LT5521EUF [Linear]

Very High Linearity Active Mixer; 极高的线性度有源混频器
LT5521EUF
型号: LT5521EUF
厂家: Linear    Linear
描述:

Very High Linearity Active Mixer
极高的线性度有源混频器

电信集成电路 蜂窝电话电路 电信电路
文件: 总16页 (文件大小:270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5521  
Very High Linearity  
Active Mixer  
U
FEATURES  
DESCRIPTIO  
The LT®5521 is a very high linearity mixer optimized for  
low distortion and low LO leakage applications. The chip  
includes a high speed LO buffer with single-ended input  
and a double-balanced active mixer. The LT5521 requires  
only –5dBm LO input power to achieve excellent distor-  
tion and noise performance, while reducing external drive  
circuit requirements. The LO buffer is internally 50Ω  
matched for wideband operation.  
Wideband Output Frequency Range to 3.7GHz  
+24.2dBm IIP3 at 1.95GHz RF Output  
Low LO Leakage: –42dBm  
Integrated LO Buffer: Low LO Drive Level  
Single-Ended LO Drive  
Wide Single Supply Range: 3.15V to 5.25V  
Double-Balanced Active Mixer  
Shutdown Function  
16-Lead (4mm × 4mm) QFN Package  
With a 250MHz input, a 1.7GHz LO and a 1.95GHz output  
frequency, the mixer has a typical IIP3 of +24.2dBm,  
–0.5dB conversion gain and a 12.5dB noise figure.  
U
APPLICATIO S  
The LT5521 offers exceptional LO-RF isolation, greatly  
reducing the need for output filtering to meet LO suppres-  
sion requirements.  
Cellular, W-CDMA, PHS and UMTS Infrastructure  
Cable Downlink Infrastructure  
Wireless Infrastructure  
Fixed Wireless Access Equipment  
Thedeviceisdesignedtoworkoverasupplyvoltagerange  
from 3.15V to 5.25V.  
High Linearity Mixer Applications  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Fundamental, 3rd Order  
Intermodulation Distortion  
vs Input Power  
LO INPUT  
–5dBm  
6.8pF  
20  
0
LO  
GND  
110  
4:1  
82pF  
82pF  
P
FUND  
BPF  
1nF  
2.7nH  
2.7nH  
+
+
IN  
OUT  
OUT  
IF  
INPUT  
–20  
–40  
1:1  
6.8pF  
BPF  
10pF  
1nF  
IN  
RF  
OUTPUT  
PA  
IM3  
110Ω  
–60  
–80  
BIAS  
EN  
f
f
f
= 250MHz  
1nF  
5V DC  
IF  
= 1.7GHz  
LO  
RF  
V
V
V
CC CC CC  
= 1.95GHz  
= –5dBm  
P
A
LO  
= 25°C  
T
1µF  
–100  
–14 –12 –10 –8 –6 –4 –2  
(dBm)  
0
2
4
6
5521 TA01  
P
IN  
5521 TA02  
5521f  
1
LT5521  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
Power Supply Voltage ........................................... 5.5V  
Enable Voltage ............................... –0.2V to VCC + 0.2V  
LO Input Power ................................................ +10dBm  
LO Input DC Voltage ..................................... 0V to 1.5V  
IF Input Power ................................................. +10dBm  
Difference Voltage Across Output Pins ................ ±1.5V  
Maximum Pin 2 or Pin 3 Current ......................... 34mA  
Operating Ambient Temperature Range.. – 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Maximum Junction Temperature .......................... 125°C  
ORDER PART  
TOP VIEW  
NUMBER  
16 15 14 13  
LT5521EUF  
+
GND  
1
2
3
4
12 OUT  
11 GND  
+
IN  
17  
IN  
GND  
10  
9
GND  
OUT  
UF PART  
MARKING  
5
6
7
8
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
5521  
TJMAX = 125°C, θJA = 37°C/W  
EXPOSED PAD (PIN 17) IS GND  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
VCC = 5V, EN = 2.9V, TA = 25°C unless otherwise noted.  
DC ELECTRICAL CHARACTERISTICS  
Test circuit shown in Figure 1. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
98  
UNITS  
V
Supply Voltage  
3.15  
Supply Current  
82  
20  
mA  
µA  
Shutdown Current  
Enable (EN) Low = Off, High = On  
Enable Mode  
EN = 0.2V  
100  
EN = High  
EN = Low  
EN = 5V  
2.9  
V
V
Disable Mode  
0.2  
Enable Current  
137  
0.1  
µA  
µA  
ns  
ns  
V
Shutdown Enable Current  
Turn-On Time (Note 3)  
Turn-Off Time (Note 4)  
LO Voltage (Pin 15)  
Input Voltage (Pins 2, 3)  
EN = 0.2V  
200  
200  
0.96  
Internally Biased  
V
V
= 5V, Internally Biased  
= 3.3V, Internally Biased  
2.20  
0.46  
V
V
CC  
CC  
VCC = 5V, EN = 2.9V, TA = 25°C unless otherwise noted.  
AC ELECTRICAL CHARACTERISTICS  
Test circuit shown in Figure 1. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
10 to 4000  
10 to 3000  
10 to 3700  
–5  
MAX  
UNITS  
MHz  
MHz  
MHz  
dBm  
dB  
LO Frequency Range  
Input Frequency Range  
Output Frequency Range  
LO Input Power  
1
LO Return Loss  
Z = 50, f = 1700MHz  
12  
O
LO  
Output Return Loss  
Input Return Loss (Pins 2, 3)  
Requires Matching  
Requires Matching  
12  
dB  
15  
dB  
5521f  
2
LT5521  
VCC = 5V, EN = 2.9V, fIF = 250MHz, PIF = –7dBm, fLO = 1700MHz,  
AC ELECTRICAL CHARACTERISTICS  
PLO = –5dBm, fRF = 1950MHz, TA = 25°C. Test circuit shown in Figure 1.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–0.5  
MAX  
UNITS  
dB  
Conversion Gain  
Conversion Gain Variation vs Temperature  
Input P1dB  
–0.009  
+10  
dB/°C  
dBm  
dB  
Single-Side Band Noise Figure  
IIP3  
12.5  
Two Tones, f = 5MHz, P = –7dBm/Tone  
+24.2  
+49  
dBm  
dBm  
IF  
IF  
IIP2 (Note 6)  
Two Tones, f = 5MHz, P = –7dBm/Tone,  
IF IF  
f
+ f + f  
IF1 IF2  
LO  
LO-RF Leakage  
LO-IF Leakage  
–42  
–40  
dBm  
dBm  
VCC = 5V, EN = 2.9V, fIF = 44MHz, PIF = –7dBm, fLO = 1001MHz, PLO = –5dBm, fRF = 1045MHz, TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–0.5  
MAX  
UNITS  
dB  
Conversion Gain  
Conversion Gain Variation vs Temperature  
Input P1dB  
–0.012  
+10  
dB/°C  
dBm  
dB  
Single-Side Band Noise Figure  
IIP3  
12.8  
Two Tones, f = 5MHz, P = –7dBm/Tone  
+24.5  
+49  
dBm  
dBm  
IF  
IF  
IIP2 (Note 6)  
Two Tones, f = 5MHz, P = –7dBm/Tone,  
IF IF  
f
+ f + f  
IF1 IF2  
LO  
LO-RF Leakage  
LO-IF Leakage  
–38  
–59  
dBm  
dBm  
VCC = 3.3V, EN = 2.9V, fIF = 250MHz, PIF = –7dBm, fLO = 1700MHz, PLO = –5dBm, fRF = 1950MHz, TA = 25°C. (Note 5)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–0.5  
MAX  
UNITS  
dB  
Conversion Gain  
Conversion Gain Variation vs Temperature  
Input P1dB  
–0.013  
+11  
dB/°C  
dBm  
dB  
Single-Side Band Noise Figure  
IIP3  
13.5  
Two Tones, f = 5MHz, P = –7dBm/Tone  
+25.8  
+50  
dBm  
dBm  
IF  
IF  
IIP2 (Note 6)  
Two Tones, f = 5MHz, P = –7dBm/Tone,  
IF IF  
f
+ f + f  
IF1 IF2  
LO  
LO-RF Leakage  
LO-IF Leakage  
–36  
–60  
dBm  
dBm  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Interval from the falling edge of the Enable signal to a 20dB drop  
in the RF output power.  
Note 2: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Note 5: R1 = R7 = 22.6, Z1 = Z7 = 100nH.  
Note 6: Second harmonic distortion measured at f + f + f .  
IF2  
LO  
IF1  
Note 3: Interval from the rising edge of the Enable input to the time when  
the RF output is within 1dB of its steady-state output.  
5521f  
3
LT5521  
TYPICAL DC PERFOR A CE CHARACTERISTICS  
W U  
Test circuit shown in Figure 1.  
Supply Current vs Supply Voltage  
(5V Application)  
Supply Current vs Supply Voltage  
(3.3V Application)  
110  
100  
90  
100  
95  
85°C  
25°C  
85°C  
25°C  
90  
85  
80  
80  
75  
–40°C  
70  
–40°C  
70  
65  
60  
60  
50  
3.4  
3.1  
3.2  
3.3  
(V)  
3.5  
4.8  
4.9  
5.1  
4.7  
5.2  
5.3  
5.0  
(V)  
V
V
CC  
CC  
5521 G02  
5521 G01  
W U  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
fLO = 1700MHz, fIF = 250MHz, fRF = 1950MHz, PLO = –5dBm, VCC = 5V, EN = 2.9V, TA = 25°C, unless otherwise noted. Test circuit  
shown in Figure 1 is tuned for 1.95GHz output frequency and VCC = 5V.  
Fundamental, 2nd and 3rd Order  
Conversion Gain and IIP3  
vs RF Frequency  
Intermodulation Distortion  
vs Input Power  
Conversion Gain vs Input Power  
20  
0
10  
8
25  
24  
23  
1.0  
0.5  
85°C  
25°C  
P
FUND  
–40°C  
–40°C  
IIP3  
6
0
IM3  
IM2  
–20  
–40  
25°C  
85°C  
4
2
22  
21  
20  
19  
18  
–0.5  
–1.0  
–1.5  
–2.0  
85°C  
25°C  
–40°C  
G
C
–60  
–80  
0
IM2  
IM3  
–2  
–4  
–100  
–2.5  
1850  
1950  
(MHz)  
2150  
1750  
2050  
–14 –12 –10 –8 –6 –4 –2  
(dBm)  
0
2
4
6
–15 –10 –5  
0
15  
–25 –20  
5
10  
P
RF  
OUT  
IN  
P
(dBm)  
IN  
5521 G05  
5521 G03  
5521 G04  
5521f  
4
LT5521  
W U  
fLO = 1700MHz, fIF = 250MHz, fRF = 1950MHz,  
PLO = –5dBm, VCC = 5V, EN = 2.9V, TA = 25°C, unless otherwise noted. Test circuit shown in Figure 1 is tuned for 1.95GHz output  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
frequency and VCC = 5V.  
Conversion Gain, IIP3 and Noise  
Figure vs Supply Voltage  
Conversion Gain and IIP3  
vs LO Power  
LO-RF Leakage vs LO Frequency  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
10  
8
30  
25  
20  
15  
10  
5
10  
8
25  
24  
IIP3  
IIP3  
–40°C  
85°C  
6
4
23  
22  
21  
20  
19  
85°C  
25°C  
–40°C  
6
85°C  
25°C  
–40°C  
4
NF  
2
G
C
25°C  
2
0
G
C
0
–2  
–2  
0
–4  
18  
1750 1800  
5.1 5.2  
1500 1550 1600 1650 1700  
1850 1900  
4.6 4.7 4.8 4.9 5.0  
(V)  
5.3 5.4  
–5  
LO POWER (dBm)  
5
10  
–25 –20 –15 –10  
0
LO FREQUENCY (MHz)  
V
CC  
5521 G06  
5521 G07  
5521 G08  
LO-RF Leakage vs LO Power  
LO-RF Leakage vs Supply Voltage  
Noise Figure vs LO Power  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–34  
–36  
–38  
–40  
–40°C  
85°C  
25°C  
–40°C  
85°C  
85°C  
25°C  
–42  
–44  
25°C  
–40°C  
–46  
–48  
–50  
–50  
–20  
–15  
–10  
–5  
0
5
4.8  
4.9  
5.1  
4.7  
5.2  
5.3  
5.0  
(V)  
–25 –20 –15 –10  
LO POWER (dBm)  
10  
–5  
0
5
LO POWER (dBm)  
V
CC  
5521 G11  
5521 G10  
5521 G09  
Low Side LO (LS) and High Side  
LO (HS) Comparison: Conversion  
Gain and IIP3 vs RF Frequency  
Low Side LO (LS) and High Side  
LO (HS) Comparison: Noise Figure  
vs RF Frequency  
10  
8
26  
24  
22  
13.5  
13.3  
13.1  
12.9  
12.7  
12.5  
12.3  
12.1  
11.9  
11.7  
11.5  
LS: R1 = R7 = 110  
HS: R1 = R7 = 121Ω  
LS  
IIP3  
f
= 250MHz  
IF  
HS  
6
LS: R1 = R7 = 110Ω  
HS: R1 = R7 = 121Ω  
4
2
20  
18  
16  
14  
12  
f
= 250MHz  
IF  
HS  
LS  
0
G
C
LS  
HS  
–2  
–4  
1850  
1950  
(MHz)  
2150  
1750  
2050  
1700  
1900  
2000 2050  
2100  
1750 1800 1850  
1950  
RF  
RF  
OUT  
(MHz)  
OUT  
5521 G13  
5521 G14  
5521f  
5
LT5521  
W U  
fLO = 1001MHz, fIF = 44MHz, fRF = 1045MHz,  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
PLO = –5dBm, VCC = 5V, EN = 2.9V, TA = 25°C, unless otherwise noted. Test circuit shown in Figure 1 is tuned for 1.045GHz output  
frequency.  
Fundamental, 2nd and 3rd Order  
Intermodulation Distortion  
vs Input Power  
Conversion Gain and IIP3  
vs RF Frequency, Fixed IF  
Conversion Gain vs Input Power  
1.0  
0.5  
20  
0
10  
8
25  
24  
23  
22  
21  
20  
19  
18  
P
–40°C  
25°C  
85°C  
FUND  
IIP3  
IM3  
IM2  
–20  
0
6
85°C  
25°C  
–40°C  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–40  
–60  
4
2
IM2  
IM3  
G
C
–80  
0
85°C  
–100  
–2  
–4  
25°C  
–40°C  
–120  
–15 –10 –5  
0
15  
–25 –20  
5
10  
–14  
–8  
–4 –2  
0
2
4
6
–12 –10  
–6  
970  
1020  
RF  
1070  
1170  
920  
1120  
INPUT POWER (dBm)  
P
(dBm)  
(MHz)  
IN  
OUT  
5521 G16  
5521 G15  
5521 G17  
Conversion Gain, IIP3 and Noise  
Figure vs Supply Voltage  
Conversion Gain and IIP3  
vs LO Power  
LO-RF Leakage vs LO Frequency  
10  
8
25  
10  
8
26  
22  
18  
14  
10  
6
–32  
–33  
–34  
–35  
–36  
–37  
–38  
–39  
–40  
–41  
–42  
IIP3  
IIP3  
24  
85°C  
25°C  
–40°C  
6
4
23  
22  
21  
20  
19  
6
–40°C  
25°C  
85°C  
25°C  
–40°C  
NF  
4
2
G
C
2
0
G
C
0
–2  
85°C  
–2  
2
–4  
18  
5.1 5.2  
4.6 4.7 4.8 4.9 5.0  
(V)  
5.3 5.4  
–5  
LO POWER (dBm)  
5
10  
–25 –20 –15 –10  
0
850  
900  
1000 1050 1100 1150  
950  
LO FREQUENCY (MHz)  
V
CC  
5521 G19  
5521 G20  
5521 G18  
LO-RF Leakage vs LO Power  
LO-RF Leakage vs Supply Voltage  
–30  
–32  
–30  
–32  
–34  
–36  
–34  
–40°C  
25°C  
85°C  
–40°C  
–36  
–38  
–40  
–42  
25°C  
85°C  
–38  
–40  
–42  
–44  
4.8 4.9 5.0 5.1  
(V)  
5.4  
–5  
LO POWER (dBm)  
5
10  
4.6  
4.7  
5.2 5.3  
–25 –20 –15 –10  
0
V
CC  
5521 G22  
5521 G21  
5521f  
6
LT5521  
W U  
fLO = 1001MHz, fIF = 44MHz, fRF = 1045MHz,  
PLO = –5dBm, VCC = 5V, EN = 2.9V, TA = 25°C, unless otherwise noted. Test circuit shown in Figure 1 is tuned for 1.045GHz output  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
frequency.  
Low Side LO (LS) and High Side  
LO (HS) Comparison: Conversion  
Gain and IIP3 vs RF Frequency  
Low Side LO (LS) and High Side  
LO (HS) Comparison: Noise Figure  
vs RF Frequency  
Noise Figure vs LO Power  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
14.0  
13.5  
4
3
25  
24  
f
= 44MHz  
f
= 44MHz  
IF  
IF  
LS  
IIP3  
HS  
13.0  
12.5  
2
1
23  
22  
HS  
LS  
85°C  
25°C  
12.0  
11.5  
11.0  
0
–1  
–2  
21  
20  
19  
LS  
G
C
–40°C  
HS  
–20  
–15  
–10  
–5  
0
5
945  
985  
1025  
RF  
1065  
(MHz)  
1105  
1145  
940  
990  
1040  
(MHz)  
1090  
1140  
LO POWER (dBm)  
RF  
OUT  
OUT  
5521 G23  
5521 G24  
5521 G34  
fLO = 1.7GHz, fIF = 250MHz, fRF = 1.95GHz, PLO = –5dBm, VCC = 3.3V, EN = 2.9V, TA = 25°C, unless otherwise noted. Test circuit  
shown in Figure 1 is tuned for 1.95GHz output frequency and VCC = 3.3V.  
Conversion Gain and IIP3  
vs RF Frequency  
POUT, IM3 and IM2 vs Input Power  
Conversion Gain vs Input Power  
10  
8
27  
25  
20  
0
0.5  
0
–40°C  
P
OUT  
IIP3  
6
23  
IM3  
–20  
–40  
–60  
–80  
–100  
–0.5  
–1.0  
25°C  
85°C  
4
2
85°C  
25°C  
–40°C  
21  
19  
17  
15  
IM2  
G
C
–1.5  
–2.0  
–2.5  
0
IM2  
IM3  
85°C  
25°C  
–40°C  
–2  
–4  
13  
1850 1900 1950 2000  
2150  
1750 1800  
2050 2100  
–14  
–8  
–4 –2  
(dBm)  
0
2
4
6
–12 –10  
–6  
P
0
10  
–20 –15 –10  
–5  
(dBm)  
5
RF  
(MHz)  
P
IN  
IN  
OUT  
5521 G27  
5521 G25  
5521 G26  
5521f  
7
LT5521  
W U  
fLO = 1.7GHz, fIF = 250MHz, fRF = 1.95GHz, PLO  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
= 5dBm, VCC = 3.3V, EN = 2.9V, TA = 25°C, unless otherwise noted. Test circuit shown in Figure 1 is tuned for 1.95GHz output  
frequency and VCC = 3.3V.  
Conversion Gain, IIP3 and Noise  
Figure vs Supply Voltage  
Conversion Gain and IIP3  
vs LO Power  
LO-RF Leakage vs LO Frequency  
10  
8
27  
25  
–32  
–33  
–34  
–35  
–36  
–37  
–38  
–39  
–40  
85°C  
25°C  
–40°C  
8
6
24  
20  
16  
12  
8
IIP3  
IIP3  
6
23  
85°C  
25°C  
–40°C  
NF  
4
85°C  
25°C  
–40°C  
21  
19  
17  
15  
4
2
2
G
C
0
G
C
0
–2  
–4  
–2  
4
13  
3.35 3.40  
–15 –10 –5  
LO POWER (dBm)  
10  
3.10 3.15 3.20 3.25 3.30  
3.45 3.50  
–25 –20  
0
5
1700 1750  
1500 1550 1600 1650  
1800 1850 1900  
V
(V)  
CC  
LO FREQUENCY (MHz)  
5521 G31  
5521 G29  
5521 G28  
LO Leakage vs Supply Voltage  
LO-RF Leakage vs LO Power  
Noise Figure vs LO Power  
22  
20  
–20  
–23  
–26  
–29  
–32  
–35  
–38  
–41  
–44  
–47  
–50  
–30  
–32  
85°C  
–34  
–36  
–38  
–40  
–42  
18  
16  
85°C  
25°C  
–40°C  
–40°C  
85°C  
25°C  
25°C  
14  
12  
10  
–40°C  
–44  
–20  
–15  
–10  
–5  
0
5
3.0  
3.1  
3.3  
(V)  
3.4  
3.5  
3.6  
3.2  
–5  
5
10  
–25 –20 –15 –10  
0
LO POWER (dBm)  
V
LO POWER (dBm)  
CC  
5521 G32  
5521 G33  
5521 G30  
U
U
U
PI FU CTIO S  
GND (Pins 1, 4, 10, 11, 13, 14, 16): Ground. These pins  
are internally connected to the Exposed Pad for improved  
isolation. They should be connected to RF ground on the  
printed circuit board, and are not intended to replace the  
primary grounding through the backside of the package.  
IN+, IN(Pins 2, 3): Differential Input Pins. Each pin  
requires a resistive DC path to ground. See Applications  
Informationforchoosingtheresistorvalue.Externalmatch-  
ing is required.  
VCC (Pins 6, 7, 8): Power Supply Pins. Total current draw  
for these three pins is 40mA.  
OUT+,OUT(Pins12,9):RFOutputPins.Thesepinsmust  
have a DC connection to the supply voltage (see Applica-  
tions Information). These pins draw 20mA each. External  
matching is required.  
LO (Pin 15): Local Oscillator Input. This input is internally  
DC biased to 0.96V. Input signal must be AC coupled.  
Exposed Pad (Pin 17): Circuit Ground Return for the  
Entire IC. For best performance, this pin must be soldered  
to the printed circuit board.  
EN (Pin 5): Enable Input Pin. The enable voltage should be  
at least 2.9V to turn the chip on and less than 0.2V to turn  
the chip off.  
5521f  
8
LT5521  
W
BLOCK DIAGRA  
17  
16  
15  
LO  
14  
GND  
13  
GND  
EXPOSED GND  
PAD  
+
GND  
OUT  
1
2
3
4
12  
11  
10  
9
+
IN  
IN  
GND  
GND  
GND  
OUT  
BIAS  
EN  
V
V
CC  
V
CC  
CC  
5
6
7
8
5521 BD  
TEST CIRCUITS  
C1  
16  
RF  
GND  
ε = 4.4  
0.017"  
0.062"  
0.017"  
r
LO  
IN  
50  
DC  
Z1  
OPT  
GND  
15  
14  
13  
T2  
C3  
GND L0 GND GND  
+
L1  
R1  
C2  
1
2
3
4
12  
11  
10  
9
RF  
OUT  
50Ω  
Z3  
GND  
+
OUT  
GND  
GND  
IF  
IN  
50Ω  
T1  
LT5521  
IN  
C4  
L2  
Z14  
C13  
R7  
EXPOSED  
PAD (17)  
C12  
IN  
GND  
EN  
5
OUT  
C6  
V
V
V
CC  
6
CC  
7
CC  
8
Z7  
OPT  
V
CC  
R8  
C11  
5521 F01  
EN  
Figure 1. Demonstration Board Schematic  
Table 1. Demonstration Board Bill of Materials1, 2  
f
IF  
= 250MHz, f = 1.95GHz  
LO  
f
IF  
f
= 44MHz, f = 1.045GHz  
LO  
f
= 250MHz, f = 1.95GHz  
RF  
RF  
IF  
RF  
REF  
R1, R7  
Z14  
f
= 1.7GHz, V = 5V  
CC  
= 1.001GHz, V = 5V  
CC  
f
= 1.7GHz, V = 3.3V  
LO CC  
110, 1%  
10pF  
110, 1%  
120nH  
22.6, 1%  
10pF  
Z3  
0Ω  
150pF  
0Ω  
L1, L2  
T1  
2.7nH  
10nH  
3
2.7nH  
3
3
M/A-COM MABACT0010  
M/A-COM MABACT0010  
M/A-COM MABACT0010  
T2  
M/A-COM ETC1.6-4-2-3  
M/A-COM ETC1.6-4-2-3  
M/A-COM ETC1.6-4-2-3  
C1, C13  
C3  
6.8pF  
82pF  
82pF  
1nF  
27pF  
3.9pF  
1nF  
6.8pF  
82pF  
82pF  
1nF  
C12  
C2, C4, C6  
C11  
1nF  
1µF  
1µF  
0Ω  
1µF  
Z1, Z7  
0Ω  
100nH  
THIS COMPONENT CAN BE REPLACED BY PCB TRACE ON FINAL APPLICATION  
10k 10k 10k  
R8  
Note 1: Tabulated values are used for characterization measurements.  
Note 2: Components shown on the schematic are included for consistency with the demo board.  
If no value is shown for the component, the site is unpopulated.  
Note 3: T1 also M/A-COM ETC1-1-13 and Sprague Goodman GLSW4M202. These alternative transformers  
have been measured and have similar performance.  
5521f  
9
LT5521  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT5521 is a high linearity double-balanced active  
mixer. The chip consists of a double-balanced mixer core,  
a high performance LO buffer and associated bias and  
enable circuitry. The chip is designed to operate with a  
supply voltage ranging from 3.15V to 5.25V.  
0
–5  
–10  
–15  
–20  
–25  
Table 2. Port Impedance  
FREQUENCY  
(MHz)  
DIFFERENTIAL  
INPUT  
DIFFERENTIAL SINGLE-ENDED  
OUTPUT  
282.2 – j8.4  
282.3 – j20.8  
262.3 – j55.1  
231.4 – j67.0  
215.0 – j124.5  
109.5 – j158.0  
52.9 – j92.1  
61.6 – j74.2  
14.2 – j27.5  
27.9 – j4.4  
LO  
–30  
–35  
–40  
50  
19.8 + j0.7  
20.1 + j2.0  
49.9 + j0.1  
49.8 + j0.3  
49.2 + j0.9  
47.7 + j2.0  
45.3 + j2.8  
43.3 + j2.8  
43.0 + j3.3  
43.4 + j4.6  
44.6 + j14.0  
42.4 + j17.9  
38.6 + j22.8  
100  
150  
200  
300  
100  
350  
400  
250  
300  
18.2 + j5.3  
FREQUENCY (MHz)  
600  
15.2 + j16.8  
14.5 + j28.1  
20.5 + j42.3  
48.2 + j26.8  
18.2 + j29.4  
22.4 + j125.1  
5521 F03  
1000  
1500  
2000  
2300  
3200  
3500  
4000  
Figure 3. IF Input Return Loss  
For input frequencies above 100MHz, a broadband im-  
pedance matching tranformer with a 1:1 impedance ratio  
is recommended. Table 3 provides the component values  
necessary to match various IF frequencies using the M/A-  
COM CT0010 transformer (T1, Figure 1).  
42.8 – j16.0  
Table 3. Component Values for Input Matching Using the  
M/A-COM CT0010  
Signal Input Interface  
IF  
C2  
Z14  
120nH  
33pF  
Z3  
150pF  
27nH  
18nH  
10nH  
6.8nH  
0Ω  
Figure 2 shows the signal inputs of the LT5521. The signal  
input pins are connected to the common emitter nodes of  
the mixer quad differential pairs. The real part of the  
differential IN+/INimpedance is 20. The mixer core  
currentissetbyexternalresistorsR1andR7. Settingtheir  
values at 110, the nominal DC voltage at the inputs is  
2.2V with VCC = 5V. Figure 3 shows the input return loss  
for a matched input at 250MHz.  
44MHz  
95MHz  
120MHz  
150MHz  
170MHz  
250MHz  
300MHz  
435MHz  
520MHz  
1000pF  
820pF  
1000pF  
330pF  
330pF  
82pF  
27pF  
22pF  
18pF  
10pF  
15pF  
3.9pF  
0.5pF  
Unused  
0Ω  
8.2pF  
6.8pF  
0Ω  
0Ω  
Z1  
OPT  
LT5521  
Below 100MHz, the Mini-Circuits TCM2-1T or the Pulse  
CX2045 are better choices for a wider input match. This  
configuration is shown in Figure 4. The series 1nF capaci-  
tors maintain differential symmetry while providing DC  
isolation between the inputs. This helps to improve LO  
suppression.  
R1  
C2  
+
Z3  
IN  
IF  
IN  
2
3
50Ω  
T1  
1:1  
C13  
Z14  
V
CC  
IN  
C6  
1nF  
R7  
Shunt capacitor C13 (Figure 2) is an optional capacitor  
across the input pins that significantly improves LO sup-  
pression. Although this capacitor is optional, it is impor-  
tant to regulate LO suppression, mitigating part-to-part  
5521 F02  
Z7  
OPT  
variation. This capacitor should be optimized depending  
Figure 2. Signal Input with External Matching  
5521f  
10  
LT5521  
W U U  
APPLICATIO S I FOR ATIO  
U
Operation at Reduced Supply Voltage  
LT5521  
R1  
C2  
1nF  
+
IN  
IF  
IN  
50Ω  
External resistors R1 and R7 (Figure 2) set the current  
through the mixer core. For best distortion performance,  
these resistors should be chosen to maintain a total of  
40mA through the mixer core (20mA per side). At 5V  
supply, R1 and R7 should be 110. Table 5 shows  
recommended values for R1 and R7 at various supply  
voltages.Caution:Usingvaluesbelowtherecommended  
resistancecanadverselyaffectoperationordamagethe  
part.  
T1  
2:1  
2
C13  
1nF  
V
CC  
IN  
3
R7  
5521 F04  
Figure 4. Low Frequency Signal Input  
Table 5. Minimum External Resistor Values vs Supply Voltage  
on the IF input frequency and the LO frequency. Smaller  
C13 values have reduced impact on the LO output sup-  
pression; larger values will degrade the conversion gain.  
V
CC  
(V)  
R1, R7 ()  
5
110  
4.5  
4
82.5  
54.9  
A single-ended 50source can also be matched to the  
differential signal inputs of the LT5521 without an input  
transformer. Figure 5 shows an example topology for a  
discrete balun, and Table 4 lists component values for  
several frequencies. The discrete input match is intrinsi-  
cally narrowband. LO suppression to the output is de-  
graded and noise figure degrades by 4dB for input  
frequencies greater than 200MHz. Noise figure degrada-  
tion is worse at lower input frequencies.  
3.5  
3.3  
38.3  
23.2  
Excessive mismatch between the external resistors R1  
and R7 will degrade performance, particularly LO sup-  
pression. Resistors with 1% mismatch are recommended  
for optimum performance.  
Figure 2 shows RF chokes in series with R1 and R7. These  
inductors are optional. In general, the chokes improve the  
conversiongainandnoisefigureby2dBat3.3V(i.e., atthe  
minimum values of R1 and R7). The DC resistance varia-  
tionoftheRFchokesmustbeconsideredinthe1%source  
resistance mismatch suggested for maintaining LO sup-  
pression performance.  
R1  
C16  
L4  
LT5521  
110Ω  
C2  
82pF  
+
IN  
2
3
IF  
IN  
C13  
50Ω  
C14  
IN  
Figure 6 indicates the typical performance of the LT5521  
as the external source resistance (R1, R7) is varied while  
keeping the supply current constant. Figure 6 data was  
taken without the benefit of input chokes, and shows the  
gradual gain degradation for smaller values of the input  
resistors R1 and R7. Figure 7 shows the typical behavior  
when the supply voltage is fixed and the core current is  
varied by adjusting values of the external resistors R1 and  
R7. Decreasing the core current decreases the power  
consumption and improves noise figure but degrades  
distortion performance. Figure 8 demonstrates the im-  
pact of the RF chokes in series with the source resistance  
at 3.3V. There is a 2dB improvement in conversion gain  
and noise figure and a corresponding decrease in IIP3.  
R7  
L3  
110Ω  
5521 F05  
1nF  
Figure 5. Alternative Transformerless Input Circuit  
Using Low Cost Discrete Components  
Table 4. Component Values for Discrete Bridge Balun Signal  
Input Matching  
IF (MHz)  
220  
C14, C16 (pF)  
L3, L4 (nH)  
22  
18  
22  
18  
250  
640  
4.7  
4.7  
5521f  
11  
LT5521  
APPLICATIO S I FOR ATIO  
W U U  
U
3.5  
2.5  
1.5  
0.5  
30  
25  
20  
15  
The user can tailor the biasing of the LT5521 to meet  
individual system requirements. It is recommended to  
choose a source resistance as large as possible to mini-  
mize sensitivity to power supply variation.  
IIP3  
T
= 25°C  
A
f
f
f
= 250MHz  
IF  
LO  
RF  
= 1.7GHz  
= 1.95GHz  
Output Interface  
NF  
–0.5  
–1.5  
–2.5  
10  
5
ADCconnectiontoVCC mustbeprovidedonthePCBtothe  
output pins. These pins will draw approximately 20mA  
each from the power supply. On-chip, there is a nominal  
300differential resistance between the output pins.  
Figure9showsatypicalmatchingcircuitusinganexternal  
balun to provide differential to single-ended conversion.  
G
C
0
80  
R1 AND R7 ()  
120 140  
0
20  
40  
60  
100  
5521 F06  
Figure 6. IIP3, GC and Noise Figure vs External Resistance,  
Constant Core Current (Variable Supply Voltage)  
LO suppression and 2xLO suppression are influenced by  
the symmetry of the external output matching circuitry.  
PCB design must maintain the trace layout symmetry of  
the output pins as much as possible to minimize these  
signals.  
1.8  
1.2  
30  
25  
20  
15  
10  
5
T
= 25°C  
A
f
f
f
= 250MHz  
IF  
= 1.7GHz  
LO  
RF  
V
IIP3  
NF  
= 1.95GHz  
= 4V  
CC  
0.6  
The M/A-COM ETC1.6-4-2-3 4:1 transformer (T2, Fig-  
ure 9) is suitable for applications with output frequencies  
between 500MHz and 2700MHz. Output matching at vari-  
ous frequencies is achieved by adding inductors in series  
with the output (L1, L2) and DC blocking capacitor C3, as  
shown in Figure 9. Table 6 specifies center frequency and  
bandwidth of the output match for different matching  
configurations. Figure 10 shows the typical output return  
lossvsfrequencyfor1GHzand2GHzapplications.Capaci-  
tor C12 provides a solid AC ground at the RF output  
frequency.  
0
–0.6  
–1.2  
–1.8  
G
C
0
15  
25  
30  
35  
40  
45  
20  
CORE CURRENT (mA)  
5521 F07  
Figure 7. IIP3, GC and Noise Figure vs Core Current,  
Constant Supply Voltage  
9
7
30  
25  
20  
15  
10  
5
IIP3  
LT5521  
RFC  
+
L1  
OUT  
T2  
4:1  
T
= 25°C  
f
= 1.95GHz  
CC  
A
IF  
RF  
12  
5
f
f
= 250MHz  
V
= 3.3V  
C3  
NF  
= 1.7GHz  
LO  
OUT  
3
RFC  
300Ω  
V
CC  
V
CC  
1
G
C
RFC  
–1  
–3  
L2  
OUT  
C12  
9
5521 F09  
0
25  
35  
40  
45  
50  
55  
30  
CORE CURRENT (mA)  
5521 F08  
Figure 9. Simplified Output Circuit  
with External Matching Components  
Figure 8. Comparison of 3.3V Performance With  
and Without Input RF Choke  
5521f  
12  
LT5521  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 6. Matching Values Using M/A-COM ETC1.6-4-2-3  
Output Transformer  
Johanson Technology supplies the 3700BL15B100S hy-  
brid balun for use between 3.4GHz and 4GHz. With addi-  
tional matching, this transformer can be used for  
applicationsbetween3.3GHzand3.7GHz.ExampleLT5521  
performance is shown in Figure 11.  
f
L1, L2  
0nH  
C3  
C12  
82pF  
82pF  
82pF  
82pF  
82pF  
1nF  
f (10dB RL)  
450MHz  
430MHz  
400MHz  
400MHz  
400MHz  
500MHz  
OUT  
2.4GHz  
2.2GHz  
2.0GHz  
1.7GHz  
1.3GHz  
1.0GHz  
82pF  
82pF  
82pF  
82pF  
82pF  
3.9pF  
1nH  
2.7nH  
4.7nH  
10nH  
10nH  
10  
22  
20  
18  
16  
14  
12  
10  
8
LS  
8
HS  
IIP3  
NF  
6
T
IF  
= 25°C  
A
5
0
f
= 300MHz  
4
HS  
LS  
2
1GHz  
2GHz  
–5  
0
G
C
–10  
–15  
–20  
–25  
–30  
LS  
–2  
–4  
HS  
3.6  
FREQUENCY (GHz)  
3.8  
3.2  
3.3  
3.4  
3.5  
3.7  
5521 F11  
Figure 11. LT5521 Performance for an Application Tuned to  
3.5GHz with Low Side (LS) and High Side (HS) LO Injection  
1.2  
1.7  
0.7  
2.2  
FREQUENCY (GHz)  
LO Interface  
5521 F10  
Figure 10. Output Return Loss vs Frequency  
The LO input pin is internally matched to 50. It has an  
internal DC bias of 960mV. External AC coupling is re-  
quired. Figure 12 shows a simplified schematic of the LO  
input. Overdriving the LO input will dramatically reduce  
the performance of the mixer. The LO input power should  
notexceed+1dBmfornormaloperation. SelectC1(Figure  
12) only large enough to achieve the desired LO input  
return loss. This reduces external low frequency signal  
amplification through the LO buffer.  
For applications with LO and output frequencies below  
1GHz, the M/A-COM MABAES0054 is recommended for  
the output component T2. This transformer maintains  
better low frequency output symmetry. Table 7 lists com-  
ponents necessary for a 750MHz output match using the  
M/A-COM MABAES0054.  
Table 7. Matching Values Using M/A-COM MABAES0054  
Output Transformer  
For applications with LO frequency in the range of 2.1GHz  
to 2.4GHz, the LT5521 achieves improved distortion and  
f
L1, L2  
C3  
C12  
f (10dB RL)  
OUT  
750MHz  
33nH  
82pF  
1nF  
500MHz  
LT5521  
Hybrid baluns provide a low cost alternative for differen-  
tial to single-ended conversion. The critical performance  
parameters of conversion gain, IIP3, noise figure and LO  
suppression are largely unaffected by these transform-  
ers. However, their limited bandwidth and reduced sym-  
metry outside the frequency of operation degrades the  
suppression of higher order LO harmonics, particularly  
2xLO. Murata LBD21 series hybrid balun transformers,  
for example, can be used for output frequencies as low as  
840MHz and as high as 2.4GHz.  
60Ω  
60Ω  
V
CC  
C1  
8Ω  
LO  
IN  
15  
50Ω  
5521 F12  
Figure 12. Simplified LO Input Circuit  
5521f  
13  
LT5521  
W U U  
U
APPLICATIO S I FOR ATIO  
0
0resistor. If the shutdown function is not required, then  
theENpinshouldbewireddirectlytotheVCC powersupply  
on the PCB.  
–5  
–10  
C1 = 6.8pF  
–15  
Supply Decoupling  
–20  
The power supply decoupling shown in the schematic of  
Figure 1 is recommended to minimize spurious signal  
coupling into the output through the power supply.  
C1 = 2.7pF  
–25  
–30  
–35  
1000 1500 2000 2500  
4000  
3000 3500  
0
500  
ACPR Performance  
FREQUENCY (MHz)  
5521 F13  
Becauseofitshighlinearityandlownoise,theLT5521offers  
outstandingACPRperformanceinavarietyofapplications.  
For example, Figures 15 and 16 show ACPR and Alternate  
Channel measurements for single channel and 4-channel  
64 DPCH W-CDMA signals at 1.95GHz output frequency.  
Figure 13. LO Port Return Loss  
noise performance with slightly reduced current through  
the mixer core. Accordingly, in a 5V application operating  
within this LO frequency range, the recommended source  
resistor value (R1 and R7) is increased to 121.  
–30  
–130  
T
= 25°C  
A
f
f
f
= 1.95GHz  
= 70MHz  
RF  
IF  
LO  
–40  
–135  
= 1.88GHz  
Enable Interface  
–50  
–60  
–140  
–145  
–150  
–155  
–160  
–165  
Figure 14 shows a simplified schematic of the EN pin  
interface. The voltage necessary to turn on the LT5521 is  
2.9V.Todisablethechip,theenablevoltagemustbebelow  
0.2V. If the EN pin is not connected, the chip is disabled.  
It is not recommended, however, that any pins be left  
floating for normal operation.  
–70  
ACPR  
–80  
–90  
30MHz OFFSET NOISE  
–100  
–30  
–20  
–10  
10  
–40  
0
It is important that the voltage at the EN pin never exceed  
VCC, the power supply voltage, by more than 0.2V. If this  
shouldoccur,thesupplycurrentcouldbesourcedthrough  
the EN pin ESD protection diodes, potentially damaging  
the IC. The resistor R8 (Figure 1) in series with the EN pin  
on the demo board is populated with a 10kresistor to  
protect the EN pin to avoid inadvertant damage to the IC.  
For timing measurements, this resistor is replaced with a  
OUTPUT CHANNEL POWER (dBm)  
5521 F15  
Figure 15. Single Channel W-CDMA ACPR  
and 30MHz Offset Noise Performance  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
ACPR  
LT5521  
T
= 25°C  
A
AltCPR  
f
f
f
= 1.95GHz  
= 70MHz  
RF  
IF  
LO  
= 1.88GHz  
V
CC  
30MHz OFFSET NOISE  
–30 –25 –20  
–40  
–15  
–35  
OUTPUT CHANNEL POWER, EACH CHANNEL (dBm)  
1635 G24  
EN  
5
Figure 16. 4-Channel W-CDMA ACPR,  
AltCPR and 30MHz Offset Noise Floor  
5521 F14  
Figure 14. Enable Input Circuit  
5521f  
14  
LT5521  
W U U  
APPLICATIO S I FOR ATIO  
U
Figure 17. Top View of Demo Board  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
BOTTOM VIEW—EXPOSED PAD  
0.75 ± 0.05  
R = 0.115  
TYP  
0.55 ± 0.20  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
0.72 ±0.05  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
4.35 ± 0.05 2.15 ± 0.05  
2.15 ± 0.10  
(4-SIDES)  
(4 SIDES)  
2.90 ± 0.05  
PACKAGE  
OUTLINE  
(UF) QFN 1103  
0.30 ± 0.05  
0.65 BSC  
0.200 REF  
0.30 ±0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5521f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT5521  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Infrastructure  
LT5511  
LT5512  
LT5514  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC to 3GHz, 21dBm IIP3, Integrated LO Buffer  
DC-3GHz High Signal Level Downconverting Mixer  
Ultralow Distortion, Wideband Digitally Controlled  
Gain Amplifier/ADC Driver  
BW = 850MHz, OIP3 = 47dBm at 100MHz, 22.5dB Gain Control Range  
LT5515  
LT5516  
LT5517  
LT5519  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator 20dBm IIP3, Integrated LO Quadrature Generator  
0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator 21.5dBm IIP3, Integrated LO Quadrature Generator  
40MHz to 900MHz Quadrature Demodulator  
21dBm IIP3, Integrated LO Quadrature Generator  
0.7GHz to 1.4GHz High Linearity Upconverting Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
LT5520  
LT5522  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
600MHz to 2.7GHz High Signal Level Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB,  
50Single-Ended RF and LO Ports  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated,  
2.7V to 5.25V Supply  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
RF Power Detectors with >40dB Dynamic Range  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Linear Dynamic Range, Low Power Consumption, SC70 Package  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
50MHz to 3GHz RF Power Detector  
Precision V  
Precision V  
Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
60dB Dynamic Range, Temperature Compensated, SC70 Package  
Low Voltage RF Building Blocks  
LT5500  
LT5502  
1.8GHz to 2.7GHz Receiver Front End  
1.8V to 5.25V Supply, Dual-Gain LNA, Mixer, LO Buffer  
400MHz Quadrature IF Demodulator with RSSI  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain,  
90dB RSSI Range  
LT5503  
LT5506  
LT5546  
1.2GHz to 2.7GHz Direct IQ Modulator and  
Upconverting Mixer  
1.8V to 5.25V Supply, Four-Step RF Power Control,  
120MHz Modulation Bandwidth  
500MHz Quadrature IF Demodulator with VGA  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB  
Linear Power Gain, 8.8MHz Baseband Bandwidth  
500MHz Ouadrature IF Demodulator with  
VGA and 17MHz Baseband Bandwidth  
17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V  
Supply, –7dB to 56dB Linear Power Gain  
RF Power Controllers  
LTC1757A  
LTC1758  
LTC1957  
LTC4400  
RF Power Controller  
Multiband GSM/DCS/GPRS Mobile Phones  
Multiband GSM/DCS/GPRS Mobile Phones  
Multiband GSM/DCS/GPRS Mobile Phones  
RF Power Controller  
RF Power Controller  
SOT-23 RF PA Controller  
Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range,  
450kHz Loop BW  
LTC4401  
LTC4403  
SOT-23 RF PA Controller  
Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range,  
250kHz Loop BW  
RF Power Controller for EDGE/TDMA  
Multiband GSM/GPRS/EDGE Mobile Phones  
5521f  
LT/TP 0604 1K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT5521EUF#PBF

LT5521 - Very High Linearity Active Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5521EUF#TR

LT5521 - Very High Linearity Active Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5522

40MHz to 900MHz Quadrature Demodulator
Linear

LT5522EUF

400MHz to 2.7GHz High Signal Level Downconverting Mixer
Linear

LT5522EUF#TR

LT5522 - 600MHz to 2.7GHz High Signal Level Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5524

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5524EFE

Low Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain
Linear

LT5524EFE#PBF

暂无描述
Linear

LT5525

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5525EUF

High Linearity, Low Power Downconverting Mixer
Linear

LT5525EUF#PBF

LT5525 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5525EUF#TR

LT5525 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear