 2-tone inputs: 2nd IF input = 141MHz at –10dBm. (Test Circuit Shown in Figure 2.)  
IF, LO and RF Port Return Loss  
vs Frequency  
Conversion Gain, IIP3 and IIP2  
vs Supply Voltage  
Conversion Gain vs IF Input  
Power (One Input Tone)  
10  
8
60  
50  
40  
30  
20  
10  
0
4
3
0
LOW SIDE LO  
–5  
2
T
= –40°C  
= 25°C  
A
HIGH SIDE LO  
IIP2  
IIP3  
1
6
–10  
–15  
T
0
A
4
–1  
–2  
–3  
–4  
–5  
–6  
T
= 85°C  
A
HIGH SIDE LO  
LOW SIDE LO  
LO PORT  
2
–20  
–25  
–30  
IF PORT  
RF PORT  
1500  
0
GAIN  
LOW SIDE AND HIGH SIDE LO  
4.5 4.75 5.25  
–2  
4
5
5.5  
4.25  
–16  
–12  
–8  
–4  
0
4
0
500  
1000  
2000  
SUPPLY VOLTAGE (V)  
IF INPUT POWER (dBm)  
FREQUENCY (MHz)  
5519 G14  
5519 G12  
5519 G13  
U
U
U
PI FU CTIO S  
GND (Pins 1, 4, 9, 12, 13, 16): Internal Grounds. These  
pins are used to improve isolation and are not intended as  
DC or RF grounds for the IC. Connect these pins to low  
impedance grounds on the PCB for best performance.  
IF+, IF(Pins 2, 3): Differential IF Signal Inputs. A differ-  
ential signal must be applied to these pins through DC  
blockingcapacitors.Thepinsmustbeconnectedtoground  
with100resistors(thegroundsmusteachbecapableof  
sinking about 18mA). For best LO leakage performance,  
these pins should be DC isolated from each other. An  
impedance transformation is required to match the IF in-  
puttothedesiredsourceimpedance(typically50or75).  
in Figure 2. The 1000pF capacitor should be located as  
close to the pins as possible.  
VCC3 (Pin 8): Power Supply Pin for the Internal Mixer.  
Typical current consumption is about 36mA. This pin  
should be externally connected to VCC through an induc-  
tor.A39nHinductorisshowninFigure2, thoughthevalue  
is not critical.  
RF, RF+ (Pins 10, 11): Differential RF Outputs. One pin  
maybeDCconnectedtoalowimpedancegroundtorealize  
a 50single-ended output. No external matching compo-  
nents are required. A DC voltage should not be applied  
acrossthesepins,astheyareinternallyconnectedthrough  
a transformer winding.  
LO+, LO(Pins 14, 15): Differential Local Oscillator In-  
puts. The LT5519 works well with a single-ended source  
driving the LO+ pin and the LOpin connected to a low  
impedance ground. No external 50matching compo-  
nents are required. An internal resistor is connected  
across these pins; therefore, a DC voltage should not be  
applied across the inputs.  
EN(Pin5):EnablePin. Whentheappliedvoltageisgreater  
than 3V, the IC is enabled. When the applied voltage is less  
than 0.5V, the IC is disabled and the DC current drops to  
about 1µA.  
VCC1 (Pin 6): Power Supply Pin for the Bias Circuits.  
Typical current consumption is about 2mA. This pin  
should be externally connected to VCC and have appropri-  
ate RF bypass capacitors.  
VCC2 (Pin 7): Power Supply Pin for the LO Buffer Circuits.  
Typical current consumption is about 22mA. This pin  
should have appropriate RF bypass capacitors as shown  
Exposed Pad (Pin 17): DC and RF ground return for the  
entireIC.Thismustbesolderedtotheprintedcircuitboard  
low impedance ground plane.  
5519f  
5
LT5519  
W
BLOCK DIAGRA  
EXPOSED  
PAD  
+
GND  
12  
RF  
11  
RF  
10  
GND  
9
17  
13  
14  
GND  
5pF  
85Ω  
5pF  
8
V
CC3  
HIGH SPEED  
LO BUFFER  
10pF  
+
LO  
LO  
DOUBLE-  
BALANCED  
MIXER  
15  
16  
V
6
5
CC1  
BIAS  
GND  
EN  
7
1
2
3
4
5519 BD  
+
V
GND  
IF  
IF  
GND  
CC2  
TEST CIRCUIT  
LO  
IN  
1140MHz  
16  
15  
14  
+
13  
GND  
GND  
GND  
LO  
LO  
1
2
12  
11  
IF  
IN  
GND  
R1  
C1  
C2  
T1  
5
140MHz  
1
+
+
RF  
IF  
RF  
OUT  
1000MHz  
2
3
C3  
LT5519  
4
3
4
10  
RF  
IF  
R2  
9
GND  
CC3  
GND  
EN  
V
V
CC2  
V
CC1  
6
17  
5
7
8
RF  
GND  
EN  
L1  
0.018" ER = 4.4  
0.062"  
V
CC  
5519 F02  
DC  
GND  
0.018"  
C5  
C4  
REF DES  
C1, C2  
C3  
VALUE  
220pF  
33pF  
SIZE  
0402  
0402  
0402  
0603  
0402  
PART NUMBER  
AVX 04023C221KAT2A  
AVX 04023A330KAT2A  
AVX 04023A102KAT2A  
C4  
1000pF  
1µF  
C5  
Taiyo Yuden LMK107BJ105MA  
Toko LL1005-FH39NJ  
L1  
39nH  
R1, R2  
T1  
100, 0.1% 0603  
4:1 SM-22  
IRC PFC-W0603R-03-10R1-B  
M/A-COM ETC4-1-2  
Figure 2. Test Schematic for the LT5519  
5519f  
6
LT5519  
U
W U U  
APPLICATIO S I FOR ATIO  
The LT5519 consists of a double-balanced mixer, a high  
performance LO buffer and bias/enable circuits. The RF  
and LO ports may be driven differentially; however, they  
are intended to be used in single-ended mode by connect-  
ing one input of each pair to ground. The IF input ports  
must be DC-isolated from the source and driven differen-  
tially. The IF input should be impedance-matched for the  
desired input frequency. The LO input has an internal  
broadband 50match with return loss better than 10dB  
at frequencies up to 1800MHz. The RF output band ranges  
from 700MHz to 1400MHz, with an internal RF trans-  
former providing a 50impedance match across the  
band. Low side or high side LO injection can be used.  
improve the impedance match by canceling excess induc-  
tance in the package and transformer. The input capacitor  
value required to realize an impedance match at desired  
frequency, f, can be estimated as follows:  
1
C1 = C2 =  
(2πf)2(LIN +LEXT  
)
where; f is in units of Hz, LIN and LEXT are in Henry, and C1,  
C2 are in Farad. LIN is the differential input inductance of  
theLT5519,andisapproximately1.67nH.LEXT represents  
the combined inductances of differential external compo-  
nents and transmission lines. For the evaluation board  
shown in Figure 10, LEXT = 4.21nH. Thus, for f = 140MHz,  
the above formula gives C1 = C2 = 220pF.  
IF Input Port  
Table 1 lists the differential IF input impedance and reflec-  
tion coefficient for several frequencies. A 4:1 balun can be  
used to transform the impedance up to about 50.  
The IF inputs are connected to the emitters of the double-  
balanced mixer transistors, as shown in Figure 3. These  
pins are internally biased and an external resistor must be  
connected from each IF pin to ground to set the current  
through the mixer core. The circuit has been optimized to  
work with 100resistors, which will result in approxi-  
mately 18mA of DC current per side. For best LO leakage  
performance, the resistors should be well matched; thus  
resistors with 0.1% tolerance are recommended. If LO  
leakage is not a concern, then lesser tolerance resistors  
can be used. The symmetry of the layout is also important  
for achieving optimum LO isolation.  
Table 1. IF Input Differential Impedance  
FREQUENCY  
(MHz)  
DIFFERENTIAL  
DIFFERENTIAL S11  
INPUT IMPEDANCE  
MAG  
0.663  
0.663  
0.663  
0.663  
0.663  
0.663  
0.663  
0.663  
ANGLE  
180  
179  
178  
177  
176  
174  
171  
167  
10  
44  
10.1 + j0.117  
10.1 + j0.476  
10.1 + j0.751  
10.2 + j1.47  
10.2 + j1.78  
10.2 + j2.53  
10.2 + j3.81  
10.2 + j5.31  
70  
140  
170  
240  
360  
500  
The capacitors shown in Figure 3, C1 and C2, serve two  
purposes. They provide DC isolation between the IF+ and  
IFports, thus preventing DC interactions that could  
cause unpredictable variations in LO leakage. They also  
LO Input Port  
The simplified circuit for the LO buffer input is shown in  
Figure 4. The LO buffer amplifier consists of high speed  
limitingdifferentialamplifiers,optimizedtodrivethemixer  
quad for high linearity. The LO+ and LOports can be  
driven differentially; however, they are intended to be  
driven by a single-ended source. An internal resistor  
connected across the LO+ and LOinputs provides a  
broadband 50impedance match. Because of the resis-  
tive match, a DC voltage at the LO input is not recom-  
mended. If the LO signal source output is not AC coupled,  
then a DC blocking capacitor should be used at the LO  
input.  
100Ω  
LT5519  
18mA  
0.1%  
C1  
C2  
T1  
4:1  
2
3
+
IF  
IF  
IN  
50Ω  
C3  
V
CC  
IF  
18mA  
100Ω  
0.1%  
5519 F03  
Figure 3. IF Input with External Matching  
5519f  
7
LT5519  
U
W U U  
APPLICATIO S I FOR ATIO  
+
LT5519  
LO  
LT5519  
RF  
5pF  
+
11  
LO  
IN  
14  
50Ω  
220Ω  
220Ω  
V
CC  
V
85Ω  
CC  
5pF  
RF  
RF  
OUT  
10  
LO  
50Ω  
10pF  
15  
5519 F04  
8
5519 F05  
V
CC3  
Figure 4. LO Input Circuit  
Figure 5. RF Output Circuit  
RF+ and RFpins are connected together through the  
secondary windings of the transformer; thus a DC voltage  
should not be applied across these pins.  
Though the LO input is internally matched to 50, there  
may be some cases, particularly at higher frequencies or  
with different source impedances, where a further opti-  
mized match is desired. Table 2 includes the single-ended  
input impedance and reflection coefficient vs frequency  
for the LO input for use in such cases.  
TheimpedancedatafortheRFoutput,listedinTable3,can  
be used to develop matching networks for different load  
impedances.  
Table 2. Single-Ended LO Input Impedance  
Table 3. Single-Ended RF Output Impedance  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
S11  
FREQUENCY  
(MHz)  
OUTPUT  
S11  
MAG  
0.223  
0.153  
0.124  
0.119  
0.125  
0.134  
0.144  
0.155  
0.163  
ANGLE  
–28.4  
–34.7  
29.2  
23.6  
–22.7  
–25.5  
–30.8  
–37.1  
–43.4  
IMPEDANCE  
MAG  
0.465  
0.354  
0.227  
0.105  
0.022  
0.093  
0.159  
0.207  
ANGLE  
103  
200  
400  
72.3 – j16.1  
63.3 – j11.3  
61.6 – j7.5  
61.9 – j6.0  
62.7 – j6.1  
63.2 – j7.4  
63.3 – j9.5  
62.8 – j12.0  
61.6 – j14.2  
700  
800  
27.6 + j32.0  
39.7 + j32.1  
50.9 + j23.5  
53.5 + j10.3  
48.3 + j1.3  
42.0 – j3.1  
36.6 – j3.4  
33.0 – j2.0  
88.1  
74.7  
65.5  
143  
600  
900  
800  
1000  
1100  
1200  
1300  
1400  
1000  
1200  
1400  
1600  
1800  
–157  
–164  
–172  
Operation at Different Input Frequencies  
RF Output Port  
On the evaluation board shown in Figure 10, the input of  
theLT5519canbeeasilymatchedfordifferentfrequencies  
by changing the capacitors, C1, C2 and C3. Capacitors C1  
and C2 set the input matching frequency while C3 im-  
proves the LO to RF leakage performance. Decreasing the  
value of C3 at higher input frequencies reduces its impact  
on conversion gain. Table 4 lists some actual values used  
at selected frequencies.  
AninternalRFtransformer, showninFigure5, reducesthe  
mixer-core impedance to provide an impedance of 50Ω  
across the RF+ and RFpins. The LT5519 is designed and  
testedwiththeoutputsconfiguredforsingle-endedopera-  
tion, asshownintheFigure5;however, theoutputscanbe  
used differentially as well. A center tap in the transformer  
provides the DC connection to the mixer core and the  
transformer provides DC isolation at the RF output. The  
5519f  
8
LT5519  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 4. Input Capacitor Values vs Frequency  
frequency was adjusted to maintain an RF output fre-  
quency of 1000MHz.  
FREQUENCY  
(MHz)  
CAPACITANCE (C1, C2)  
(pF)  
CAPACITANCE (C3)  
(pF)  
44  
2200  
820  
220  
68  
33  
33  
Low Frequency Matching of the RF Output Port  
70  
Without any external components on the RF output, the  
internal transformer of the LT5519 provides a good 50Ω  
impedancematchforRFfrequenciesaboveapproximately  
850MHz. Below this frequency, the return loss drops  
below 10dB and degrades the conversion gain. The addi-  
tion of a single 10pF capacitor in series with the RF output  
improves the match at lower RF frequencies, shifting the  
10dBreturnlosspointtoabout700MHz, asdemonstrated  
in Figure 9. This change also results in an improvement of  
the conversion gain.  
140  
240  
300  
350  
440  
33  
15  
39  
6.8  
6.8  
6.8  
27  
18  
The performance was evaluated with the input tuned for  
each of these frequencies and the results are summarized  
in Figures 6-8. The same IF input balun transformer was  
used for all measurements. In each case, the LO input  
0
6
5
20  
18  
16  
14  
12  
10  
8
INPUT TUNED FOR EACH TEST FREQUENCY  
INPUT TUNED FOR EACH TEST FREQUENCY  
V
= 5V  
CC  
LO  
–10  
SSB NF  
P
= –5dBm  
4
HIGH SIDE LO  
T
A
= 25°C  
3
–20  
–30  
LOW SIDE  
2
1
GAIN  
0
HIGH SIDE LO  
LOW SIDE LO  
–40  
–50  
–60  
LOW SIDE  
–1  
–2  
–3  
–4  
6
4
HIGH SIDE LO  
V
P
A
= 5V  
CC  
LO  
= –5dBm  
2
T
= 25°C  
0
1
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
5519 F08  
5519 F06  
Figure 6. Conversion Gain and Single Sideband Noise Figure  
vs Tuned IF Input Frequency  
Figure 8. LO to RF Leakage vs Tuned IF Input Frequency  
0
0
27  
25  
23  
21  
19  
17  
15  
13  
70  
60  
50  
40  
30  
20  
10  
0
INPUT TUNED FOR EACH TEST FREQUENCY  
–1  
–5  
NO C  
OUT  
LOW SIDE  
IIP2  
GAIN  
C
= 10pF  
OUT  
–2  
–3  
–4  
–5  
–6  
–10  
–15  
–20  
–25  
–30  
HIGH SIDE  
HIGH SIDE LO  
IIP3  
C
= 10pF  
LOW SIDE  
OUT  
RETURN LOSS  
V
CC  
P
LO  
= 5V, T = 25°C  
A
NO C  
OUT  
= –5dBm  
–7  
–35  
1100  
1300 1400  
1200  
700 800 900 1000  
100  
200  
300  
500  
0
400  
RF OUTPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
5519 F09  
5519 F07  
Figure 9. Conversion Gain and Return Loss vs Output Frequency  
Figure 7. IIP3 and IIP2 vs Tuned IF Input Frequency  
5519f  
9
LT5519  
U
TYPICAL APPLICATIO S  
(10a) Top Layer Silkscreen  
(10b) Top Layer Metal  
Figure 10. Evaluation Board Layout  
5519f  
10  
LT5519  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 ±0.05  
4.35 ± 0.05  
2.90 ± 0.05  
2.15 ± 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 ±0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
0.75 ± 0.05  
R = 0.115  
TYP  
0.55 ± 0.20  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
PIN 1  
TOP MARK  
1
2
2.15 ± 0.10  
(4-SIDES)  
(UF) QFN 0503  
0.30 ± 0.05  
0.65 BSC  
0.200 REF  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5519f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT5519  
RELATED PARTS  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
LT5511  
LT5512  
LT5515  
LT5516  
LT5517  
LT5520  
LT5522  
High Signal Level Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
RF Input to 3GHz, 21dBm IIP3, Integrated LO Buffer  
20dBm IIP3, Integrated LO Quadrature Generator  
21.5dBm IIP3, Integrated LO Quadrature Generator  
21dBm IIP3, Integrated LO Quadrature Generator  
15.9dBm IIP3, Single Ended, 50Matched RF and LO Ports  
DC-3GHz High Signal Level Downconverting Mixer  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator  
40MHz to 900MHz Direct Conversion Quadrature Demodulator  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer  
600MHz to 2.7GHz High Signal Level Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB,  
50Single-Ended RF and LO Ports  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated,  
2.7V to 5.25V Supply  
LTC5505  
LTC5507  
LTC5508  
300MHz to 3GHz RF Power Detectors  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
LTC5505-1: –28dBm to +18dBm Range, LTC5505-2: –32dBm to  
+12dBm Range,Temperature Compensated, 2.7V to 6V Supply  
–34dBm to +14dBm Range, Temperature Compensated,  
2.7V to 6V Supply  
–32dBm to +12dBm Range, Temperature Compensated,  
SC70 Package  
LTC5509  
300MHz to 3GHz RF Power Detector  
36dB Dynamic Range, Temperature Compensated, SC70 Package  
LTC5532  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Offset Control, Adjustable Gain and Offset  
OUT  
RF Building Blocks  
LT5500  
1.8GHz to 2.7GHz Receiver Front End  
1.8V to 5.25V Supply, Dual-Gain LNA, Mixer LO Buffer  
LT5502  
400MHz Quadrature IF Demodulator with RSSI  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain,  
90dB RSSI Range  
LT5503  
LT5506  
LT5546  
1.2GHz to 2.7GHz Direct IQ Modulator and  
Upconverting Mixer  
1.8V to 5.25V Supply, Four-Step RF Power Control,  
120MHz Modulation Bandwidth  
500MHz Quadrature IF Demodulator with VGA  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB  
Linear Power Gain, 8.8MHz Baseband Bandwidth  
500MHz Ouadrature IF Demodulator with  
VGA and 17MHz Baseband Bandwidth  
1.8V to 5.25V Supply, 40MHz to 500MHz IF,  
–7dB to 56dB Linear Power Gain  
5519f  
LT/TP 0104 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5519EUF

0.7GHz to 1.4GHz High Linearity Upconverting Mixer
Linear

LT5519EUF#PBF

LT5519 - 0.7GHz to 1.4GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5520

40MHz to 900MHz Quadrature Demodulator
Linear

LT5520EUF

1.3GHz to 2.3GHz High Linearity Upconverting Mixer
Linear

LT5520EUF#PBF

LT5520 - 1.3GHz to 2.3GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5521

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5521EUF

Very High Linearity Active Mixer
Linear

LT5521EUF#PBF

LT5521 - Very High Linearity Active Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5521EUF#TR

LT5521 - Very High Linearity Active Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5522

40MHz to 900MHz Quadrature Demodulator
Linear

LT5522EUF

400MHz to 2.7GHz High Signal Level Downconverting Mixer
Linear

LT5522EUF#TR

LT5522 - 600MHz to 2.7GHz High Signal Level Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear