LT5522EUF [Linear]

400MHz to 2.7GHz High Signal Level Downconverting Mixer; 400MHz到2.7GHz的高信号电平下变频混频器
LT5522EUF
型号: LT5522EUF
厂家: Linear    Linear
描述:

400MHz to 2.7GHz High Signal Level Downconverting Mixer
400MHz到2.7GHz的高信号电平下变频混频器

电信集成电路 蜂窝电话电路 电信电路
文件: 总16页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5522  
400MHz to 2.7GHz  
High Signal Level  
Downconverting Mixer  
U
FEATURES  
DESCRIPTIO  
TheLT®5522activedownconvertingmixerisoptimizedfor  
high linearity downconverter applications including cable  
and wireless infrastructure. The IC includes a high speed  
differential LO buffer amplifier driving a double-balanced  
mixer. The LO buffer is internally matched for wideband,  
single-ended operation with no external components.  
Internal On-Chip RF Input Transformer  
50Single-Ended RF and LO Ports  
High Input IP3: +25dBm at 900MHz  
+21.5dBm at 1900MHz  
Low Power Consumption: 280mW Typical  
Integrated LO Buffer: Low LO Drive Level  
High LO-RF and LO-IF Isolation  
Wide RF Frequency Range: 0.4GHz to 2.7GHz*  
The RF input port incorporates an integrated RF trans-  
formerandisinternallymatchedoverthe1.2GHzto2.3GHz  
frequency range with no external components. The RF  
input match can be shifted down to 400MHz, or up to  
2.7GHz, with a single shunt capacitor or inductor, respec-  
tively. The high level of integration minimizes the total  
solution cost, board space and system-level variation.  
Very Few External Components  
Enable Function  
4.5V to 5.25V Supply Voltage Range  
16-Lead (4mm ×U4mm) QFN Package  
APPLICATIO S  
The LT5522 delivers high performance and small size  
without excessive power consumption.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
*Operation over a wider frequency range is possible with reduced performance.  
Consult factory for information and assistance.  
Cellular, PCS and UMTS Band Infrastructure  
CATV Downlink Infrastructure  
2.4GHz ISM  
High Linearity Downmixer Applications  
U
TYPICAL APPLICATIO  
LO INPUT  
–5dBm  
+
1.9GHz Conversion Gain, IIP3, SSB  
NF and LO-RF Leakage vs LO Power  
LO  
LO  
LT5522  
24  
22  
20  
18  
16  
14  
12  
10  
8
–10  
–20  
–30  
–40  
–50  
–60  
–70  
IIP3  
+
IF  
IF  
140MHz  
(TYP)  
2.7pF  
100pF  
+
RF  
1850MHz  
TO  
1910MHz  
SSB NF  
150nH  
150nH  
LTC1748  
ADC  
VGA  
LO-RF  
LNA  
5522 F01  
RF  
BIAS/  
CONTROL  
6
IF = 140MHz  
LOW-SIDE LO  
4
T
= 25°C  
CC  
A
2
EN  
V
CC1  
V
CC2  
V
= 5V  
0
–11  
–9  
–7  
–5  
–3  
–1  
1
5V  
LO INPUT POWER (dBm)  
0.01µF  
3.3µF  
5522 TA01  
Figure 1. High Signal Level Downmixer for Wireless Infrastructure  
5522fa  
1
LT5522  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
Supply Voltage ...................................................... 5.5V  
Enable Voltage ............................... –0.3V to VCC + 0.3V  
LO Input Power ............................................... +10dBm  
LO+ to LODifferential DC Voltage ......................... ±1V  
LO Input DC Common Mode Voltage...................... ±1V  
RF Input Power................................................ +10dBm  
RF+ to RFDifferential DC Voltage ........................ ±0.2V  
RF Input DC Common Mode Voltage ...................... ±1V  
Operating Temperature Range ................ –40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Junction Temperature (TJ).................................... 125°C  
16 15 14 13  
NC  
+
1
2
3
4
12 GND  
+
RF  
11 IF  
17  
RF  
NC  
IF  
10  
9
GND  
5
6
7
8
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 37°C/W  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
UF PART MARKING  
5522  
ORDER PART NUMBER  
LT5522EUF  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
DC ELECTRICAL CHARACTERISTICS (Test circuit shown in Figure 2) V  
= 5VDC, EN = high, T = 25°C,  
CC  
A
unless otherwise noted. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Requirements (V  
Supply Voltage  
)
CC  
4.5  
5
5.25  
68  
VDC  
mA  
µA  
Supply Current  
V
= 5V  
56  
CC  
Shutdown Current  
EN = Low  
100  
Enable (EN) Low = Off, High = On  
Input High Voltage (On)  
Input Low Voltage (Off)  
Enable Pin Input Current  
Turn On Time  
3
VDC  
VDC  
µA  
0.3  
75  
EN = 5VDC  
55  
3
µs  
Turn Off Time  
5
µs  
AC ELECTRICAL CHARACTERISTICS  
(Notes 2, 3) (Test circuit shown in Figure 2).  
MIN  
PARAMETER  
CONDITIONS  
TYP  
MAX  
UNITS  
RF Input Frequency Range  
Shunt Capacitor on Pin 3 (Low Band)  
No External Matching (Mid Band)  
Shunt Inductor on Pin 3 (High Band)  
400  
MHz  
MHz  
MHz  
1200 to 2300  
2700  
2700  
LO Input Frequency Range  
IF Output Frequency Range  
RF Input Return Loss  
LO Input Return Loss  
IF Output Return Loss  
LO Input Power  
No External Matching  
400  
MHz  
MHz  
dB  
Requires Appropriate IF Matching  
0.1 to 1000  
Z = 50  
15  
13  
O
Z = 50Ω  
dB  
O
Z = 50Ω  
O
18  
dB  
–10  
–5  
0
dBm  
RF to LO Isolation  
50MHz to 2700MHz  
>45  
dB  
5522fa  
2
LT5522  
AC ELECTRICAL CHARACTERISTICS  
140MHz, unless otherwise noted. (Notes 2, 3) (Test circuit shown in Figure 2).  
Cellular/PCS/UMTS downmixer application: V = 5V, EN = high,  
CC  
T = 25°C, P = –7dBm (–7dBm/tone for 2-tone IIP3 tests, f = 1MHz), f = f – 140MHz, P = –5dBm, IF output measured at  
A
RF  
LO  
RF  
LO  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
RF = 450MHz, High Side LO  
RF = 900MHz  
–2.0  
–0.5  
–0.2  
–0.1  
0.2  
dB  
dB  
dB  
dB  
dB  
dB  
RF = 1800MHz  
–2  
RF = 1900MHz  
RF = 2100MHz  
RF = 2450MHz  
–0.7  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
T = –40°C to 85°C  
0.02  
dB/°C  
A
RF = 450MHz, High Side LO  
RF = 900MHz  
22.3  
25.0  
21.8  
21.5  
20.0  
16.8  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RF = 1800MHz  
RF = 1900MHz  
RF = 2100MHz  
RF = 2450MHz  
Single Sideband Noise Figure (Note 4)  
RF = 900MHz  
RF = 1800MHz  
RF = 2100MHz  
RF = 2450MHz  
12.5  
13.9  
14.3  
15.6  
dB  
dB  
dB  
dB  
LO to RF Leakage  
LO to IF Leakage  
f
f
= 400MHz to 2700MHz  
= 400MHz to 2700MHz  
–50  
–49  
dBm  
dBm  
LO  
LO  
2RF-2LO Output Spurious Product (f = f + f /2)  
900MHz: f = 830MHz at –12dBm  
–73  
–60  
dBc  
dBc  
RF  
LO  
IF  
RF  
1900MHz: f = 1830MHz at –12dBm  
RF  
3RF-3LO Output Spurious Product (f = f + f /3)  
900MHz: f = 806.67MHz at –12dBm  
–72  
–65  
dBc  
dBc  
RF  
LO  
IF  
RF  
1900MHz: f = 1806.67MHz at –12dBm  
RF  
Input 1dB Compression  
RF = 450MHz, High Side LO  
RF = 900MHz  
RF = 1900MHz  
12.0  
10.8  
8.0  
dBm  
dBm  
dBm  
1150MHz CATV infrastructure application: V = 5V, EN = high, T = 25°C, RF input = 1150MHz at –12dBm (–12dBm/tone for 2-tone  
CC  
A
IIP3 tests, f = 1MHz), LO input swept from 1200MHz to 2200MHz, P = –5dBm, IF output measured from 50MHz to 1050MHz unless  
LO  
otherwise noted. (Note 3) (Test circuit shown in Figure 3).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–0.6  
23  
MAX  
UNITS  
dB  
Conversion Gain  
f
f
f
f
f
= 1650MHz, f = 500MHz  
IF  
LO  
LO  
LO  
LO  
LO  
Input 3rd Order Intercept  
Single Sideband Noise Figure (Note 4)  
LO to RF Leakage  
= 1650MHz, f = 500MHz  
dBm  
dB  
IF  
= 1650MHz, f = 500MHz  
14.3  
–51  
–45  
–63  
–68  
–68  
–63  
>15  
13  
IF  
= 1200MHz to 2200MHz  
= 1200MHz to 2200MHz  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
dB  
LO to IF Leakage  
2RF – LO Output Spurious Product  
2RF1 – LO Output Spurious Product  
2RF2 – LO Output Spurious Product  
(RF1 + RF2) – LO Output Spurious Product  
RF Input Return Loss  
P
= –12dBm (Single Tone), 50MHz f 900MHz  
RF IF  
2-Tone 2nd Order Spurious Outputs  
RF1 = 1147MHz, RF2 = 1153MHz, –15dBm/Tone  
LO = 1650MHz, Spurs at 644MHz, 656MHz and 650MHz  
950MHz to 1350MHz, Z = 50Ω  
1200MHz to 2200MHz, Z = 50Ω  
O
LO Input Return Loss  
dB  
O
IF Output Return Loss  
50MHz to 1050MHz, Z = 50Ω  
10  
dB  
O
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: 450MHz, 900MHz and 2450MHz performance measured with the  
following external RF input matching. 450MHz: C5 = 8.2pF, 5mm away  
from Pin 3 on the 50input line. 900MHz: C5 = 2.2pF at Pin 3. 2450MHz:  
L3 = 3.9nH at Pin 3. See Figure 2.  
Note 3: Specifications over the –40°C to 85°C operating temperature  
range are assured by design, characterization and correlation with  
statistical process controls.  
Note 4: SSB Noise Figure measurements performed with a small-signal noise  
source and bandpass filter on RF input, and no other RF signal applied.  
5522fa  
3
LT5522  
W U  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
Mid-band RF (no external RF matching)  
= 5V, EN = High, T = 25°C, P = –7dBm (–7dBm/tone for 2-tone IIP3 tests, f = 1MHz), P = –5dBm, IF output measured  
V
CC  
A
RF  
LO  
at 140MHz, unless otherwise noted. (Test circuit shown in Figure 2).  
Conv Gain, IIP3 and SSB NF  
Conv Gain, IIP3 and SSB NF  
vs RF Frequency (High Side LO)  
vs RF Frequency (Low Side LO)  
LO Leakage vs LO Frequency  
–30  
23  
21  
19  
17  
15  
13  
11  
9
23  
21  
19  
17  
15  
13  
11  
9
T
f
= 25°C  
= 140MHz  
T
f
= 25°C  
= 140MHz  
A
IF  
A
IF  
IIP3  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
IIP3  
LO-RF  
LO-IF  
SSB NF  
SSB NF  
T
IF  
= 25°C  
= 140MHz  
A
f
7
7
5
5
3
3
G
C
1
1
G
C
–1  
–1  
1300  
1500  
1700  
1900  
2100  
2300  
1300  
1500  
1700  
1900  
2100  
2300  
1100 1300 1500  
1700 1900 2100 2300 2500  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5522 G01  
5522 G02  
5522 G03  
Conv Gain and IIP3  
vs Temperature (RF = 1800MHz)  
Conv Gain, IIP3 and SSB NF  
vs LO Power (RF = 1800MHz)  
Conv Gain and IIP3 vs Supply  
Voltage (RF = 1800MHz)  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
LOW SIDE LO  
IIP3  
IIP3  
IIP3  
HIGH SIDE LO  
SSB NF  
25°C  
85°C  
–40°C  
25°C  
f
f
= 1660MHz  
= 140MHz  
85°C  
LO  
IF  
–40°C  
f
f
= 1660MHz  
LO  
IF  
6
6
6
= 140MHz  
4
4
4
G
G
C
C
LOW SIDE LO  
HIGH SIDE LO  
2
2
2
G
C
0
0
0
f
= 140MHz  
–25  
IF  
–2  
–2  
–2  
–50  
0
25  
50  
75  
100  
–11  
–7  
–5  
–3  
–1  
1
–9  
4.5  
5
5.25  
5.5  
4.75  
TEMPERATURE (°C)  
LO INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
5522 G04  
5522 G05  
5522 G06  
Conv Gain and IIP3  
vs Temperature (RF = 2100MHz)  
Conv Gain, IIP3 and SSB NF  
vs LO Power (RF = 2100MHz)  
IF OUT, 2 × 2 and 3 × 3 Spurs  
vs RF Input Power (Single Tone)  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
10  
0
IF OUT  
LOW SIDE LO  
HIGH SIDE LO  
IIP3  
(RF = 1900MHz)  
IIP3  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
SSB NF  
25°C  
3RF-3LO  
85°C  
–40°C  
(RF = 1806.67MHz)  
f
f
= 1960MHz  
= 140MHz  
LO  
IF  
6
6
2RF-2LO  
(RF = 1830MHz)  
4
4
G
LOW SIDE LO  
HIGH SIDE LO  
G
C
C
2
2
T
= 25°C  
A
f
f
= 1760MHz  
LO  
IF  
0
0
= 140MHz  
f
IF  
= 140MHz  
–25  
–2  
–2  
–50  
0
25  
50  
75  
100  
–11  
–7  
–5  
–3  
–1  
1
–9  
–21 –18 –15 –12 –9 –6 –3  
0
3
6
9
TEMPERATURE (°C)  
LO INPUT POWER (dBm)  
RF INPUT POWER (dBm)  
5522 G07  
5522 G08  
5522 G09  
5522fa  
4
LT5522  
W U  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
Low-band RF (C5 = 2.2pF) and high-band RF  
(L3 = 3.9nH) V = 5V, EN = High, T = 25°C, P = –7dBm (–7dBm/tone for 2-tone IIP3 tests, f = 1MHz), P = –5dBm, IF output  
CC  
A
RF  
LO  
measured at 140MHz, unless otherwise noted. (Test circuit shown in Figure 2).  
Low Band Conv Gain, IIP3 and  
SSB NF vs RF Frequency  
Low Band Conv Gain and IIP3  
vs Temperature (RF = 900MHz)  
Low Band IF OUT, 2 × 2 and 3 × 3  
Spurs vs RF Input Power (Single Tone)  
10  
0
18  
16  
14  
12  
10  
8
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
17  
15  
13  
11  
9
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
LOW SIDE LO  
HIGH SIDE LO  
IF OUT  
(RF = 900MHz)  
HIGH SIDE LO  
LOW SIDE LO  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
IIP3  
IIP3  
T
IF  
= 25°C  
= 140MHz  
A
f
7
3RF-3LO  
(RF = 806.67MHz)  
SSB NF  
6
5
HIGH SIDE LO  
LOW SIDE LO  
2RF-2LO  
(RF = 830MHz)  
4
3
G
C
LOW SIDE LO  
HIGH SIDE LO  
2
1
T
LO  
= 25°C  
A
0
–1  
G
C
f
= 760MHz  
f
= 140MHz  
–25  
IF  
–2  
600  
6
–3  
–50  
6
100  
–18 –15 –12 –9 –6 –3  
0
3
6
9
12  
700  
900 1000 1100 1200  
25  
50  
75  
800  
0
RF FREQUENCY (MHz)  
TEMPERATURE (°C)  
RF INPUT POWER (dBm)  
5522 G12  
5522 G10  
5522 G11  
LO Leakage vs LO Frequency  
(Low Band RF Match)  
Low Band Conv Gain and IIP3 vs  
Supply Voltage (RF = 900MHz)  
Low Band Conv Gain, IIP3 and SSB  
NF vs LO Power (RF = 900MHz)  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
17  
15  
13  
11  
9
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
17  
15  
13  
11  
9
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
T
f
= 25°C  
A
IF  
P
= 140MHz  
= –5dBm  
IIP3  
IIP3  
LO  
LO-IF  
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
7
7
f
f
= 760MHz  
LO  
IF  
f
f
= 760MHz  
= 140MHz  
LO  
IF  
5
5
LO-RF  
SSB NF  
= 140MHz  
3
3
G
C
G
C
1
1
–1  
–1  
–3  
–3  
6
6
5.5  
400  
600  
800  
1000  
1200  
1400  
–11  
–9  
–5  
–3  
–1  
1
4.5  
4.75  
5
5.25  
–7  
LO FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
5522 G14  
5522 G13  
5522 G15  
High Band Conv Gain, IIP3, SSB NF  
and LO Leakage vs RF Frequency  
High Band Conv Gain and IIP3 vs  
Temperature (RF = 2450MHz)  
High Band Conv Gain, IIP3 and SSB  
NF vs LO Power (RF = 2450MHz)  
20  
18  
16  
14  
12  
10  
8
0
17  
15  
13  
11  
9
18  
16  
14  
12  
10  
8
20  
IIP3  
IIP3  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
IIP3  
SSB NF  
LO-IF  
SSB NF  
LO-RF  
f
f
= 2310MHz  
LO  
IF  
7
25°C  
85°C  
= 140MHz  
5
6
6
–40°C  
3
4
f
f
= 2310MHz  
= 140MHz  
T
f
= 25°C  
4
LO  
IF  
A
IF  
G
C
= 140MHz  
1
2
G
C
2
LOW SIDE LO  
G
C
–1  
0
0
–2  
–3  
–2  
2200  
2300  
2500  
RF FREQUENCY (MHz)  
2600  
2700  
2400  
–50 –25  
25  
50  
75  
100  
0
–11  
–9  
–5  
–3  
–1  
1
–7  
TEMPERATURE (°C)  
LO INPUT POWER (dBm)  
5522 G16  
5522 G17  
5522 G18  
5522fa  
5
LT5522  
W U  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
CATV infrastructure downmixer  
= 5V, EN = High, T = 25°C, P = 1150MHz at –12dBm (–12dBm/tone for 2-tone IIP3 tests, f = 1MHz), LO swept from 1200MHz to  
V
CC  
A
RF  
2200MHz, P = –5dBm, IF output measured from 50MHz to 1050MHz, unless otherwise noted. (Test circuit shown in Figure 3)  
LO  
Conv Gain, IIP3 and SSB NF  
vs IF Output Frequency  
2RF-LO Spur vs IF Output  
Frequency (P = –12dBm)  
LO Leakage vs LO Frequency  
RF  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
–2  
–4  
–50  
–55  
–10  
–20  
T
= 25°C  
LO  
A
P
= –5dBm  
IIP3  
85°C  
P
LO  
= –8, –5 AND –2dBm  
–60  
–65  
–30  
–40  
SSB NF  
25°C  
25°C  
85°C  
–40°C  
LO-RF  
–70  
–75  
–80  
–50  
–60  
–70  
f
= 1150MHz  
LO  
RF  
–40°C  
P
= –5dBm  
G
C
LO-IF  
50  
250  
450  
650  
850  
1050  
50  
250  
450  
650  
850  
1050  
1200 1400  
1600  
1800  
2000  
2200  
IF OUTPUT FREQUENCY (MHz)  
IF OUTPUT FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5522 G19  
5522 G20  
5522 G21  
Conv Gain, IIP3 and SSB NF  
vs LO Power (IF = 500MHz)  
Conv Gain, IIP3 and SSB NF  
vs Temperature (IF = 500MHz)  
25  
23  
21  
19  
17  
15  
13  
11  
9
7
5
3
1
23  
IIP3  
21  
19  
17  
15  
13  
11  
9
7
5
3
1
IIP3  
SSB NF  
SSB NF  
25°C  
85°C  
–40°C  
f
P
f
= 1650MHz  
= –5dBm  
LO  
LO  
RF  
= 1150MHz  
f
f
= 1650MHz  
= 1150MHz  
LO  
RF  
G
G
C
C
–1  
–3  
–1  
–3  
–11  
–9  
–7  
–5  
–3  
–1  
1
0
25  
–50  
–25  
50  
75  
100  
LO INPUT POWER (dBm)  
TEMPERATURE (°C)  
5522 G22  
5522 G23  
IF Output Power and Spurious Products  
vs RF Input Power (Single Tone)  
IF Output Power, IM3 and IM5  
vs RF Input Power (Two Input Tones)  
10  
0
10  
0
T
= 25°C  
A
IF OUT  
(500MHz)  
f
LO  
f
RF  
= 1650MHz  
= 1150MHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
IF OUT  
T
= 25°C  
A
f
LO  
f
RF  
= 1650MHz  
= 1150MHz  
2RF-2LO  
IM3  
IM5  
(1000MHz)  
2RF-LO  
(650MHz)  
3RF-2LO  
(150MHz)  
–21  
–13 –9  
–5  
–1  
3
7
–21  
–15 –12 –9 –6 –3  
–18  
0
3
–17  
RF INPUT POWER (dBm)  
RF INPUT POWER (dBm/TONE)  
5522 G24  
5522 G25  
5522fa  
6
LT5522  
W U  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
450MHz Application (C5 = 8.2pF, 5mm away  
from Pin 3) V = 5V, EN = High, T = 25°C, P = –7dBm (–7dBm/tone for 2-tone IIP3 tests, f = 1MHz), P = –5dBm, IF output  
CC  
A
RF  
LO  
measured at 140MHz, unless otherwise noted. (Test circuit shown in Figure 2)  
Single Tone IF Output Power and  
Conv Gain vs RF Input Power  
(RF = 450MHz)  
Conv Gain, IIP3 and SSB NF  
Conv Gain, IIP3 and SSB NF  
vs RF Frequency (High Side LO)  
vs LO Input Power (RF = 450MHz)  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
–2  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
–2  
10  
7
IIP3  
IIP3  
IF  
OUT  
4
SSB NF  
SSB NF  
1
25°C  
85°C  
–40°C  
G
C
–2  
–5  
–8  
–11  
–14  
HIGH SIDE LO  
T
IF  
= 25°C  
= 140MHz  
A
HIGH SIDE LO  
f
T
f
= 25°C  
= 140MHz  
A
IF  
HIGH SIDE LO  
G
C
G
T
f
= 25°C  
= 140MHz  
C
A
IF  
–4  
–4  
–12 –9 –6 –3  
0
3
6
9
12  
–11  
–7  
–5  
–3  
–1  
1
350 370 390 410 430 450 470 490 510 530 550  
RF INPUT FREQUENCY (MHz)  
5522 G26  
–9  
RF INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5522 G28  
5522 G27  
W U  
TYPICAL DC PERFOR A CE CHARACTERISTICS  
(Test circuit shown in Figure 2)  
Supply Current vs Supply Voltage  
Shutdown Current vs Supply Voltage  
100  
10  
1
57.0  
56.5  
56.0  
55.5  
55.0  
54.5  
54.0  
53.5  
53.0  
85°C  
25°C  
25°C  
–40°C  
85°C  
–40°C  
0.1  
4.5  
4.75  
5
5.25  
5.5  
5
4.5  
4.75  
5.25  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
5522 G30  
5522 G29  
5522fa  
7
LT5522  
U
U
U
PI FU CTIO S  
NC(Pins 1, 4, 8, 13, 16): Not Connected Internally. These  
pinsshouldbegroundedonthecircuitboardforimproved  
LO to RF and LO to IF isolation.  
RF+, RF(Pins 2, 3): Differential Inputs for the RF Signal.  
The RF input signal should be applied to the RFpin (Pin  
3) and the RF+ pin (Pin 2) must be connected to ground.  
ThesepinsaretheprimarysideoftheRFinputbalunwhich  
has low DC resistance. If the RF source is not DC blocked,  
then a series blocking capacitor must be used.  
externally connected to the VCC1 pin and decoupled with  
0.01µF and 3.3µF capacitors.  
GND (Pins 9, 12): Ground. These pins are internally  
connected to the backside ground for improved isolation.  
They should be connected to RF ground on the circuit  
board, although they are not intended to replace the  
primary grounding through the backside contact of the  
package.  
IF, IF+ (Pins 10, 11): Differential Outputs for the IF  
Signal. An impedance transformation may be required to  
match the outputs. These pins must be connected to VCC  
through impedance matching inductors, RF chokes or a  
transformer center-tap.  
LO, LO+ (Pins 14, 15): Differential Inputs for the Local  
Oscillator Signal. The LO input can also be driven single  
ended by connecting one input to ground. These pins are  
internally matched for 50single-ended operation. If the  
LO source is not AC-coupled, then a series blocking  
capacitor must be used.  
EN (Pin 5): Enable Pin. When the input enable voltage is  
higher than 3V, the mixer circuits supplied through Pins 6,  
7, 10 and 11 are enabled. When the input enable voltage is  
lessthan0.3V,allcircuitsaredisabled.TypicalinputENpin  
current is 55µA for EN = 5V and 0µA when EN = 0V. The EN  
pin should not be left floating. Under no conditions should  
the EN pin voltage exceed VCC + 0.3V, even at start-up.  
VCC1 (Pin 6): Power Supply Pin for the LO Buffer Circuits.  
Typical current consumption is 22mA. This pin should be  
externally connected to the VCC2 pin and decoupled with  
0.01µF and 3.3µF capacitors.  
Exposed Pad (Pin 17): Circuit Ground Return for the  
EntireIC.Thismustbesolderedtotheprintedcircuitboard  
ground plane.  
VCC2 (Pin 7): Power Supply Pin for the Bias Circuits.  
Typical current consumption is 4mA. This pin should be  
W
BLOCK DIAGRA  
DOUBLE BALANCED  
MIXER  
GND  
12  
11  
+
+
IF  
RF  
2
LINEAR  
AMPLIFIER  
IF  
RF  
3
10  
9
GND  
LIMITER  
HIGH SPEED  
LO BUFFER  
+
LO  
15  
LO  
14  
BIAS  
EN  
5
EXPOSED  
PAD  
V
V
CC2  
CC1  
6
17  
7
5522 BD  
5522fa  
8
LT5522  
TEST CIRCUITS  
LO IN  
400MHz TO  
2700MHz  
RF  
0.018  
0.018  
GND  
0.062  
ε
= 4.4  
T1  
R
16  
15  
+
14  
13  
NC  
BIAS  
GND  
1
2
3
4
12  
11  
10  
9
NC LO LO  
NC  
GND  
L1  
L2  
3
2
1
4
+
+
RF  
RF  
IF  
C3  
C4  
LT5522  
RF IN  
400MHz TO  
2700MHz  
5
IF OUT  
140MHz  
IF  
L3  
(HIGH  
BAND)  
C5  
(LOW  
BAND)  
OR  
NC  
GND  
OPTIONAL  
SHUNT REACTANCE  
USED FOR LOW BAND  
OR HIGH BAND RF  
MATCH ONLY  
EN  
V
V
NC  
CC1 CC2  
5
6
7
8
EN  
V
CC  
C1  
C2  
GND  
5522 F02  
REF DES  
C1  
VALUE  
0.01µF  
3.3µF  
SIZE  
0402  
1206  
0402  
0402  
PART NUMBER  
REF DES  
L1, L2  
T1  
VALUE  
82nH  
4:1  
SIZE  
PART NUMBER  
Coilcraft 0603CS-82NX  
M/A-Com ETC4-1-2 (2-800MHz)  
Murata GRP155R71C103K  
Taiyo Yuden LMK316BJ475ML  
Murata GRP1555C1H101J  
Murata GRP1555C1H1R5C  
0603  
C2  
C3  
100pF  
1.5pF  
C5  
2.2pF  
3.9nH  
0402  
0402  
Murata GRP1555C1H1R5C (For Low Band Operation Only)  
Coilcraft 0402CS-3N9X (For High Band Operation Only)  
C4  
L3  
Figure 2. Test Schematic for Downmixer Application (140MHz IF) (DC689A)  
LO IN  
1200MHz TO  
2200MHz  
16  
15  
+
14  
13  
NC  
1
2
3
4
12  
11  
NC LO LO  
NC  
GND  
T1  
C6  
C7  
L1  
L2  
4
5
3
+
IF  
+
RF  
RF  
C3  
2
LT5522  
RF IN  
1150MHz  
(TYP)  
IF OUT  
50MHz TO  
1000MHz  
1
10  
9
IF  
C5  
NC  
GND  
EN  
V
V
NC  
CC1 CC2  
5
6
7
8
EN  
V
CC  
C1  
C2  
GND  
5522 F03  
REF DES  
C1  
VALUE  
0.01µF  
3.3µF  
SIZE  
0402  
1206  
0402  
PART NUMBER  
REF DES  
C5  
VALUE  
1.5pF  
18nH  
4:1  
SIZE  
PART NUMBER  
Murata GRP155R71C103K  
Taiyo Yuden LMK316BJ475ML  
Murata GRP155R71H331K  
Murata GRP1555C1H1R5C  
Toko LL1005-FH18NJ  
C2  
L1, L2  
T1  
0402  
C3, C6, C7  
330pF  
M/A-Com MABAES0054 (5-1000MHz)  
Figure 3. Test Schematic for CATV Infrastructure Downmixer Application (50MHz to 1000MHz IF) (DC651A)  
5522fa  
9
LT5522  
W U U  
U
APPLICATIO S I FOR ATIO  
Introduction  
RF Input Port  
The LT5522 consists of a high linearity double-balanced  
mixer, RF buffer amplifier, high speed limiting LO buffer  
amplifier and bias/enable circuits. The IC has been opti-  
mizedfordownconverterapplicationswheretheRFinput  
signalisinthe400MHzto2.7GHzrangeandtheLOsignal  
isinthe400MHzto2.7GHzrange. Operationoverawider  
RF input frequency range is possible with reduced  
performance.  
The mixer’s RF input, shown in Figure 4, consists of an  
integrated balun and a high linearity differential amplifier.  
The primary terminals of the balun are connected to the  
RF+ andRFpins(Pins2and3, respectively). Thesecond-  
arysideofthebalunisinternallyconnectedtotheamplifier’s  
differential inputs. For single-ended operation, the RF+ pin  
is grounded and the RFpin becomes the RF input. It is  
also possible to ground the RFpin and drive the RF+ pin,  
although the LO to RF isolation will degrade slightly.  
The IF output can be matched for IF frequencies as low as  
100kHz or as high as 1GHz. The RF, LO and IF ports are all  
differential, although the RF and LO ports are internally  
matched for single-ended drive as shown in Figure 2. The  
LT5522ischaracterizedandproduction-testedwithsingle-  
ended RF and LO drive. Low side or high side LO injection  
can be used.  
The RF source must be AC-coupled since one terminal of  
the balun’s primary is grounded. If the RF source has DC  
voltage present, then a coupling capacitor must be used in  
series with the RF input pin.  
As shown in Figure 5, the RF input return loss, with no  
external matching, is greater than 10dB from 1.2GHz to  
2.4GHz. The RF input match can be shifted down in  
frequencybyaddingashuntcapacitorattheRFinput. Two  
examples are plotted in Figure 5. A 2.2pF capacitor,  
located near Pin 3, produces a 900MHz match. An 8.2pF  
capacitor, located5mmawayfromPin3(onthe50line),  
produces a 450MHz match. The RF input match can also  
be shifted up in frequency by adding a shunt inductor near  
Pin 3. One example is plotted in Figure 5, where a 3.9nH  
inductor produces a 2.3GHz to 2.8GHz match.  
Two evaluation boards are available. The standard board  
is intended for most applications, including cellular, PCS,  
UMTS and 2.4GHz. A schematic is shown in Figure 2 and  
the board layout is shown in Figure 18. The 140MHz IF  
output frequency on the standard board is easily changed  
bymodifyingtheIFmatchingelements.Thesecondboard,  
intended for CATV applications, incorporates a wideband  
IF output balun. The CATV evaluation schematic is shown  
in Figure 3 and the board layout is shown in Figure 19.  
0
LT5522  
L3 = 3.9nH  
(HIGH BAND)  
–5  
–10  
–15  
–20  
–25  
–30  
+
RF  
2
TO  
MIXER  
RF IN  
RF  
3
C5  
C5 = 8.2pF  
L = 5mm  
(450MHz)  
OPTIONAL SHUNT  
REACTANCE  
C5 = 2.2pF  
(900MHz)  
NO EXTERNAL  
MATCH  
FOR LOW BAND  
5522 F04  
OR HIGH BAND  
MATCHING (C5 OR L3)  
2.2  
3.2  
3.7  
0.2 0.7  
1.2 1.7  
2.7  
RF FREQUENCY(GHz)  
5522 F05  
Figure 4. RF Input Schematic  
Figure 5. RF Input Return Loss  
5522fa  
10  
LT5522  
W U U  
APPLICATIO S I FOR ATIO  
U
0
RF input impedance and S11 versus frequency are shown  
in Table 1. The listed data is referenced to the RFpin with  
the RF+ pin grounded (no external matching). This infor-  
mation can be used to simulate board-level interfacing to  
an input filter, or to design a broadband input matching  
network.  
–5  
–10  
–15  
–20  
–25  
A broadband RF input match is easily realized using the  
shunt inductor/series capacitor network shown in Fig-  
ure 6. This network provides good return loss at low and  
high frequencies simultaneously, with reasonable  
midband return loss. As shown in Figure 7, the RF input  
return loss is greater than 12dB from 715MHz to 2.3GHz  
using the element values shown in Figure 6. The input  
match is optimum at 850MHz and 1900MHz, ideal for tri-  
band GSM applications.  
5E9  
1E8  
1E9  
RF FREQUENCY (Hz)  
5522 F07  
Figure 7. RF Input Return Loss  
Using Wideband Matching Network  
LO Input Port  
Table 1. RF Port Input Impedance vs Frequency  
S11  
The LO buffer amplifier consists of high speed limiting  
differentialamplifiers,designedtodrivethemixerquadfor  
high linearity. The LO+ and LOpins are designed for  
single-ended drive, although differential drive can be used  
if a differential LO source is available. A schematic is  
shown in Figure 8. Measured return loss is shown in  
Figure 9.  
FREQUENCY  
(MHZ)  
INPUT  
IMPEDANCE  
MAG  
0.660  
0.507  
0.454  
0.407  
0.353  
0.285  
0.199  
0.096  
0.023  
0.143  
0.259  
0.360  
0.440  
0.525  
ANGLE  
173.5  
129.5  
118.7  
111.1  
104.4  
98.2  
50  
10.4 + j2.6  
19.5 + j20.6  
24.1 + j24.2  
28.6 + j26.1  
33.7 + j26.2  
39.5 + j24.3  
45.6 + j18.9  
50.2 + j9.7  
50.5 – j2.2  
45.6 – j13.2  
38.0 – j19.9  
30.4 – j22.8  
24.5 – j23.0  
18.7 – j20.9  
500  
700  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
2700  
3000  
The LO source must be AC-coupled to avoid forward  
biasing the ESD diodes. If the LO source has DC voltage  
present, then a coupling capacitor must be used in series  
with the LO input pin.  
92.0  
83.0  
–76.0  
–100.7  
–108.3  
–114.8  
–120.7  
–129.4  
LO input impedance and S11 versus frequency are shown  
in Table 2. The listed data is referenced to the LO+ pin with  
the LOpin grounded.  
LT5522  
15pF  
LO  
LT5522  
14  
+
RF  
RF  
TO  
MIXER  
480Ω  
15pF  
2
3
+
LO  
LO IN  
RFIN  
15  
C5  
3.3pF  
L3  
10nH  
5522 F06  
5522 F08  
Figure 6. Wideband RF Input Matching  
Figure 8. LO Input Schematic  
5522fa  
11  
LT5522  
W U U  
U
APPLICATIO S I FOR ATIO  
0
For IF frequencies below 140MHz, an 8:1 transformer  
connected across the IF pins will perform impedance  
transformation and provide a single-ended 50output.  
No other matching is required. Measured performance  
using this technique is shown in Figure 12. Output return  
loss is shown in Figure 13.  
–5  
–10  
–15  
–20  
–25  
–30  
+
15mA  
L1  
LT5522  
IF  
4:1  
IF OUT  
11  
460Ω  
0.5pF  
1E8  
1E9  
5E9  
C4  
L2  
V
CC  
LO FREQUENCY (Hz)  
5522 F09  
10  
Figure 9. LO Input Return Loss  
Table 2. LO Port Input Impedance vs Frequency  
V
IF  
CC  
15mA  
5522 F10  
Figure 10. IF Output with External Matching  
S11  
FREQUENCY  
(MHZ)  
INPUT  
IMPEDANCE  
MAG  
0.763  
0.505  
0.286  
0.163  
0.197  
0.234  
0.240  
0.223  
ANGLE  
–14.3  
+
LT5522  
100  
250  
200.5 – j181.0  
55.9 – j61.6  
44.6 – j27.7  
37.9 – j7.8  
33.6 – j1.8  
31.0 – j0.3  
30.6 – j0.4  
31.8 – j1.0  
IF  
0.7nH  
0.7nH  
11  
–54.4  
R
S
500  
–84.8  
1pF  
400Ω  
1000  
1500  
2000  
2500  
3000  
–142.1  
–172.3  
–178.9  
–178.4  
–176.0  
10  
IF  
5522 F11  
Figure 11. IF Output Small-Signal Model  
8
7
6
5
4
3
2
1
0
24  
22  
20  
18  
16  
14  
12  
10  
8
RF = 900MHz  
RF = 1800MHz  
IF Output Port  
IIP3  
TheIFoutputs, IF+ andIF, areinternallyconnectedtothe  
collectors of the mixer switching transistors (see Fig-  
ure 10). Both pins must be biased at the supply voltage,  
which can be applied through the center-tap of a trans-  
formerorthroughmatchinginductors. EachIFpindraws  
15mA of supply current (30mA total). For optimum  
single-ended performance, these differential outputs  
should be combined externally through an IF trans-  
former. Both evaluation boards include IF transformers  
for impedance transformation and differential to single-  
ended transformation.  
LOW SIDE LO  
P
= –5dBm  
LO  
RF = 1800MHz  
RF = 900MHz  
G
C
–1  
6
0
20  
40  
60  
140  
80 100 120  
IF FREQUENCY (MHz)  
5522 F12  
Figure 12. Typical Conversion Gain and IIP3  
Using an 8:1 IF Transformer  
The IF output impedance can be modeled as 400in  
parallel with 1pF. An equivalent small-signal model (in-  
cluding bondwire inductance) is shown in Figure 11. For  
most applications, the bondwire inductance can be  
ignored.  
5522fa  
12  
LT5522  
W U U  
APPLICATIO S I FOR ATIO  
U
0
Higher linearity and lower LO-IF leakage can be realized by  
using the simple, three element lowpass matching net-  
work shown in Figure 10. Matching elements C4, L1 and  
L2 form a 400to 200lowpass matching network  
which is tuned to the desired IF frequency. The 4:1  
transformer then transforms the 200differential output  
to 50single-ended. The value of C4 is reduced by 1pF to  
account for the equivalent internal capacitance.  
–5  
–10  
–15  
–20  
–25  
For optimum linearity, C4 must be located close to the IF  
pins. Excessive trace length or inductance between the IF  
pinsandC4willincreasetheamplitudeoftheimageoutput  
and reduce voltage swing headroom for the desired IF  
frequency. High Q wire-wound chip inductors (L1 and L2)  
improve the mixer’s conversion gain by a few tenths of a  
dB, but have little effect on linearity.  
1E9  
1E7  
1E8  
IF FREQUENCY (Hz)  
5522 F13  
240MHz MATCH  
LUMPED ELEMENT  
BRIDGE BALUN  
140MHz MATCH  
(82nH/1.5pF)  
4:1 BALUN  
LOW FREQ MATCH  
(NO IF MATCHING)  
8:1 BALUN  
50MHz TO 1000MHz  
(18nH/0pF)  
4:1 CATV BALUN  
This matching network is most suitable for IF frequencies  
of 40MHz or above. Below 40MHz, the value of the series  
inductors (L1 and L2) is high, and could cause stability  
problems, dependingontheinductorvalueandparasitics.  
Therefore,the8:1transformertechniqueisrecommended  
for low IF frequencies.  
Figure 13. Typical IF Output Return Losses  
for Various Matching Techniques  
SAW  
FILTER  
IF  
AMP  
L1  
L2  
+
C3  
IF  
IF  
C4  
Suggested matching network values for several IF fre-  
quencies are listed in Table 3. Measured output return  
losses for the 140MHz match and the wideband CATV  
match are plotted in Figure 13.  
5522 F14  
V
CC  
Table 3. IF Matching Element Values (See Figure 10)  
Figure 14. Bandpass IF Matching for Differential IF Architectures  
IF FREQUENCY  
(MHz)  
L1, L2  
(nH)  
C4  
(pF)  
IF TRANSFORMER  
TC8-1 (8:1)  
account for the mixer’s internal 1pF capacitance and the  
SAW filter’s input capacitance. In this case, the differential  
IFoutputimpedanceis400, sincethebandpassnetwork  
does not transform the impedance.  
2-140  
Short  
220  
82  
4.7  
1.5  
0.5  
70  
ETC4-1-2 (4:1)  
140  
240  
56  
380  
39  
For low cost applications, it is possible to replace the IF  
transformer with a lumped-element network which pro-  
duces a single-ended 50output. One approach is shown  
in Figure 15, where L1, L2, C4 and C6 form a narrowband  
bridge balun. The L and C values are calculated to realize  
a 180 degree phase shift at the desired IF frequency using  
the equations listed below. Inductor L4 is calculated to  
cancel the internal 1pF capacitance. L3 also supplies bias  
voltage to the IF+ pin. Low cost multilayer chip inductors  
are adequate for L1 and L2. A high Q wire-wound chip  
50-1000 (CATV)  
18  
MABAES0054 (4:1)  
For fully differential IF architectures, the IF transformer  
can be eliminated. As shown in Figure 14, supply voltage  
to the mixer’s IF pins is applied through matching induc-  
tors in a bandpass IF matching network. The values of L1,  
L2 and C4 are calculated to resonate at the desired IF  
frequencywithaqualityfactorthatsatisfiestherequiredIF  
bandwidth. The L and C values are then adjusted to  
5522fa  
13  
LT5522  
W U U  
U
APPLICATIO S I FOR ATIO  
24  
20  
16  
12  
8
30  
C4  
L1  
4.7pF  
IIP3  
+
100nH  
C7  
IF  
10  
1000pF  
C6  
4.7pF  
L4  
IF OUT  
50  
–10  
–30  
–50  
–70  
–90  
390nH  
SSB NF  
LO-IF  
IF  
C3  
1000pF  
L2  
100nH  
LOW SIDE LO  
= –5dBm  
P
LO  
V
CC  
IF = 240MHz  
= 5VDC  
5522 F15  
V
A
CC  
4
T
= 25°C  
G
C
Figure 15. Narrowband Bridge IF Balun (240MHz Example)  
0
1600  
1800 1900 2000 2100 2200  
RF INPUT FREQUENCY (MHz)  
1700  
inductor is recommended for L4 to preserve conversion  
gain and minimize DC voltage drop to the IF+ pin. C7 is a  
DC blocking capacitor and C3 is a bypass capacitor.  
5522 F16  
Figure 16. Typical Performance Using a  
Narrowband Bridge Balun (Swept RF)  
ZIF • ZOUT  
(ZIF = 400)  
L1,L2 =  
21  
19  
17  
15  
13  
11  
9
10  
ω
0
IIP3  
SSB NF  
LO-IF  
1
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
C4,C6 =  
ω • ZIF • ZOUT  
LOW SIDE LO  
= –5dBm  
The narrowband bridge IF balun delivers good conversion  
gain, linearityandnoisefigureoveralimitedIFbandwidth.  
LO-IF leakage is approximately –32dBm, which is 17dB  
worse than that obtained with a transformer. Typical IF  
output return loss is plotted in Figure 13 for comparison  
with other matching methods. Typical mixer performance  
versus RF input frequency for 240MHz IF matching is  
shown in Figure 16. Typical performance versus IF output  
frequency for the same circuit is shown in Figure 17. The  
results in Figure 17 show that the usable IF bandwidth is  
approximately ±25MHz, assuming tight tolerance match-  
ing components. Contact the factory for application assis-  
tance with this circuit.  
P
LO  
RF = 1900MHz  
= 5VDC  
7
V
A
CC  
5
T
= 25°C  
3
G
C
1
–1  
190 200 210 220 230 240 250 260 270 280 290  
IF OUTPUT FREQUENCY (MHz)  
5522 F17  
Figure 17. Typical Performance Using a  
Narrowband Bridge Balun (Swept IF)  
5522fa  
14  
LT5522  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 ±0.05  
4.35 ± 0.05  
2.90 ± 0.05  
2.15 ± 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 ±0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 ± 0.05  
R = 0.115  
TYP  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
0.55 ± 0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 ± 0.10  
(4-SIDES)  
(UF16) QFN 10-04  
0.30 ± 0.05  
0.65 BSC  
0.200 REF  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5522fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT5522  
W U U  
U
APPLICATIO S I FOR ATIO  
Figure 18. Standard Evaluation Board Layout  
Figure 19. CATV Evaluation Board Layout  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC®1748  
14-Bit, 80Msps, Low Noise ADC  
76.3dB SNR, 90dB SFDR  
LTC2222/LTC2223 12-Bit, 105Msps/80Msps ADC  
Low Power 775MHz BW S/H, 61dB SNR, 75dB SFDR ±0.5V or ±1V Input  
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.5V Supply  
>40dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB Linear Power Gain  
48dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply  
SC70 Package  
LT5504  
LTC5505  
LT5506  
LTC5507  
LTC5508  
LTC5509  
LT5511  
LT5512  
LT5515  
LT5516  
800MHz to 2.7GHz RF Measuring Receiver  
300MHz to 3.5GHz RF Power Detector  
500MHz Quadrature IF Demodulator with VGA  
100kHz to 1GHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
High Signal Level Up Converting Mixer  
High Signal Level Active Mixer  
36dB Dynamic Range, SC70 Package  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
1kHz-3GHz, 20dBm IIP3, Integrated LO Buffer, HF/VHF/UHF Optimized  
1.5GHz to 2.5GHz Direct Conversion Demodulator 20dBm IIP3, Integrated LO Quadrature Generator  
0.8GHz to 1.5GHz Direct Conversion Quadrature 21.5dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
LT5521  
LT5525  
LT5527  
LT5528  
Very High Linearity Up Converting Mixer  
3.7GHz Operation, +24.2dBm IIP3, 12.5dB NF, –42dBm LO Leakage,  
Supply Voltage = 3.15V to 5V  
0.8GHz to 2.5GHz Low Power Down Converting  
Mixer  
On-Chip Transformer for Single-Ended LO and RF Ports, +17.6dBm IIP3,  
Integrated LO Buffer  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
23.5dBm IIP3 at 1.9GHz, NF = 12.5dB, Single-Ended RF and LO Ports  
2GHz High Linearity Direct Quadrature Modulator OIP3 = 21.8dBm, –159dBm/Hz Noise Floor, –66dBc Four Channel ACPR,  
50Single-End RF Output  
LTC5532  
LTC5534  
300MHz to 7GHz Precision RF Power Detector  
50MHz to 3GHz Log-Linear RF Power Detector  
Precision V  
Offset Control, Adjustable Gain and Offset Voltage  
OUT  
60dB Dynamic Range, Superb Temperature Stability, Tiny 2mm × 2mm SC70  
Package, Low Power Consumption  
5522fa  
LT 1105 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT5522EUF#TR

LT5522 - 600MHz to 2.7GHz High Signal Level Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5524

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5524EFE

Low Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain
Linear

LT5524EFE#PBF

暂无描述
Linear

LT5525

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5525EUF

High Linearity, Low Power Downconverting Mixer
Linear

LT5525EUF#PBF

LT5525 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5525EUF#TR

LT5525 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5525EUF#TRPBF

LT5525 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5526

High Linearity, Low Power Downconverting Mixer
Linear

LT5526EUF

High Linearity, Low Power Downconverting Mixer
Linear

LT5526EUF#PBF

LT5526 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear