LT5520EUF [Linear]

1.3GHz to 2.3GHz High Linearity Upconverting Mixer; 为1.3GHz至2.3GHz高线性度上变频混频器
LT5520EUF
型号: LT5520EUF
厂家: Linear    Linear
描述:

1.3GHz to 2.3GHz High Linearity Upconverting Mixer
为1.3GHz至2.3GHz高线性度上变频混频器

文件: 总12页 (文件大小:186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5520  
1.3GHz to 2.3GHz  
High Linearity  
Upconverting Mixer  
U
FEATURES  
DESCRIPTIO  
The LT®5520 mixer is designed to meet the high linearity  
requirements of wireless and cable infrastructure trans-  
mission applications. A high-speed, internally matched,  
LO amplifier drives a double-balanced mixer core, allow-  
ing the use of a low power, single-ended LO source. An RF  
output transformer is integrated, thus eliminating the  
need for external matching components at the RF output,  
whilereducingsystemcost, componentcount, boardarea  
and system-level variations. The IF port can be easily  
matched to a broad range of frequencies for use in many  
different applications.  
Wide RF Output Frequency Range: 1.3GHz  
to 2.3GHz  
15.9dBm Typical Input IP3 at 1.9GHz  
On-Chip RF Output Transformer  
No External LO or RF Matching Required  
Single-Ended LO and RF Operation  
Integrated LO Buffer: –5dBm Drive Level  
Low LO to RF Leakage: – 41dBm Typical  
Wide IF Frequency Range: DC to 400MHz  
Enable Function with Low Off-State Leakage Current  
Single 5V Supply  
Small 16-Lead QFN Plastic Package  
The LT5520 mixer delivers 15.9dBm typical input 3rd  
order intercept point at 1.9GHz with IF input signal levels  
of –10dBm. The input 1dB compression point is typically  
4dBm. The IC requires only a single 5V supply.  
U
APPLICATIO S  
Wireless Infrastructure  
Cable Downlink Infrastructure  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Point-to-Point Data Communications  
High Linearity Frequency Conversion  
U
TYPICAL APPLICATIO  
5V  
DC  
RF Output Power and Output IM3 vs  
IF Input Power (Two Input Tones)  
1µF  
1000pF  
39nH  
10  
0
EN  
BIAS  
V
V
CC2  
V
CC3  
CC1  
–10  
10pF  
100Ω  
100Ω  
BPF  
P
OUT  
220pF  
15pF  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
4:1  
IF  
INPUT  
+
+
RF  
RF  
IF  
IF  
RF  
OUTPUT  
PA  
P
= –5dBm  
= 1760MHz  
= 140MHz  
= 141MHz  
= 1900MHz  
220pF  
LO  
BPF  
f
LO  
IM3  
f
IF1  
IF2  
RF  
f
f
T
= 25°C  
A
GND  
–16  
–12  
–8  
–4  
0
4
5pF  
5pF  
85Ω  
IF INPUT POWER (dBm/TONE)  
+
LT5520  
LO  
LO  
(OPTIONAL)  
5520 • F01b  
5520 F01  
LO INPUT  
–5dBm  
Figure 1. Frequency Conversion in Wireless Infrastructure Transmitter  
5520f  
1
LT5520  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
Supply Voltage ....................................................... 5.5V  
Enable Voltage ............................. –0.3V to (VCC + 0.3V)  
LO Input Power (Differential).............................. 10dBm  
RF+ to RFDifferential DC Voltage...................... ±0.13V  
RF Output DC Common Mode Voltage ......... –1V to VCC  
IF Input Power (Differential) ............................... 10dBm  
IF+, IFDC Currents.............................................. 25mA  
LO+ to LODifferential DC Voltage .......................... ±1V  
LO Input DC Common Mode Voltage............ –1V to VCC  
Operating Temperature Range .................–40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Junction Temperature (TJ).................................... 125°C  
16 15 14 13  
GND  
GND  
1
2
3
4
12  
11  
10  
9
LT5520EUF  
+
+
RF  
RF  
IF  
17  
IF  
GND  
GND  
5
6
7
8
UF PART  
MARKING  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
EXPOSED PAD IS GND (PIN 17),  
MUST BE SOLDERED TO PCB  
5520  
TJMAX = 125°C, θJA = 37°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
IF Input Frequency Range  
LO Input Frequency Range  
RF Output Frequency Range  
DC to 400  
900 to 2700  
1300 to 2300  
MHz  
MHz  
1900MHz Application: VCC = 5VDC, EN = High, TA = 25°C, IF input = 140MHz at –10dBm, LO input = 1.76GHz at –5dBm, RF output  
measured at 1900MHz, unless otherwise noted. Test circuit shown in Figure 2. (Notes 2, 3)  
PARAMETER  
CONDITIONS  
Z = 50, with External Matching  
MIN  
TYP  
20  
MAX  
UNITS  
dB  
IF Input Return Loss  
LO Input Return Loss  
RF Output Return Loss  
LO Input Power  
O
Z = 50Ω  
O
16  
dB  
Z = 50Ω  
O
20  
dB  
–10 to 0  
–1  
dBm  
dB  
Conversion Gain  
Input 3rd Order Intercept  
Input 2nd Order Intercept  
LO to RF Leakage  
–10dBm/Tone, f = 1MHz  
15.9  
45  
dBm  
dBm  
dBm  
dBm  
dBm  
–10dBm, Single-Tone  
–41  
–35  
4
LO to IF Leakage  
Input 1dB Compression  
IF Common Mode Voltage  
Noise Figure  
Internally Biased  
Single Side Band  
1.77  
15  
V
DC  
dB  
DC ELECTRICAL CHARACTERISTICS  
(Test Circuit Shown in Figure 2) VCC = 5VDC, EN = High , TA = 25°C (Note 3), unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Enable (EN) Low = Off, High = On  
Turn-On Time (Note 4)  
Turn-Off Time (Note 4)  
Input Current  
2
6
1
µs  
µs  
V
= 5V  
10  
µA  
ENABLE  
DC  
5520f  
2
LT5520  
DC ELECTRICAL CHARACTERISTICS  
(Test Circuit Shown in Figure 2) VCC = 5VDC, EN = High , TA = 25°C (Note 3), unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Enable = High (On)  
Enable = Low (Off)  
Power Supply Requirements (V  
Supply Voltage  
3
V
V
DC  
DC  
0.5  
)
CC  
4.5 to 5.25  
V
DC  
Supply Current  
V
= 5V  
60  
1
70  
mA  
CC  
DC  
Shutdown Current  
EN = Low  
100  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 3: Specifications over the –40°C to 85°C temperature range are  
of a device may be impaired.  
Note 2: External components on the final test circuit are optimized for  
assured by design, characterization and correlation with statistical process  
controls.  
operation at f = 1900MHz, f = 1.76GHz and f = 140MHz.  
Note 4: Turn-On and Turn-Off times are based on the rise and fall times of  
the RF output envelope from full power to –40dBm with an IF input power  
of –10dBm.  
RF  
LO  
IF  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Test Circuit Shown in Figure 2)  
Supply Current  
Shutdown Current  
vs Supply Voltage  
vs Supply Voltage  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
66  
64  
62  
60  
58  
56  
54  
52  
50  
T
= 85°C  
A
T
= 25°C  
A
T
= 85°C  
A
T
= –40°C  
A
T
= 25°C  
A
T
= –40°C  
A
5.25  
5.25  
4.0  
4.25  
4.5  
4.75  
5.0  
5.5  
4.0  
4.25  
4.5  
4.75  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
5520 • GO2  
5520 • GO1  
VCC = 5VDC, EN = High, TA = 25°C, IF input = 140MHz at –10dBm, LO input = 1.76GHz at –5dBm, RF output measured at 1900MHz,  
unless otherwise noted. For 2-tone inputs: 2nd IF input = 141MHz at –10dBm. (Test Circuit Shown in Figure 2.)  
Conversion Gain and SSB Noise  
Figure vs RF Output Frequency  
LO-RF Leakage  
IIP3 and IIP2  
vs RF Output Frequency  
vs RF Output Frequency  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
18  
16  
14  
12  
10  
8
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
–10  
–20  
–30  
–40  
–50  
–60  
HIGH SIDE LO  
LOW SIDE LO  
IIP2  
LOW SIDE LO  
SSB NF  
HIGH SIDE LO  
HIGH SIDE LO  
LOW SIDE LO  
6
4
IIP3  
LOW SIDE LO  
2
GAIN  
0
LOW SIDE AND HIGH SIDE LO  
HIGH SIDE LO  
–2  
–4  
1300 1500 1700 1900 2100 2300 2500  
1300 1500 1700 1900 2100 2300 2500  
1300 1500 1700 1900 2100 2300 2500  
RF OUTPUT FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
5520 • GO3  
5520 • GO4  
5520 • GO5  
5520f  
3
LT5520  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VCC = 5VDC, EN = High , TA = 25°C, IF input = 140MHz at –10dBm, LO input = 1.76GHz at –5dBm, RF output measured at 1900MHz,  
unless otherwise noted. For 2-tone inputs: 2nd IF Input = 141MHz at –10dBm. (Test Circuit Shown in Figure 2.)  
Conversion Gain and SSB Noise  
Figure vs LO Input Power  
LO-RF Leakage  
vs LO Input Power  
IIP3 and IIP2 vs  
LO Input Power  
20  
18  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–10  
–20  
–30  
–40  
–50  
–60  
T
= 25°C  
A
T
= 85°C  
A
SSB NF  
T
= 85°C  
A
T
= –40°C  
A
IIP2  
T
= –40°C  
A
T
= 25°C  
A
6
T
= –40°C  
A
IIP3  
4
T
= 25°C, T = –40°C  
A
A
GAIN  
T
= 25°C  
A
6
2
T
= 85°C  
T = 25°C  
A
A
T
= –40°C  
T
= 85°C  
A
A
4
0
2
–2  
–4  
T
= 85°C  
A
0
0
–16  
0
4
0
4
–16  
–12  
–8  
–4  
0
4
–12  
–8  
–4  
–16  
–12  
–8  
–4  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5520 • G06  
5520 • G07  
5520 • G08  
IIP3 and IIP2 vs  
LO Input Power  
RF Output Power and Output IM3 vs  
IF Input Power (Two Input Tones)  
RF Output Power and Output IM2 vs  
IF Input Power (Two Input Tones)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10  
0
10  
0
LOW SIDE LO  
T
= –40°C  
A
T
= –40°C  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
IIP2  
IIP3  
T
= 25°C  
T
= 85°C  
A
HIGH SIDE LO  
A
T
= 25°C  
A
T
= 85°C  
A
P
OUT  
P
OUT  
T
= –40°C  
A
HIGH SIDE LO  
LOW SIDE LO  
T
= 85°C  
T
= –40°C  
A
A
IM2  
T
= 25°C  
T
= 85°C  
A
IM3  
A
0
0
4
0
4
–16  
–12  
–8  
–4  
–16  
–12  
–8  
–4  
0
4
–16  
–12  
–8  
–4  
LO INPUT POWER (dBm)  
IF INPUT POWER (dBm/TONE)  
IF INPUT POWER (dBm/TONE)  
5520 • G11  
5520 • G09  
5520 • G10  
IF, LO and RF Port Return Loss  
vs Frequency  
Conversion Gain, IIP3 and IIP2  
vs Supply Voltage  
Conversion Gain vs IF Input  
Power (One Input Tone)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
–5  
8
7
4
3
LOW SIDE LO  
HIGH SIDE LO  
6
2
IIP2  
T
= –40°C  
5
1
A
–10  
–15  
–20  
–25  
4
0
T
= 25°C  
A
3
–1  
–2  
–3  
–4  
–5  
–6  
IIP3  
T
= 85°C  
2
A
HIGH SIDE LO  
LOW SIDE LO  
LO PORT  
1
0
GAIN  
RF PORT  
IF PORT  
–1  
–2  
LOW SIDE AND HIGH SIDE LO  
0
5.5  
0
1000 1500 2000 2500 3000  
4.0  
4.25  
4.5  
SUPPLY VOLTAGE (V)  
4.75  
5.0  
5.25  
0
4
500  
–16  
–12  
–8  
–4  
FREQUENCY (MHz)  
IF INPUT POWER (dBm)  
5520 • G14  
5520 • G12  
5520 • G13  
5520f  
4
LT5520  
U
U
U
PI FU CTIO S  
GND (Pins 1, 4, 9, 12, 13, 16): Internal Grounds. These  
pins are used to improve isolation and are not intended as  
DC or RF grounds for the IC. Connect these pins to low  
impedance grounds for best performance.  
IF+, IF(Pins 2, 3): Differential IF Signal Inputs. A differ-  
ential signal must be applied to these pins through DC  
blockingcapacitors.Thepinsmustbeconnectedtoground  
with100resistors(thegroundsmusteachbecapableof  
sinking about 18mA). For best LO leakage performance,  
these pins should be DC isolated from each other. An  
impedance transformation is required to match the IF  
input to the desired source impedance (typically 50or  
75).  
in Figure 2. The 1000pF capacitor should be located as  
close to the pins as possible.  
VCC3 (Pin 8): Power Supply Pin for the Internal Mixer.  
Typical current consumption is about 36mA. This pin  
should be externally connected to VCC through an induc-  
tor. A 39nH inductor is used in Figure 2, though the value  
is not critical.  
RF, RF+ (Pins 10, 11): Differential RF Outputs. One pin  
maybeDCconnectedtoalowimpedancegroundtorealize  
a 50single-ended output. No external matching compo-  
nents are required. A DC voltage should not be applied  
acrossthesepins,astheyareinternallyconnectedthrough  
a transformer winding.  
EN(Pin5): EnablePin. Whentheappliedvoltageisgreater  
than 3V, the IC is enabled. When the applied voltage is less  
than 0.5V, the IC is disabled and the DC current drops to  
about 1µA.  
LO+, LO(Pins 14, 15): Differential Local Oscillator In-  
puts. The LT5520 works well with a single-ended source  
driving the LO+ pin and the LOpin connected to a low  
impedanceground.Noexternalmatchingcomponentsare  
required. An internal resistor is connected across these  
pins; therefore, a DC voltage should not be applied across  
the inputs.  
VCC1 (Pin 6): Power Supply Pin for the Bias Circuits.  
Typical current consumption is about 2mA. This pin  
should be externally connected to VCC and have appropri-  
ate RF bypass capacitors.  
GROUND (Pin 17, Exposed Pad): DC and RF ground  
return for the entire IC. This must be soldered to the  
printed circuit board low impedance ground plane.  
VCC2 (Pin 7): Power Supply Pin for the LO Buffer Circuits.  
Typical current consumption is about 22mA. This pin  
should have appropriate RF bypass capacitors as shown  
W
BLOCK DIAGRA  
BACKSIDE  
+
GROUND GND  
RF  
11  
RF  
10  
GND  
9
17  
12  
13  
14  
GND  
5pF  
85  
5pF  
8
V
CC3  
HIGH SPEED  
LO BUFFER  
+
10pF  
LO  
DOUBLE-  
BALANCED  
MIXER  
15  
16  
LO  
V
6
5
CC1  
BIAS  
GND  
EN  
7
1
2
3
4
5520 BD  
+
V
GND  
IF  
IF  
GND  
CC2  
5520f  
5
LT5520  
TEST CIRCUIT  
LO  
IN  
1760MHz  
16  
15  
14  
+
13  
REF DES  
C1, C2  
C3  
VALUE  
220pF  
15pF  
SIZE  
0402  
0402  
0402  
0603  
0402  
PART NUMBER  
GND  
GND  
LO  
LO  
GND  
GND  
1
2
3
4
12  
11  
IF  
R1  
IN  
140MHz  
AVX 04023C221KAT2A  
AVX 04023A150KAT2A  
AVX 04023A102KAT2A  
Taiyo Yuden LMK107BJ105MA  
Toko LL1005-FH39NJ  
IRC PFC-W0603R-03-10R1-B  
M/A-COM ETC4-1-2  
C1  
C2  
T1  
1
5
4
+
+
RF  
IF  
2
3
LT5520  
C3  
C4  
1000pF  
1µF  
10  
9
RF  
OUT  
1900MHz  
IF  
RF  
C5  
R2  
GND  
CC3  
GND  
EN  
5
L1  
39nH  
V
V
CC2  
V
CC1  
6
RF  
GND  
7
8
R1, R2  
T1  
100, 0.1% 0603  
4:1 SM-22  
0.018" ER = 4.4  
EN  
L1  
0.062"  
0.018"  
DC  
GND  
V
CC  
C5  
C4  
5520 TC01  
Figure 2. Test Schematic for the LT5520  
U
W
U U  
APPLICATIO S I FOR ATIO  
The LT5520 consists of a double-balanced mixer, a high-  
performance LO buffer, and bias/enable circuits. The RF  
and LO ports may be driven differentially; however, they  
are intended to be used in single-ended mode by connect-  
ing one input of each pair to ground. The IF input ports  
must be DC-isolated from the source and driven differen-  
tially. The IF input should be impedance-matched for the  
desired input frequency. The LO input has an internal  
broadband 50match with return loss better than 10dB  
at frequencies up to 3000MHz. The RF output band ranges  
from 1300MHz to 2300MHz, with an internal RF trans-  
former providing a 50impedance match across the  
band. Low side or high side LO injection can be used.  
resistors with 0.1%, tolerance are recommended. If LO  
leakage is not a concern, then lesser tolerance resistors  
can be used. The symmetry of the layout is also important  
for achieving optimum LO isolation.  
The capacitors shown in Figure 3, C1 and C2, serve two  
purposes. They provide DC isolation between the IF+ and  
IFports, thus preventing DC interactions that could  
cause unpredictable variations in LO leakage. They also  
improve the impedance match by canceling excess induc-  
tance in the package and transformer. The input capacitor  
value required to realize an impedance match at desired  
frequency, f, can be estimated as follows:  
1
C1 = C2 =  
IF Input Port  
(2πf)2(LIN +LEXT  
)
The IF inputs are connected to the emitters of the double-  
balanced mixer transistors, as shown in Figure 3. These  
pins are internally biased and an external resistor must be  
connected from each IF pin to ground to set the current  
through the mixer core. The circuit has been optimized to  
work with 100resistors, which will result in approxi-  
mately 18mA of DC current per side. For best LO leakage  
performance, the resistors should be well matched; thus  
where; f is in units of Hz, LIN and LEXT are in H, and C1, C2  
are in farad. LIN is the differential input inductance of the  
LT5520,andisapproximately1.67nH.LEXT representsthe  
combined inductances of differential external compo-  
nents and transmission lines. For the evaluation board  
shown in Figure 10, LEXT = 4.21nH. Thus, for f = 140MHz,  
the above formula gives C1 = C2 = 220pF.  
5520f  
6
LT5520  
U
W U U  
APPLICATIO S I FOR ATIO  
5pF  
+
LO  
LO  
100Ω  
0.1%  
IN  
14  
50  
C1  
18mA  
220Ω  
220Ω  
T1  
4:1  
2
IF  
IN  
50Ω  
V
85Ω  
CC  
C3  
V
CC  
5pF  
3
LO  
18mA  
LT5520  
15  
C2  
100Ω  
0.1%  
LT5520  
5520 F03  
5520 F04  
Figure 3. IF Input with External Matching  
Figure 4. LO Input Circuit  
Though the LO input is internally 50matched, there may  
be some cases, particularly at higher frequencies or with  
different source impedances, where a further optimized  
match is desired. Table 2 includes the single -ended input  
impedance and reflection coefficient vs frequency for the  
LO input for use in such cases.  
Table 1 lists the differential IF input impedance and reflec-  
tion coefficient for several frequencies. A 4:1 balun can be  
used to transform the impedance up to about 50.  
Table 1. IF Input Differential Impedance  
Frequency  
(MHz)  
Differential Input  
Impedance  
Differential S11  
Mag  
Angle  
180  
179  
178  
177  
176  
174  
171  
167  
10  
44  
10.1 + j0.117  
10.1 + j0.476  
10.1 + j0.751  
10.2 + j1.47  
10.2 + j1.78  
10.2 + j2.53  
10.2 + j3.81  
10.2 + j5.31  
0.663  
0.663  
0.663  
0.663  
0.663  
0.663  
0.663  
0.663  
Table 2. Single-Ended LO Input Impedance  
Frequency  
(MHz)  
Input  
Impedance  
S11  
Mag  
0.139  
0.148  
0.157  
0.164  
0.172  
0.176  
0.182  
0.182  
Angle  
–30.9  
–37.1  
42.4  
48.9  
–54.7  
–60.4  
–65.1  
–68.5  
70  
140  
170  
240  
360  
500  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
2700  
62.8 – j9.14  
62.2 – j11.4  
61.5 – j13.4  
60.0 – j15.2  
58.4 – j16.9  
56.5 – j17.9  
54.9 – j18.8  
53.7 – j18.8  
LO Input Port  
The simplified circuit for the LO buffer input is shown in  
Figure 4. The LO buffer amplifier consists of high-speed  
limitingdifferentialamplifiers,optimizedtodrivethemixer  
quad for high linearity. The LO+ and LOports can be  
driven differentially; however, they are intended to be  
driven by a single-ended source. An internal resistor  
connected across the LO+ and LOinputs provides a  
broadband 50impedance match. Because of the resis-  
tive match, a DC voltage at the LO input is not recom-  
mended. If the LO signal source output is not AC coupled,  
then a DC blocking capacitor should be used at the LO  
input.  
RF Output Port  
AninternalRFtransformer, showninFigure5, reducesthe  
mixer-core impedance to provide an impedance of 50Ω  
across the RF+ and RFpins. The LT5520 is designed and  
testedwiththeoutputsconfiguredforsingle-endedopera-  
tion, asshownintheFigure5;however, theoutputscanbe  
used differentially as well. A center-tap in the transformer  
provides the DC connection to the mixer core and the  
transformer provides DC isolation at the RF output. The  
RF+ and RFpins are connected together through the  
secondary windings of the transformer, thus a DC voltage  
should not be applied across these pins.  
5520f  
7
LT5520  
U
W
U U  
APPLICATIO S I FOR ATIO  
TheimpedancedatafortheRFoutput,listedinTable3,can  
be used to develop matching networks for different load  
impedances.  
The performance was evaluated with the input tuned for  
each of these frequencies and the results are summarized  
in Figures 6-8. The same IF input balun transformer was  
used for all measurements. In each case, the LO input  
frequency was adjusted to maintain an RF output fre-  
quency of 1900 MHz.  
Table 3. Single-Ended RF Output Impedance  
Frequency  
(MHz)  
Input  
Impedance  
S11  
Mag  
Angle  
94.7  
78.4  
68.0  
88.9  
148  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
2700  
26.9 + j38.2  
44.2 + j35.7  
53.9 + j20.6  
49.5 + j7.97  
42.8 + j4.14  
38.9 + j5.41  
38.7 + j7.78  
41.1 – j9.51  
0.520  
0.359  
0.198  
0.080  
0.089  
0.139  
0.154  
0.142  
5
4
20  
18  
16  
14  
12  
10  
8
LOW SIDE LO  
HIGH SIDE LO  
IIP3  
3
2
1
0
GAIN  
151  
–1  
–2  
–3  
–4  
–5  
LOW SIDE LO  
HIGH SIDE LO  
140  
6
127  
4
2
0
+
RF  
0
200 300 400 500 600 700  
INPUT FREQUENCY (MHz)  
100  
11  
5520 F06  
Figure 6. Conversion Gain and IIP3  
vs Tuned IF Input Frequency  
V
CC  
18  
RF  
RF  
OUT  
10  
50  
LT5520  
P
LO  
= –5dBm  
8
5520 F05  
17  
16  
15  
14  
13  
HIGH SIDE LO  
V
CC  
Figure 5. RF Output Circuit  
Operation at Different Input Frequencies  
P
LO  
= 0dBm  
LOW SIDE LO  
On the evaluation board shown in Figure 10, the input of  
theLT5520canbeeasilymatchedfordifferentfrequencies  
by changing the input capacitors, C1 and C2. Table 4 lists  
some actual values used at selected frequencies.  
0
200 300 400 500 600 700  
INPUT FREQUENCY (MHz)  
100  
5520 F07  
Table 4. Input Capacitor Values vs Frequency  
Frequency  
(MHz)  
Capacitance (C1, C2)  
(pF)  
Figure 7. SSB Noise Figure vs Tuned IF Input Frequency  
70  
820  
220  
68  
140  
240  
480  
650  
18  
12  
5520f  
8
LT5520  
U
W
U U  
APPLICATIO S I FOR ATIO  
Figures 6-8 illustrate the performance versus tuned IF  
input frequency with both high side and low side LO  
injection. Figure 6 shows the measured conversion gain  
and IIP3. The noise figure is plotted in Figure 7 for LO  
power levels of –5dBm and 0dBm. At lower input frequen-  
cies, the LO power level has little impact on noise figure.  
However, for higher frequencies, an increased LO drive  
level may be utilized to achieve better noise figure. The  
single-tone IIP2 behavior is illustrated in Figure 8.  
Low Frequency Matching of the RF Output Port  
Without any external components on the RF output, the  
internal transformer of the LT5520 provides a good 50Ω  
impedancematchforRFfrequenciesaboveapproximately  
1600MHz. At frequencies lower than this, the return loss  
drops below 10dB and degrades the conversion gain. The  
addition of a single 3.3pF capacitor in series with the RF  
output improves the match at lower RF frequencies,  
shifting the 10dB return loss point to about 1300MHz, as  
demonstrated in Figure 9. This change also results in an  
improvement of the conversion gain, as shown in  
Figure 9.  
60  
1
0
0
C
= 3.3pF  
OUT  
LOW SIDE LO  
50  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–5  
NO C  
OUT  
GAIN  
40  
–10  
–15  
–20  
–25  
HIGH SIDE LO  
30  
20  
10  
0
RETURN LOSS  
NO C  
OUT  
C
= 3.3pF  
OUT  
400  
100 200 300  
INPUT FREQUENCY (MHz)  
600 700  
0
500  
1200 1400  
1800 2000 2200 2400  
FREQUENCY (MHz)  
1600  
5520 F08  
5520 F09  
Figure 8. IIP2 vs Tuned IF Input Frequency  
Figure 9. Conversion Gain and Return Loss vs Output Frequency  
5520f  
9
LT5520  
U
W
U U  
APPLICATIO S I FOR ATIO  
(10a) Top Layer Silkscreen  
(10b) Top Layer Metal  
Figure 10. Evaluation Board Layout  
5520f  
10  
LT5520  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
BOTTOM VIEW—EXPOSED PAD  
0.75 ± 0.05  
R = 0.115  
TYP  
0.55 ± 0.20  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
0.72 ±0.05  
PIN 1  
TOP MARK  
1
2
4.35 ± 0.05  
2.90 ± 0.05  
2.15 ± 0.05  
(4 SIDES)  
2.15 ± 0.10  
(4-SIDES)  
PACKAGE  
OUTLINE  
(UF) QFN 0802  
0.30 ± 0.05  
0.65 BSC  
0.200 REF  
0.30 ±0.05  
0.65 BCS  
0.00 – 0.05  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5520f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT5520  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT5511  
DESCRIPTION  
COMMENTS  
High Signal Level Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
RF Input to 3GHz, 20dBm IIP3, Integrated LO Buffer  
LT5512  
DC-3GHz High Signal Level Downconverting Mixer  
LT5515  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator 20dBm IIP3,Integrated LO Quadrature Generator  
0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator 21.5dBm IIP3,Integrated LO Quadrature Generator  
LT5516  
LT5522  
600MHz to 2.7GHz High Signal Level Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB,  
50Single-Ended RF and LO Ports  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
RF Power Detectors with >40dB Dynamic Range  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
80dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply  
300MHz to 3GHz, Temperature Compensated, 2.7V to 5.5V Supply  
300MHz to 3GHz, Temperature Compensated, 2.7V to 5.5V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Temperature Compensated, SC70 Package  
LTC5505  
LTC5507  
LTC5508  
LTC5509  
300MHz to 3GHz RF Power Detector  
LTC5532  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Offset Control, Adjustable Gain and Offset  
OUT  
RF Receiver Building Blocks  
LT5500  
LT5502  
1.8GHz to 2.7GHz Receiver Front End  
1.8V to 5.25V Supply, Dual-Gain LNA, Mixer LO Buffer  
400MHz Quadrature IF Demodulator with RSSI  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain,  
90dB RSSI Range  
LT5503  
LT5506  
LT5546  
1.2GHz to 2.7GHz Direct IQ Modulator and  
Upconverting Mixer  
1.8V to 5.25V Supply, Four-Step RF Power Control,  
120MHz Modulation Bandwidth  
500MHz Quadrature IF Demodulator with VGA  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB  
Linear Power Gain, 8.8MHz Baseband Bandwidth  
500MHz Ouadrature IF Demodulator with  
VGA and 17MHz Baseband Bandwidth  
1.8V to 5.25V Supply, 40MHz to 500MHz IF,  
–7dB to 56dB Linear Power Gain  
5520f  
LT/TP 1103 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5520EUF#PBF

LT5520 - 1.3GHz to 2.3GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5521

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5521EUF

Very High Linearity Active Mixer
Linear

LT5521EUF#PBF

LT5521 - Very High Linearity Active Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5521EUF#TR

LT5521 - Very High Linearity Active Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5522

40MHz to 900MHz Quadrature Demodulator
Linear

LT5522EUF

400MHz to 2.7GHz High Signal Level Downconverting Mixer
Linear

LT5522EUF#TR

LT5522 - 600MHz to 2.7GHz High Signal Level Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5524

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5524EFE

Low Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain
Linear

LT5524EFE#PBF

暂无描述
Linear

LT5525

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear