LT5528EUF [Linear]

1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator; 1.5GHz至2.4GHz高线性度直接正交调制器
LT5528EUF
型号: LT5528EUF
厂家: Linear    Linear
描述:

1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator
1.5GHz至2.4GHz高线性度直接正交调制器

射频 微波
文件: 总16页 (文件大小:310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5528  
1.5GHz to 2.4GHz  
High Linearity Direct  
Quadrature Modulator  
U
DESCRIPTIO  
FEATURES  
Direct Conversion to 1.5GHz to 2.4GHz  
The LT®5528 is a direct I/Q modulator designed for high  
performance wireless applications, including wireless  
infrastructure. It allows direct modulation of an RF signal  
using differential baseband I and Q signals. It supports  
PHS, GSM, EDGE, TD-SCDMA, CDMA, CDMA2000,  
W-CDMA and other systems. It may also be configured  
as an image reject up-converting mixer, by applying  
90° phase-shifted signals to the I and Q inputs. The I/Q  
baseband inputs consist of voltage-to-current converters  
that in turn drive double-balanced mixers. The outputs of  
these mixers are summed and applied to an on-chip RF  
transformer, which converts the differential mixer signals  
to a 50Ω single-ended output. The four balanced I and Q  
baseband input ports are intended for DC coupling from a  
source with a common-mode voltage level of about 0.5V.  
The LO path consists of an LO buffer with single-ended  
input, and precision quadrature generators that produce  
the LO drive for the mixers. The supply voltage range is  
4.5V to 5.25V.  
High OIP3: 21.8dBm at 2GHz  
Low Output Noise Floor at 5MHz Offset:  
No RF: –159.3dBm/Hz  
P
= 4dBm: –151.8dBm/Hz  
OUT  
4-Ch W-CDMA ACPR: –66dBc at 2.14GHz  
Integrated LO Buffer and LO Quadrature Phase  
Generator  
50Ω AC-Coupled Single-Ended LO and RF Ports  
50Ω DC Interface to Baseband Inputs  
Low Carrier Leakage: –42dBm at 2GHz  
High Image Rejection: 45dB at 2GHz  
16-Lead QFN 4mm × 4mm Package  
U
APPLICATIO S  
Infrastructure Tx for DCS, PCS and UMTS Bands  
Image Reject Up-Converters for PCS and UMTS  
Bands  
Low-Noise Variable Phase-Shifter for 1.5GHz to  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
2.4GHz Local Oscillator Signals  
U
TYPICAL APPLICATIO  
1.5GHz to 2.4GHz Direct Conversion Transmitter Application  
with LO Feed-Through and Image Calibration Loop  
W-CDMA ACPR, AltCPR and Noise vs RF Output  
Power at 2140MHz for 1, 2 and 4 Channels  
5V  
V
CC 8, 13  
–55  
–60  
–65  
–70  
–75  
–80  
–140  
–145  
–150  
–155  
–160  
–165  
DOWNLINK TEST MODEL 64 DPCH  
LT5528  
14  
16  
RF = 1.5GHz  
TO 2.4GHz  
I-DAC  
V-I  
I-CHANNEL  
11  
PA  
0°  
4-CH ACPR  
2-CH ACPR  
1
EN  
90°  
BALUN  
2-CH AltCPR  
1-CH AltCPR  
4-CH NOISE  
LO FEED-THROUGH CAL OUT  
IMAGE CAL OUT  
4-CH AltCPR  
1-CH ACPR  
Q-CHANNEL  
V-I  
7
5
Q-DAC  
CAL  
BASEBAND  
DSP  
3
VCO/SYNTHESIZER  
2, 4, 6, 9, 10, 12, 15, 17  
1-CH NOISE  
–42 –38 –34 –30 –26 –22 –18 –14  
RF OUTPUT POWER PER CARRIER (dBm)  
ADC  
5528 TA01a  
5528 TA01b  
5528f  
1
LT5528  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
Supply Voltage.........................................................5.5V  
Common-Mode Level of BBPI, BBMI and  
BBPQ, BBMQ .......................................................2.5V  
Operating Ambient Temperature  
16 15 14 13  
EN  
GND  
LO  
1
2
3
4
12 GND  
11 RF  
LT5528EUF  
17  
GND  
GND  
10  
9
(Note 2) ...............................................40°C to 85°C  
Storage Temperature Range.................. 65°C to 125°C  
Voltage on Any Pin  
GND  
5
6
7
8
UF PART  
MARKING  
Not to Exceed......................500mV to V + 500mV  
CC  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
= 125°C, θ = 37°C/W  
5528A  
T
JMAX  
JA  
EXPOSED PAD IS GROUND (PIN 17)  
MUST BE SOLDERED TO PCB.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
VCC = 5V, EN = High, TA = 25°C, fLO = 2GHz, fRF = 2.002GHz, PLO = 0dBm.  
BBPI, BBMI, BBPQ, BBMQ inputs 0.525VDC, Baseband Input Frequency = 2MHz, I&Q 90° shifted (upper sideband selection).  
PRF, OUT = –10dBm, unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RF Output (RF)  
f
RF  
RF Frequency Range  
RF Frequency Range  
3dB Bandwidth  
1dB Bandwidth  
1.5 to 2.4  
1.7 to 2.2  
GHz  
GHz  
S
S
RF Output Return Loss  
RF Output Return Loss  
RF Output Noise Floor  
EN = High (Note 6)  
EN = Low (Note 6)  
15  
12  
dB  
dB  
22, ON  
22, OFF  
NFloor  
No Input Signal (Note 8)  
159.3  
151.8  
151.8  
dBm/Hz  
dBm/Hz  
dBm/Hz  
P
P
= 4dBm (Note 9)  
= 4dBm (Note 10)  
OUT  
OUT  
G
G
Conversion Power Gain  
Conversion Voltage Gain  
Absolute Output Power  
3 • LO Conversion Gain Difference  
Output 1dB Compression  
Output 2nd Order Intercept  
Output 3rd Order Intercept  
Image Rejection  
P
/P  
OUT IN, I&Q  
6.5  
–6  
dB  
dB  
P
20 • Log (V  
/V  
)
V
OUT, 50Ω IN, DIFF, I or Q  
P
OUT  
1V  
CW Signal, I and Q  
2.1  
28  
7.9  
dBm  
dB  
P-P DIFF  
G
(Note 17)  
(Note 7)  
3LO vs LO  
OP1dB  
OIP2  
OIP3  
IR  
dBm  
dBm  
dBm  
dBc  
(Notes 13, 14)  
(Notes 13, 15)  
(Note 16)  
49  
21.8  
45  
LOFT  
Carrier Leakage  
(LO Feed-Through)  
EN = High, P = 0dBm (Note 16)  
42  
57.8  
dBm  
dBm  
LO  
EN = Low, P = 0dBm (Note 16)  
LO  
LO Input (LO)  
f
LO Frequency Range  
1.5 to 2.4  
0
GHz  
dBm  
dB  
LO  
P
S
S
LO Input Power  
10  
5
LO  
LO Input Return Loss  
EN = High (Note 6)  
EN = Low (Note 6)  
(Note 5) at 2GHz  
(Note 5) at 2GHz  
(Note 5) at 2GHz  
17  
11, ON  
11, OFF  
LO Input Return Loss  
5.5  
14.4  
20.4  
10  
dB  
NF  
LO Input Referred Noise Figure  
LO to RF Small Signal Gain  
LO Input 3rd Order Intercept  
dB  
LO  
G
dB  
LO  
IIP3  
dBm  
LO  
5528f  
2
LT5528  
ELECTRICAL CHARACTERISTICS  
VCC = 5V, EN = High, TA = 25°C, fLO = 2GHz, fRF = 2.002GHz, PLO = 0dBm.  
BBPI, BBMI, BBPQ, BBMQ inputs 0.525VDC, Baseband Input Frequency = 2MHz, I&Q 90° shifted (upper sideband selection).  
PRF, OUT = –10dBm, unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Baseband Inputs (BBPI, BBMI, BBPQ, BBMQ)  
BW  
Baseband Bandwidth  
3dB Bandwidth  
(Note 4)  
400  
0.525  
45  
MHz  
V
BB  
V
DC Common Mode Voltage  
Single-Ended Input Resistance  
Carrier Feed-Through on BB  
Input 1dB Compression Point  
I/Q Absolute Gain Imbalance  
I/Q Absolute Phase Imbalance  
CMBB  
R
IN, SE  
(Note 4)  
Ω
P
P
= 0 (Note 4)  
OUT  
40  
3.2  
dBm  
LO2BB  
IP1dB  
Differential Peak-to-Peak (Note 7)  
V
P-P, DIFF  
ΔG  
0.05  
0.5  
dB  
I/Q  
I/Q  
Δϕ  
Deg  
Power Supply (V  
)
CC  
V
Supply Voltage  
4.5  
1.0  
5
5.25  
145  
50  
V
mA  
µA  
µs  
CC  
I
I
t
t
Supply Current  
EN = High  
125  
0.05  
0.25  
1.3  
CC, ON  
CC, OFF  
ON  
Supply Current, Sleep Mode  
Turn-On Time  
EN = 0V  
EN = Low to High (Note 11)  
EN = High to Low (Note 12)  
Turn-Off Time  
µs  
OFF  
Enable (EN), Low = Off, High = On  
Enable  
Input High Voltage  
Input High Current  
EN = High  
EN = 5V  
V
µA  
240  
Sleep  
Input Low Voltage  
EN = Low  
0.5  
V
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 10: At 5MHz offset from the CW signal frequency.  
Note 11: RF power is within 10% of final value.  
Note 2: Specifications over the 40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Note 3: Tests are performed as shown in the configuration of Figure 7.  
Note 4: On each of the four baseband inputs BBPI, BBMI, BBPQ and  
Note 12: RF power is at least 30dB lower than in the ON state.  
Note 13: Baseband is driven by 2MHz and 2.1MHz tones. Drive level is set  
in such a way that the two resulting RF tones are –10dBm each.  
Note 14: IM2 measured at LO frequency + 4.1MHz.  
Note 15: IM3 measured at LO frequency + 1.9MHz and LO frequency +  
2.2MHz.  
Note 16: Amplitude average of the characterization data set without image  
or LO feed-through nulling (unadjusted).  
BBMQ.  
Note 5: V(BBPI) – V(BBMI) = 1V , V(BBPQ) – V(BBMQ) = 1V  
.
DC  
DC  
Note 6: Maximum value within 1dB bandwidth.  
Note 7: An external coupling capacitor is used in the RF output line.  
Note 8: At 20MHz offset from the LO signal frequency.  
Note 9: At 20MHz offset from the CW signal frequency.  
Note 17: The difference in conversion gain between the spurious signal at  
f = 3 • LO – BB versus the conversion gain at the desired signal at f = LO +  
BB for BB = 2MHz and LO = 2GHz.  
5528f  
3
LT5528  
U W  
VCC = 5V, EN = High, TA = 25°C, fLO = 2.14GHz, PLO  
TYPICAL PERFOR A CE CHARACTERISTICS  
= 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.525VDC, Baseband Input Frequency fBB = 2MHz, I&Q 90° shifted. fRF = fBB + fLO (upper  
sideband selection). PRF, OUT = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3)  
Gain and Output 1dB  
Gain and Output 1dB Compression  
vs LO Frequency and Temperature  
Compression vs LO Frequency  
and Supply Voltage  
Supply Current vs Supply Voltage  
140  
130  
120  
110  
100  
10  
5
10  
5
85°C  
OP1dB  
OP1dB  
25°C  
0
0
–5  
–5  
–40°C  
–10  
–15  
–20  
–10  
–15  
–20  
GAIN  
GAIN  
–40°C  
25°C  
85°C  
4.5V  
5V  
5.5V  
4.5  
5.0  
5.5  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
SUPPLY VOLTAGE (V)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
5528 G01  
5528 G02  
5528 G03  
Output IP3 and Noise Floor vs  
Output IP3 and Noise Floor vs  
LO Frequency and Temperature  
LO Frequency and Supply Voltage  
Output IP2 vs LO Frequency  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
–142  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
–142  
65  
60  
55  
50  
45  
40  
35  
–40°C  
4.5V  
25°C –144  
85°C  
5V –144  
5.5V  
–146  
–146  
–148  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
OIP3  
= 2MHz  
BB, 2  
–148  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
OIP3  
= 2MHz  
BB, 2  
f
BB, 1  
f
BB, 1  
f
= 2.1MHz  
f
= 2.1MHz  
NOISE FLOOR  
NO BASEBAND SIGNAL  
20MHz OFFSET NOISE  
NOISE FLOOR  
NO BASEBAND SIGNAL  
20MHz OFFSET NOISE  
4.5V, 25°C  
5V, 40°C  
5V, 25°C  
5V, 85°C  
5.5V, 25°C  
6
6
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
5528 G04  
5528 G05  
f
f
= f  
BB, 1  
+ f  
+ f  
f
= 2.1MHz  
IM2 BB,1 BB,2 LO  
BB, 2  
= 2MHz  
5528 G06  
5528f  
4
LT5528  
U W  
VCC = 5V, EN = High, TA = 25°C, fLO = 2.14GHz, PLO  
= 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.525VDC, Baseband Input Frequency fBB = 2MHz, I&Q 90° shifted. fRF = fBB + fLO (upper  
sideband selection). PRF, OUT = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3)  
TYPICAL PERFOR A CE CHARACTERISTICS  
2 • LO Leakage to RF Output vs  
2 • LO Frequency  
3 • LO Leakage to RF Output vs  
3 • LO Frequency  
LO to RF Output Feed-Through vs  
LO Frequency  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
–52  
–54  
4.5V, 25°C  
5V, 40°C  
5V, 25°C  
5V, 85°C  
5.5V, 25°C  
4.5V, 25°C  
5V, 40°C  
5V, 25°C  
5V, 85°C  
5.5V, 25°C  
4.5V, 25°C  
5V, 40°C  
5V, 25°C  
5V, 85°C  
5.5V, 25°C  
2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4  
3.9 4.5 5.1 5.7 6.3 6.9 7.5 8.1  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
2 • LO FREQUENCY (GHz)  
3 • LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
5528 G07  
5528 G08  
5528 G09  
Absolute I/Q Gain Imbalance vs  
LO Frequency  
Absolute I/Q Phase Imbalance vs  
LO Frequency  
Image Rejection vs LO Frequency  
–26  
–28  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
0.3  
0.2  
0.1  
0
5
4
3
2
1
0
4.5V, 25°C  
5V, 40°C  
5V, 25°C  
5V, 85°C  
5.5V, 25°C  
4.5V, 25°C  
5V, 40°C  
5V, 25°C  
5V, 85°C  
5.5V, 25°C  
4.5V, 25°C  
5V, 40°C  
5V, 25°C  
5V, 85°C  
5.5V, 25°C  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
5528 G10  
5528 G11  
5528 G12  
5528f  
5
LT5528  
U W  
VCC = 5V, EN = High, TA = 25°C, fLO = 2.14GHz, PLO  
TYPICAL PERFOR A CE CHARACTERISTICS  
= 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.525VDC, Baseband Input Frequency fBB = 2MHz, I&Q 90° shifted. fRF = fBB + fLO (upper  
sideband selection). PRF, OUT = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3)  
RF Output Power, HD2 and HD3  
at 2140MHz vs Baseband Voltage  
and Temperature  
Gain vs LO Power  
Output IP3 vs LO Power  
–4  
–6  
22  
20  
18  
16  
14  
12  
10  
8
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10  
RF  
0
HD3  
–8  
–10  
–20  
–30  
–40  
–50  
–10  
–12  
–14  
–16  
–18  
–20  
HD2  
4.5V, 25°C  
5V, 40°C  
5V, 25°C  
4.5V, 25°C  
5V, 40°C  
5V, 25°C  
6
4
–40°C  
25°C  
85°C  
5V, 85°C  
5V, 85°C  
2
5.5V, 25°C  
5.5V, 25°C  
0
–20 –16 –12 –8  
–4  
0
4
8
–20 –16 –12 –8  
–4  
0
4
8
0
1
2
3
4
5
LO POWER (dBm)  
LO POWER (dBm)  
I AND Q BASEBAND VOLTAGE (V  
)
P-P, DIFF  
5528 G13  
f
f
= 2MHz  
= 2.1MHz  
f
f
= 2MHz, 0°  
BBQ  
HD2 = MAX POWER AT f + 2 • f OR f – 2 • f  
BB, 1  
BB, 2  
BBI  
= 2MHz, 90°  
5528 G14  
LO BB LO  
BB  
BB  
HD3 = MAX POWER AT f + 3 • f OR f – 3 • f  
LO  
BB  
LO  
5528 G15  
RF Output Power, HD2 and HD3  
at 2140MHz vs Baseband Voltage  
and Supply Voltage  
LO Feed-Through and Image  
Rejection at 2140MHz vs Baseband  
Voltage and Temperature  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10  
–25  
–30  
–35  
–40  
–45  
–50  
–40°C  
25°C  
RF  
85°C  
0
LOFT  
HD3  
–10  
–20  
–30  
–40  
–50  
HD2  
IR  
4.5V  
5V  
5.5V  
0
1
2
3
4
5
0
1
2
3
4
5
I AND Q BASEBAND VOLTAGE (V  
)
I AND Q BASEBAND VOLTAGE (V  
)
P-P, DIFF  
P-P, DIFF  
f
f
= 2MHz, 0°  
BBQ  
HD2 = MAX POWER AT f + 2 • f OR f – 2 • f  
f
f
= 2MHz, 0°  
BBQ  
BBI  
BBI  
= 2MHz, 90°  
= 2MHz, 90°  
5528 G17  
LO  
LO  
BB  
BB  
LO  
LO  
BB  
BB  
HD3 = MAX POWER AT f + 3 • f OR f – 3 • f  
5528 G16  
5528f  
6
LT5528  
U W  
VCC = 5V, EN = High, TA = 25°C, fLO = 2.14GHz, PLO  
= 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.525VDC, Baseband Input Frequency fBB = 2MHz, I&Q 90° shifted. fRF = fBB + fLO (upper  
sideband selection). PRF, OUT = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3)  
TYPICAL PERFOR A CE CHARACTERISTICS  
LO Feed-Through and Image  
Rejection at 2140MHz vs Baseband  
Voltage and Supply Voltage  
RF Output Power vs  
LO and RF Port Return Loss vs  
RF Frequency  
RF Frequency at 1VP-P  
Differential Baseband Drive  
–25  
–30  
–35  
–40  
–45  
–50  
0
–10  
–20  
–30  
–40  
–50  
0
–2  
4.5V  
5V  
LO PORT, EN = LOW  
5.5V  
LOFT  
–4  
–6  
RF PORT,  
LO PORT,  
EN = HIGH  
4.5V, 25°C  
5V, 40°C  
5V, 25°C  
5V, 85°C  
5.5V, 25°C  
EN = HIGH,  
P
= OFF  
–8  
LO  
IR  
RF PORT,  
EN = HIGH,  
= 0dBm  
–10  
–12  
–14  
RF PORT,  
EN = LOW  
P
LO  
V
V
= 1V  
P-P, DIFF  
BBI  
= 1V  
BBQ  
P-P, DIFF  
0
1
2
3
4
5
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
I AND Q BASEBAND VOLTAGE (V  
)
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
P-P, DIFF  
5528 G20  
5528 G19  
f
f
= 2MHz, 0°  
BBQ  
BBI  
= 2MHz, 90°  
5528 G18  
U
U
U
PI FU CTIO S  
EN(Pin1):EnableInput.WhentheENpinvoltageishigher BBPQ,BBMQ(Pins7,5):BasebandInputsfortheQ-chan-  
than 1V, the IC is turned on. When the input voltage is less nel, each 45Ω input impedance. Internally biased at about  
than 0.5V, the IC is turned off.  
0.525V. Applied voltage must stay below 2.5V.  
V (Pins 8, 13): Power Supply. Pins 8 and 13 are con-  
CC  
GND (Pins 2, 4, 6, 9, 10, 12, 15): Ground. Pins 6, 9, 15  
and 17 (exposed pad) are connected to each other inter- nected to each other internally. It is recommended to use  
nally. Pins 2 and 4 are connected to each other internally 0.1µF capacitors for decoupling to ground on each of  
and function as the ground return for the LO signal. Pins these pins.  
10 and 12 are connected to each other internally and  
RF (Pin 11): RF Output. The RF output is an AC-coupled  
function as the ground return for the on-chip RF balun.  
single-ended output with approximately 50Ω output im-  
For best RF performance, pins 2, 4, 6, 9, 10, 12, 15 and  
pedance at RF frequencies. Externally applied DC voltage  
the Exposed Pad 17 should be connected to the printed  
should be within the range 0.5V to V + 0.5V in order  
CC  
circuit board ground plane.  
to avoid turning on ESD protection diodes.  
LO(Pin3):LOInput.TheLOinputisanAC-coupledsingle-  
ended input with approximately 50Ω input impedance at  
RF frequencies. Externally applied DC voltage should be  
BBPI, BBMI (Pins 14, 16): Baseband Inputs for the  
I-channel, each with 45Ω input impedance. These pins are  
internally biased at about 0.525V. Applied voltage must  
stay below 2.5V.  
within the range 0.5V to V + 0.5V in order to avoid  
CC  
turning on ESD protection diodes.  
Exposed Pad (Pin 17): Ground. This pin must be soldered  
to the printed circuit board ground plane.  
5528f  
7
LT5528  
W
BLOCK DIAGRA  
V
CC  
8
13  
LT5528  
BBPI 14  
BBMI 16  
V-I  
V-I  
11 RF  
0°  
90°  
BALUN  
BBPQ  
BBMQ  
7
5
1
EN  
2
4
6
9
3
10  
12  
15  
17  
5528 BD  
GND  
LO  
GND  
U
W U U  
APPLICATIO S I FOR ATIO  
The LT5528 consists of I and Q input differential voltage-  
to-current converters, I and Q up-conversion mixers, an  
RF output balun, an LO quadrature phase generator and  
LO buffers.  
External I and Q baseband signals are applied to the dif-  
ferential baseband input pins, BBPI, BBMI, and BBPQ,  
BBMQ.Thesevoltagesignalsareconvertedtocurrentsand  
translated to RF frequency by means of double-balanced  
up-converting mixers. The mixer outputs are combined  
in an RF output balun, which also transforms the output  
impedance to 50Ω. The center frequency of the resulting  
RF signal is equal to the LO signal frequency. The LO input  
drives a phase shifter which splits the LO signal into in-  
phaseandquadratureLOsignals.TheseLOsignalsarethen  
applied to on-chip buffers which drive the up-conversion  
mixers. Both the LO input and RF output are single-ended,  
50Ω-matched and AC coupled.  
LT5528  
RF  
= 5V  
C
V
CC  
BALUN  
FROM  
Q
LOMI  
CM  
LOPI  
R1A  
20  
R1B  
23Ω  
R2B  
23Ω  
R2A  
20Ω  
BBPI  
R3  
R4  
12pF  
12pF  
Baseband Interface  
V
REF  
= 0.52V  
BBMI  
Thebasebandinputs(BBPI,BBMI),(BBPQ,BBMQ)present  
a differential input impedance of about 90Ω. At each of the  
fourbasebandinputs,arst-orderlow-passlterusing20Ω  
5528 F01  
GND  
Figure 1. Simplified Circuit Schematic of the LT5528  
(Only I-Half is Drawn)  
5528f  
8
LT5528  
U
W U U  
APPLICATIO S I FOR ATIO  
It is recommended that the part be driven differentially;  
otherwise, the even-order distortion products will de-  
grade the overall linearity severely. Typically, a DAC will  
be the signal source for the LT5528. To prevent aliasing,  
a filter should be placed between the DAC output and the  
LT5528’sbasebandinputs.InFigure3,anexampleinterface  
schematic shows a commonly used DAC output interface  
and 12pF to ground is incorporated (see Figure 1), which  
limits the baseband bandwidth to approximately 330MHz  
(–1dB point). The common-mode voltage is about 0.52V  
and is approximately constant over temperature.  
Itisimportantthattheappliedcommon-modevoltagelevel  
of the I and Q inputs is about 0.52V in order to properly  
bias the LT5528. Some I/Q test generators allow setting  
thecommon-modevoltageindependently.Inthiscase,the  
common-mode voltage of those generators must be set  
to 0.26V to match the LT5528 internal bias, because for  
DC signals, there is no –6dB source-load voltage division  
(see Figure 2).  
th  
followed by a passive 5 order ladder filter. The DAC in  
this example sources a current from 0mA to 20mA. The  
interface may be DC coupled. This allows adjustment of  
the DAC’s differential output current to minimize the LO  
feed-through. Optionally, transformer T1 can be inserted  
to improve the current balance in the BBPI and BBMI pins.  
Thiswillimprovethesecond-orderdistortionperformance  
(OIP2).  
50  
50Ω  
45Ω  
0.26V  
0.52V  
DC  
DC  
+
+
+
DC  
0.52V  
0.52V  
0.52V  
DC  
DC  
The maximum single sideband CW RF output power at  
2GHz using 20mA drive to both I and Q channels with the  
configuration shown in Figure 3 is about –2.5dBm. The  
maximum CW output power can be increased by con-  
necting resistors R5 and R6 to –5V instead of GND, and  
changing their values to 550Ω. In that case, the maximum  
singlesidebandCWRFoutputpowerat2GHzwillbeabout  
2.3dBm. In addition, the ladder filter component values  
require adjustment for a higher source impedance.  
50Ω  
GENERATOR  
GENERATOR  
LT5528  
5528 F02  
Figure 2. DC Voltage Levels for a Generator Programmed at  
0.26VDC for a 50Ω Load and the LT5528 as a Load  
V
= 5V  
CC  
LT5528  
LOPI  
RF = –2.5dBm, MAX  
BALUN  
C
LOMI  
CM  
R1  
R2  
OPTIONAL  
BBPI  
0.5V  
L1A  
L2A  
45Ω  
45Ω  
T1  
1:1  
0mA TO 20mA  
0mA TO 20mA  
R5, 50Ω  
C1  
R6, 50Ω  
R3  
R4  
DAC  
C2  
L1B  
C3  
L2B  
V
REF  
= 0.52V  
GND  
BBMI  
0.5V  
5528 F03  
GND  
Figure 3. LT5528 5th Order Filtered Baseband Interface with Common DAC (Only I-Channel is Shown)  
5528f  
9
LT5528  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 1. LO Port Input Impedance vs Frequency for EN = High  
LO Section  
Frequency  
MHz  
Input Impedance  
S
11  
The internal LO input amplifier performs single-ended to  
differential conversion of the LO input signal. Figure 4  
shows the equivalent circuit schematic of the LO input.  
Ω
Mag  
Angle  
80  
1000  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
49.9 + j18.5  
68.1 + j8.8  
71.0 + j2.0  
70.0 – j8.6  
62.0 – j12.8  
53.8 – j13.6  
47.3 – j12.4  
41.1 – j12.0  
0.182  
0.171  
0.175  
0.182  
0.156  
0.135  
0.128  
0.161  
22  
4.8  
V
CC  
–6.6  
–40  
–66  
–95  
–119  
20pF  
LO  
INPUT  
Z
IN  
57Ω  
5528 F04  
If the part is in shut-down mode, the input impedance of  
the LO port will be different. The LO input impedance for  
EN = Low is given in Table 2.  
Figure 4. Equivalent Circuit Schematic of the LO Input  
The internal, differential LO signal is then split into in-  
phase and quadrature (90° phase shifted) signals that  
drive LO buffer sections. These buffers drive the double  
balanced I and Q mixers. The phase relationship between  
the LO input and the internal in-phase LO and quadrature  
LO signals is fixed, and is independent of start-up condi-  
tions. The phase shifters are designed to deliver accurate  
quadrature signals for an LO frequency near 2GHz. For  
frequencies significantly below 1.8GHz or above 2.4GHz,  
the quadrature accuracy will diminish, causing the image  
rejection to degrade. The LO pin input impedance is about  
50Ω, and the recommended LO input power is 0dBm. For  
lower LO input power, the gain, OIP2, OIP3 and dynamic-  
Table 2. LO Port Input Impedance vs Frequency for EN = Low  
Frequency  
MHz  
Input Impedance  
S
11  
Ω
Mag  
Angle  
67.8  
1000  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
46.6 + j47.6  
136 + j44.5  
157 – j24.5  
114 – j70.6  
70.7 – j72.1  
45.3 – j59.0  
31.2 – j45.2  
22.8 – j34.2  
0.443  
0.507  
0.526  
0.533  
0.533  
0.528  
0.527  
0.543  
13.8  
–6.2  
–24.6  
–43.2  
–62.8  
–83.5  
–103  
RF Section  
range will degrade, especially below –5dBm and at T =  
A
85°C. For high LO input power (e.g. 5dBm), the LO feed-  
through will increase with no improvement in linearity or  
gain. Harmonics present on the LO signal can degrade the  
imagerejectionbecausetheycanintroduceasmallexcess  
phase shift in the internal phase splitter. For the second (at  
4GHz) and third harmonics (at 6GHz) at –20dBc level, the  
introduced signal at the image frequency is about –56dBc  
or lower, corresponding to an excess phase shift much  
below 1 degree. For the second and third harmonics at  
–10dBc, the introduced signal at the image frequency is  
about –47dBc. Higher harmonics than the third will have  
less impact. The LO return loss typically will be better than  
17dB over the 1.7GHz to 2.3GHz range. Table 1 shows the  
LO port input impedance vs. frequency.  
Afterup-conversion,theRFoutputsoftheIandQmixersare  
combined. An on-chip balun performs internal differential  
tosingle-endedoutputconversion,whiletransformingthe  
output signal impedance to 50Ω. Table 3 shows the RF  
port output impedance vs. frequency.  
Table 3. RF Port Output Impedance vs Frequency for EN = High  
and PLO = 0dBm  
Frequency  
MHz  
Output Impedance  
S
22  
Ω
Mag  
Angle  
158  
113  
87.6  
63.2  
127  
174  
163  
155  
1000  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
23.1 + j7.9  
34.4 + j20.7  
45.8 + j22.3  
54.5 + j12.4  
48.7 + j1.7  
39.1 + j1.0  
32.9 + j4.4  
29.7 + j7.4  
0.382  
0.298  
0.231  
0.125  
0.022  
0.123  
0.213  
0.269  
5528f  
10  
LT5528  
U
W U U  
APPLICATIO S I FOR ATIO  
The RF output S with no LO power applied is given in coupling capacitor can be inserted in the RF output line.  
22  
Table 4.  
This is strongly recommended during a 1dB compression  
measurement.  
Table 4. RF Port Output Impedance vs Frequency for EN = High  
and No LO Power Applied  
Enable Interface  
Frequency  
MHz  
Output Impedance  
S
22  
Ω
Mag  
Angle  
157  
112  
93.6  
123  
159  
154  
147  
142  
Figure 6 shows a simplified schematic of the EN pin in-  
terface. The voltage necessary to turn on the LT5528 is  
1V. To disable (shut down) the chip, the Enable voltage  
must be below 0.5V. If the EN pin is not connected, the  
chip is disabled. This EN = Low condition is guaranteed  
by the 75k on-chip pull-down resistor. It is important that  
1000  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
23.7 + j8.1  
37.7 + j18.5  
47.0 + j14.3  
46.0 + j5.5  
39.2 + j3.7  
34.2 + j6.2  
31.0 + j9.4  
29.6 + j11.6  
0.371  
0.248  
0.149  
0.071  
0.127  
0.201  
0.260  
0.292  
the voltage at the EN pin does not exceed V by more  
CC  
than 0.5V. If this should occur, the supply current could  
be sourced through the EN pin ESD protection diodes,  
which are not designed to carry the full supply current,  
and damage may result.  
For EN = Low the S is given in Table 5.  
22  
Table 5. RF Port Output Impedance vs Frequency for EN = Low  
V
Frequency  
MHz  
Output Impedance  
S
22  
CC  
Ω
Mag  
Angle  
158  
1000  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
22.8 + j7.7  
32.4 + j20.8  
42.4 + j25.1  
54.6 + j20.1  
55.3 + j6.0  
44.7 + j0.0  
36.0 + j1.9  
31.3 + j4.8  
0.386  
0.321  
0.274  
0.193  
0.076  
0.056  
0.164  
0.237  
EN  
116  
75k  
25k  
91.7  
66.2  
45.3  
180  
5528 F06  
Figure 6. EN Pin Interface  
171  
162  
Evaluation Board  
Figure 7 shows the evaluation board schematic. A good  
ground connection is required for the exposed pad. If this  
is not done properly, the RF performance will degrade.  
To improve S for lower frequencies, a shunt capacitor  
22  
can be added to the output. At higher frequencies, a shunt  
inductorcanimprovetheS .Figure5showstheequivalent  
22  
circuit schematic of the RF output.  
J1  
J2  
BBIM  
BBIP  
Note that an ESD diode is connected internally from  
the RF output to ground. For strong output RF signal  
levels (higher than 3dBm), this ESD diode can degrade  
the linearity performance if the 50Ω termination imped-  
ance is connected directly to ground. To prevent this, a  
V
CC  
C2  
100nF  
16  
BBMI GND BBPI  
EN  
15  
14  
13  
R1  
100  
V
CC  
1
2
3
4
12  
GND  
RF  
V
CC  
EN  
J3  
11  
10  
9
RF  
OUT  
GND  
LO  
J4  
LO  
IN  
LT5528  
GND  
GND  
GND  
GND  
V
CC  
17  
BBMQ GND BBPQ  
V
CC  
20pF  
5
6
7
8
RF  
OUTPUT  
C1  
100nF  
J5  
3nH  
21pF  
52.5Ω  
J6  
BBQM  
GND  
BBQP  
5528 F05  
BOARD NUMBER: DC729A  
5528 F07  
Figure 5. Equivalent Circuit Schematic of the RF Output  
Figure 7. Evaluation Circuit Schematic  
5528f  
11  
LT5528  
U
W U U  
APPLICATIO S I FOR ATIO  
Additionally, theexposedpadprovidesheatsinkingforthe the results are described in an application note.  
part and minimizes the possibility of the chip overheating.  
R1 (optional) limits the Enable pin current in the event  
IfimprovedLOandImagesuppressionarerequired, anLO  
that the Enable pin is pulled high while the V inputs are  
CC  
feed-throughcalibrationandanImagesuppressioncalibra-  
tion can be performed. The evaluation board schematic  
of the calibration hardware, the calibration procedure and  
low. In Figures 8, 9, 10 and 11, the silk screens and the  
PCB board layout are shown.  
Figure 8. Component Side Silk Screen of Evaluation Board  
Figure 9. Component Side Layout of Evaluation Board  
Figure 10. Bottom Side Silk Screen of Evaluation Board  
Figure 11. Bottom Side Layout of Evaluation Board  
5528f  
12  
LT5528  
U
W U U  
APPLICATIO S I FOR ATIO  
Application Measurements  
Because of the LT5528’s very high dynamic-range, the  
test equipment can limit the accuracy of the ACPR mea-  
surement. Consult the factory for advice on the ACPR  
measurement, if needed.  
TheLT5528isrecommendedforbase-stationapplications  
usingvariousmodulationformats. Figure12showsatypi-  
cal application. The CAL box in Figure 12 allows for LO  
feed-through and Image suppression calibration.  
TheACPRperformanceissensitivetotheamplitudematch  
of the BBIP and BBIM (or BBQP and BBQM) inputs. This  
is because a difference in AC current amplitude will give  
rise to a difference in amplitude between the even-order  
harmonic products generated in the internal V-I converter.  
As a result, they will not cancel out entirely. Therefore, it  
is important to keep the currents in those pins exactly the  
same (but of opposite sign). The current will enter the  
LT5528’s common-base stage, and will flow to the mixer  
upper switches. This can be seen in Figure 1 where the  
Figure13showstheACPRperformanceforW-CDMAusing  
one,twoorfourchannelmodulation.Figures14,15and16  
illustratethe1-, 2-and4-channelW-CDMAmeasurement.  
To calculate ACPR, a correction is made for the spectrum  
analyzer noise floor. If the output power is high, the ACPR  
will be limited by the linearity performance of the part. If  
the output power is low, the ACPR will be limited by the  
noise performance of the part. In the middle, an optimum  
ACPR is obtained.  
5V  
V
CC 8, 13  
–55  
–60  
–65  
–70  
–75  
–80  
–140  
–145  
–150  
–155  
–160  
–165  
LT5528  
14  
16  
RF = 1.5GHz  
TO 2.4GHz  
DOWNLINK TEST MODEL 64 DPCH  
I-DAC  
V-I  
I-CHANNEL  
11  
PA  
0°  
1
EN  
4-CH ACPR  
2-CH ACPR  
90°  
BALUN  
LO FEED-THROUGH CAL OUT  
IMAGE CAL OUT  
Q-CHANNEL  
V-I  
7
5
2-CH AltCPR  
1-CH AltCPR  
4-CH NOISE  
4-CH AltCPR  
1-CH ACPR  
Q-DAC  
CAL  
BASEBAND  
GENERATOR  
3
VCO/SYNTHESIZER  
2, 4, 6, 9, 10, 12, 15, 17  
1-CH NOISE  
–42 –38 –34 –30 –26 –22 –18 –14  
RF OUTPUT POWER PER CARRIER (dBm)  
ADC  
5528 F12  
5528 F13  
Figure 12. 1.5GHz to 2.4GHz Direct Conversion Transmitter Application with  
LO Feed-Through and Image Calibration Loop  
Figure13:W-CDMAAPCR,AltCPRandNoise  
vs RF Output Power at 2140MHz for 1, 2 and  
4 Channels  
–30  
–40  
–30  
–40  
–40  
DOWNLINK TEST  
MODEL 64 DPCH  
DOWNLINK TEST  
MODEL 64  
DPCH  
DOWNLINK  
TEST  
–50  
–60  
MODEL 64  
DPCH  
–50  
–50  
–60  
–60  
–70  
UNCOR-  
CORRECTED  
SPECTRUM  
–70  
–70  
–80  
RECTED  
UNCOR-  
CORRECTED  
SPECTRUM  
CORRECTED  
SPECTRUM  
SPECTRUM  
RECTED  
UNCORRECTED  
SPECTRUM  
–80  
–80  
–90  
SPECTRUM  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–100  
–110  
–120  
SYSTEM  
NOISE FLOOR  
SYSTEM  
NOISE FLOOR  
SYSTEM  
NOISE FLOOR  
CORRECTED SPECTRUM  
2125 2135 2145  
RF FREQUENCY (MHz)  
2127.5 2132.5 2137.5 2142.5 2147.5 2152.5  
2125 2130 2135 2140 2145 2150 2155  
2115  
2155  
2165  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5528 F14  
5528 F15  
5528 F16  
Figure 14: 1-Channel W-CDMA Spectrum  
Figure 15: 2-Channel W-CDMA Spectrum  
Figure 16: 4-Channel W-CDMA Spectrum  
5528f  
13  
LT5528  
U
W U U  
APPLICATIO S I FOR ATIO  
internal circuit of the LT5528 is drawn. For best results, secondary in combination with the required impedance  
a high ohmic source is recommended; for example, the match.Thesecondarycentertapshouldnotbeconnected,  
interface circuit drawn in Figure 3, modified by pulling which allows some voltage swing if there is a single-  
resistors R5 and R6 to a –5V supply and adjusting their ended input impedance difference at the baseband pins.  
values to 550Ω, with T1 omitted.  
As a result, both currents will be equal. The disadvantage  
is that there is no DC coupling, so the LO feed-through  
calibration cannot be performed via the BB connections.  
After calibration when the temperature changes, the LO  
feed-through and the Image Rejection performance will  
change.ThisisillustratedinFigure17.TheLOfeed-through  
and Image Rejection can also change as a function of the  
baseband drive level, as is depicted in Figure 18. The RF  
output power, IM2 and IM3 vs a two-tone baseband drive  
are given in Figure 19.  
Another method to reduce current mismatch between  
the currents flowing in the BBIP and BBIM pins (or the  
BBQP and BBQM pins) is to use a 1:1 transformer with  
the two windings in the DC path (T1 in Figure 3). For DC,  
the transformer forms a short, and for AC, the transformer  
will reduce the common-mode current component, which  
forcesthetwocurrentstobebettermatched. Alternatively,  
atransformerwith1:2impedanceratiocanbeused, which  
gives a convenient DC separation between primary and  
–50  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
10  
P
RF  
–55  
0
LO FEED-THROUGH  
LOFT  
IR  
–60  
–65  
–10  
–20  
–30  
–40  
–50  
–60  
IMAGE REJECTION  
–70  
–75  
–80  
–40°C  
25°C  
85°C  
CALIBRATED WITH P = –10dBm  
RF  
–85  
–40  
–20  
0
20  
40  
60  
80  
0
1
2
3
4
5
TEMPERATURE (°C)  
I AND Q BASEBAND VOLTAGE (V  
)
P-P, DIFF  
EN = HIGH  
f
f
= 2.14GHz  
EN = HIGH  
f
= 2.14GHz  
LO  
LO  
V
= 5V  
= f + f  
RF BB LO  
V
= 5V  
f
= f + f  
RF BB LO  
CC  
BBI  
BBQ  
CC  
BBI  
BBQ  
f
f
= 2MHz, 0°  
= 2MHz, 90°  
P
= 0dBm  
f
f
= 2MHz, 0°  
= 2MHz, 90°  
P
= 0dBm  
LO  
LO  
5528 F18  
5528 F18  
Figure 17: LO Feed-Through and Image Rejection vs Temperature  
after Calibration at 25°C  
Figure 18: LO Feed-Through and Image Rejection vs Baseband  
Drive Voltage after Calibration at 25°C  
10  
0
P
RF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
IM3  
IM2  
–40°C  
25°C  
85°C  
–90  
0.1  
1
10  
I AND Q BASEBAND VOLTAGE (V  
EACH TONE)  
P-P, DIFF  
EN = HIGH  
f
f
= 2.14GHz  
LO  
V
= 5V  
= f + f  
RF BB LO  
CC  
BBI  
BBQ  
f
f
= 2MHz, 2.1MHz, 0°  
= 2MHz, 2.1MHz, 90°  
P
= 0dBm  
LO  
IM2 = POWER AT f + 4.1MHz  
LO  
IM3 = MAX POWER AT f + 1.9MHz OR  
LO  
f
+ 2.2MHz  
LO  
5528 F19  
Figure 19: RF Two-Tone Power, IM2 and IM3 at 2140MHz vs Baseband Voltage  
5528f  
14  
LT5528  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 0.05  
4.35 0.05  
2.90 0.05  
2.15 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
0.75 0.05  
R = 0.115  
TYP  
0.55 0.20  
4.00 0.10  
(4 SIDES)  
15  
16  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 0.10  
(4-SIDES)  
(UF) QFN 1103  
0.30 0.05  
0.65 BSC  
0.200 REF  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5528f  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT5528  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT5511  
DESCRIPTION  
COMMENTS  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC to 3GHz, 17dBm IIP3, Integrated LO Buffer  
LT5512  
DC-3GHz High Signal Level Downconverting  
Mixer  
LT5514  
LT5515  
LT5516  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
1.5GHz to 2.5GHz Direct Conversion Quadrature 20dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature 21.5dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
LT5517  
LT5519  
40MHz to 900MHz Quadrature Demodulator  
0.7GHz to 1.4GHz High Linearity Upconverting 17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer Single-Ended LO and RF Ports Operation  
21dBm IIP3, Integrated LO Quadrature Generator  
LT5520  
LT5521  
LT5522  
LT5524  
LT5526  
1.3GHz to 2.3GHz High Linearity Upconverting 15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer  
Single-Ended LO and RF Ports Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Port Operation  
600MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
Low Power, Low Distortion ADC Driver with  
Digitally Programmable Gain  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
High Linearity, Low Power Downconverting  
Mixer  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
S
–65dBm LO-RF Leakage  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.25V Supply  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
LTC5505  
RF Power Detectors with >40dB Dynamic  
Range  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
50MHz to 3GHz RF Power Detector with 60dB  
Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time  
Low Voltage RF Building Blocks  
LT5500  
LT5502  
LT5503  
1.8GHz to 2.7GHz Receiver Front End  
1.8V to 5.25V Supply, Dual-Gain LNA, Mixer, LO Buffer  
400MHz Quadrature IF Demodulator with RSSI 1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain, 90dB RSSI Range  
1.2GHz to 2.7GHz Direct IQ Modulator and  
Upconverting Mixer  
1.8V to 5.25V Supply, Four-Step RF Power Control, 120MHz Modulation Bandwidth  
LT5506  
LT5546  
500MHz Quadrature Demodulator with VGA  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, 4dB to 57dB Linear Power Gain,  
8.8MHz Baseband Bandwidth  
500MHz Quadrature Demodulator with VGA and 17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V Supply, –7dB to  
17MHz Baseband Bandwidth  
56dB Linear Power Gain  
Wide Bandwidth ADCs  
LTC1749  
LTC1750  
12-Bit, 80Msps  
500MHz BW S/H, 71.8dB SNR  
500MHz BW S/H, 75.5dB SNR  
14-Bit, 80Msps  
5528f  
LT/TP 1104 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT5528EUF#PBF

LT5528 - 1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5528EUF#TRPBF

暂无描述
Linear

LT5534

50MHz to 3GHz RF Power Detector with 60dB Dynamic Range
Linear

LT5534ESC6

50MHz to 3GHz RF Power Detector with 60dB Dynamic Range
Linear

LT5534ESC6#PBF

LT5534 - 50MHz to 3GHz RF Power Detector with 60dB Dynamic Range; Package: SC70; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT5534ESC6#TR

LT5534 - 50MHz to 3GHz RF Power Detector with 60dB Dynamic Range; Package: SC70; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT5534ESC6#TRMPBF

LT5534 - 50MHz to 3GHz RF Power Detector with 60dB Dynamic Range; Package: SC70; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT5534ESC6PBF

RF/Microwave Detector, 50 MHz - 3000 MHz RF/MICROWAVE LINEAR DETECTOR, LEAD FREE, PLASTIC, SC-70, MO-203AB, 6 PIN
Linear

LT5534ESC6TRPBF

RF/Microwave Detector, 50 MHz - 3000 MHz RF/MICROWAVE LINEAR DETECTOR, LEAD FREE, PLASTIC, SC-70, MO-203AB, 6 PIN
Linear

LT5537

Wide Dynamic Range RF/IF Log Detector
Linear

LT5537EDDB

Wide Dynamic Range RF/IF Log Detector
Linear

LT5537EDDB#TR

LT5537 - Wide Dynamic Range RF/IF Log Detector; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear