LT5554IUH#PBF [Linear]

LT5554 - Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA; Package: QFN; Pins: 32; Temperature Range: -40°C to 85°C;
LT5554IUH#PBF
型号: LT5554IUH#PBF
厂家: Linear    Linear
描述:

LT5554 - Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA; Package: QFN; Pins: 32; Temperature Range: -40°C to 85°C

文件: 总24页 (文件大小:325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT2940  
Power and Current Monitor  
FEATURES  
DESCRIPTION  
The LT®2940 measures a high side current and a differ-  
ential voltage, multiplies them and outputs a current  
proportional to instantaneous power. Bidirectional high  
side currents and bipolar voltage differences are correctly  
handled by the four-quadrant multiplier and push-pull  
output stage, which allows the LT2940 to indicate forward  
and reverse power flow.  
n
Four-Quadrant Power Measurement  
n
±±5 Power Measurement Aꢀꢀuraꢀc  
n
4V to 80V High Side Sense, 100V Max  
n
Current Mode Power and Current Outputs  
n
Output Bandwidth Exꢀeeds ±00kHz  
n
±ꢁ5 Current Measurement Aꢀꢀuraꢀc  
n
6V to 80V Supply Range, 100V Max  
n
Inverting and Noninverting Open-Collector  
An integrated comparator with inverting and noninvert-  
ing open-collector outputs makes the LT2940 a complete  
power level monitor. In addition, an output current pro-  
portional to the sensed high side current allows current  
monitoring. The current mode outputs make scaling,  
filtering and time integration as simple as selecting ex-  
ternal resistors and/or capacitors.  
Comparator Outputs  
n
Available in 12-Pin DFN (3mm × 3mm) and 12-Lead  
MSOP Packages  
APPLICATIONS  
n
Board Level Power and Current Monitoring  
n
Line Card and Server Power Monitoring  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Power Sense Circuit Breaker  
n
Power Control Loops  
n
Power/Energy Meters  
n
Battery Charger Metering  
TYPICAL APPLICATION  
Load Monitor Alarms Above 60W  
Monitor Output Level and Load Power  
I
LOAD  
2.5  
2.0  
1.5  
1.0  
0.5  
0
120  
96  
72  
48  
24  
0
0A TO 10A  
80V  
6V TO 80V  
30V  
+
V
20mΩ  
2W  
15V  
LOAD  
LOAD  
10V  
LED ON  
5V  
1k  
V
= 6V  
LOAD  
+
V
CC  
I
I
LATCH  
110k  
+
CMPOUT  
LED OFF  
60W ALARM  
V
LT2940  
GND  
LED ON WHEN  
LOAD  
CMPOUT  
10.0k  
P
> 60W  
+
CMP  
V
PMON  
IMON  
mV  
W
mV  
A
V
PMON  
= P  
• 20.75  
LOAD  
V
= I  
• 100  
IMON LOAD  
0
2
4
6
8
(A)  
10  
12  
14  
24.9K  
4.99k  
I
LOAD  
2940 TA01b  
1
12  
k
=
V
k = 20mΩ  
I
P
LOAD  
= V  
• I  
LOAD LOAD  
2940 TA01a  
2940f  
1
LT2940  
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)  
+
V
, I , I , LATCH....................................0.3V to 100V  
Operating Temperature Range  
CC  
+
+
V , V , CMP .............................................0.3V to 36V  
LT2940C................................................... 0°C to 70°C  
LT2940I................................................40°C to 85°C  
Storage Temperature Range...................65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
+
Voltage Sense (V – V ) ......................................... 36V  
+
Current Sense (I – I )............................................ 36V  
PMON, IMON (Note 3) ...... 0.3V to V + 1V, Up to 16V  
CC  
CMPOUT, CMPOUT ....................................0.3V to 36V  
MSOP Package ................................................. 300°C  
CMPOUT, CMPOUT DC Output Current ..................22mA  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
12  
11  
10  
9
V
CC  
CMPOUT  
+
1
2
3
4
5
6
CMPOUT  
12  
11  
10  
9
8
7
V
CC  
I
I
CMPOUT  
+
CMPOUT  
I
I
+
CMP  
+
13  
CMP  
LATCH  
PMON  
IMON  
GND  
PMON  
IMON  
GND  
LATCH  
+
+
V
V
V
8
7
V
MS PACKAGE  
12-LEAD PLASTIC MSOP  
DD PACKAGE  
12-LEAD (3mm s 3mm) PLASTIC DFN  
T
= 125°C, θ = 135°C/W  
T
= 125°C, θ = 43°C/W  
JA  
JMAX  
JA  
JMAX  
EXPOSED PAD (PIN 13) PCB GND CONNECTION OPTIONAL  
ORDER INFORMATION  
LEAD FREE FINISH  
LT2940CDD#PBF  
LT2940IDD#PBF  
LT2940CMS#PBF  
LT2940IMS#PBF  
TAPE AND REEL  
PART MARKING*  
LDPP  
PACKAGE DESCRIPTION  
12-Lead Plastic DFN  
12-Lead Plastic DFN  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
TEMPERATURE RANGE  
0°C to 70°C  
LT2940CDD#TRPBF  
LT2940IDD#TRPBF  
LT2940CMS#TRPBF  
LT2940IMS#TRPBF  
LDPP  
–40°C to 85°C  
0°C to 70°C  
2940  
2940  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2940f  
2
LT2940  
ELECTRICAL CHARACTERISTICS The l denotes the speꢀifiꢀations whiꢀh applc over the full operating  
temperature range, otherwise speꢀifiꢀations are at TA = 2±°C. All speꢀifiꢀations applc at 6V ≤ VCC ≤ 80V, unless otherwise speꢀified.  
SYMBOL  
Supplc  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Supply Voltage Operating Range  
Supply Current  
6
2
80  
5
V
CC  
I
CC  
I
= +200μA, I = +200μA  
IMON  
3.5  
mA  
PMON  
(Note 2)  
l
l
V
Supply Undervoltage Latch Clear  
Supply Undervoltage Hysteresis  
V
V
Falling  
Rising  
2.3  
20  
2.5  
75  
2.7  
V
CC(UVLC)  
CC  
CC  
ΔV  
100  
mV  
CC(HYST)  
Voltage Sense  
l
l
l
l
V
Voltage Sense Pin Operating Range  
V
≤ 12V  
–0.1  
–0.1  
–0.1  
V – 3  
CC  
V
V
V
V
VSEN(OR)  
CC  
12V < V < 30V  
9
CC  
+
V Pin and V Pin  
V
≥ 30V  
18  
CC  
V
V
Voltage Sense Differential Input Voltage Range V < 11V  
(Note 5)  
(V – 3)  
CC  
CC  
l
l
V = V  
V
+
– V  
V
V
≥ 11V  
≥ 12V  
8
9
V
V
V
V
CC  
CC  
V
V(CL)  
Voltage Sense Differential Clipping Limit  
(Note 5)  
l
l
I
Voltage Sense Input Bias Current  
–300  
–100  
50  
100  
150  
nA  
nA  
VSEN  
+
V Pin and V Pin  
ΔI  
Voltage Sense Input Offset Current  
V
+
= V  
VSEN  
V V  
ΔI  
VSEN  
= I  
+
– I  
V V  
Current Sense  
l
l
V
Current Sense Pin Operating Range  
4
80  
V
ISEN(OR)  
+
I Pin and I Pin  
V
Current Sense Differential Input Voltage  
200  
mV  
I
Range (Note 6)  
V = V – V  
+
I
I I  
l
l
l
V
Current Sense Differential Clipping Limit  
(Note 6)  
225  
75  
mV  
μA  
nA  
I(CL)  
I
Current Sense Input Bias Current  
100  
200  
125  
800  
ISEN  
+
I Pin and I Pin  
ΔI  
Current Sense Input Offset Current  
V = V  
+
ISEN  
I I  
ΔI  
ISEN  
= I – I  
+
I I  
Power Monitor (Note 2)  
l
l
I
Power Monitor Output Current Operating  
Range  
200  
900  
μA  
μA  
PMON(OR)  
I
Power Monitor Output Current Capability  
V
V
V
≥ 12V, V 0V, and  
PMON  
1200  
–1200  
–1200  
PMON(CAPA)  
CC  
V
V
= –9V, V = 225mV, or  
I
= 9V, V = 225mV  
I
l
l
V
V
V
≥ 12V, V  
≥ 0.5V, and  
PMON  
–240  
–800  
μA  
μA  
CC  
= –9V, V = 225mV, or  
V
V
I
= 9V, V = 225mV  
I
V
V
V
≥ 12V, V  
≥ 4V, and  
PMON  
CC  
= –9V, V = 225mV, or  
V
V
I
= 9V, V = 225mV  
I
2940f  
3
LT2940  
ELECTRICAL CHARACTERISTICS The l denotes the speꢀifiꢀations whiꢀh applc over the full operating  
temperature range, otherwise speꢀifiꢀations are at TA = 2±°C. All speꢀifiꢀations applc at 6V ≤ VCC ≤ 80V, unless otherwise speꢀified.  
SYMBOL  
PARAMETER  
CONDITIONS  
≤ 12V, I  
MIN  
0
TYP  
MAX  
– 4.5  
UNITS  
V
l
l
l
l
l
l
V
PMON  
Power Monitor Output Compliance Voltage  
V
≥ 0μA  
V
V
CC  
PMON  
CC  
12V < V < 30V, I  
≥ 0μA  
< 0μA  
0
7.5  
12  
V
CC  
PMON  
V
CC  
V
CC  
≥ 30V, I  
≤ 12V, I  
≥ 0μA  
0
V
PMON  
PMON  
< 0μA  
0.5  
0.5  
0.5  
– 4.5  
V
CC  
12V < V < 30V, I  
7.5  
12  
5
V
CC  
PMON  
V
≥ 30V, I  
< 0μA  
V
CC  
PMON  
2
E
Power Monitor Output Total Error (Note 4)  
|V • V | ≤ 0.4V  
2
%FS  
%FS  
%FS  
%FS  
%FS  
PMON  
V
I
2
|V • V | ≤ 0.4V , 25°C < T ≤ 85°C  
2.5  
2.5  
3.5  
5
7
V
I
A
2
l
l
l
|V • V | ≤ 0.4V , LT2940C  
9
V
I
2
|V • V | ≤ 0.4V , LT2940I  
12  
15  
V
I
Quadrants I and III of Shaded Region  
in Figure 4  
2
2
l
l
l
l
K
Power Monitor Scaling Coefficient  
= K • V • V  
|V • V | = 0.4V  
485  
500  
40  
2
515  
100  
6
μA/V  
PMON  
V
I
I
PMON  
PMON  
V
I
V
Power Monitor Voltage Sense Input-Referred  
Offset Voltage  
V
= 0V  
V
mV  
mV  
V(OSP)  
V
I(OSP)  
Power Monitor Current Sense Input-Referred V = 0mV  
Offset Voltage  
I
I
Power Monitor Output Offset Current  
Power Monitor Output Bandwidth  
V
R
= 0V, V = 0mV  
6
15  
μA  
PMON(OS)  
V
I
BW  
= 2k  
0.5  
MHz  
PMON  
PMON  
Current Monitor (Note 2)  
l
I
Current Monitor Output Current Operating  
Range  
200  
μA  
IMON(FS)  
l
l
l
l
l
l
V
Current Monitor Output Compliance Voltage  
V
≤ 12V, I  
≥ 0μA  
0
0
V
V
– 4.5  
CC  
V
V
IMON  
CC  
IMON  
12V < V < 30V, I  
≥ 0μA  
< 0μA  
7.5  
12  
CC  
IMON  
V
V
≥ 30V, I  
≤ 12V, I  
≥ 0μA  
< 0μA  
0
V
CC  
CC  
IMON  
IMON  
0.5  
0.5  
0.5  
– 4.5  
V
CC  
12V < V < 30V, I  
7.5  
12  
3
V
CC  
PMON  
V
≥ 30V, I  
< 0μA  
PMON  
V
CC  
E
Current Monitor Output Total Error (Note 4)  
|V | ≤ 200mV, 25°C ≤ T ≤ 85°C  
1.5  
2
%FS  
%FS  
%FS  
%FS  
μA/V  
mV  
IMON  
I
A
l
l
l
l
l
|V | ≤ 200mV, LT2940C  
3.5  
4
I
|V | ≤ 200mV, LT2940I  
2
I
200mV < |V | ≤ 225mV  
2.5  
1000  
2.5  
5
I
G
Current Monitor Scaling, I  
= G  
• V  
V = 200mV  
975  
1025  
7
IMON  
IMON  
IMON  
I
I
V
Current Monitor Current Sense Input-Referred  
Offset Voltage  
I(OSI)  
BW  
Current Monitor Output Bandwidth  
R
= 2k  
1
MHz  
IMON  
IMON  
+
Comparator  
l
l
l
l
V
Comparator Threshold Voltage  
Comparator Threshold Hysteresis  
Comparator Input Bias Current  
CMPOUT Output Low Voltage  
CMP Rising  
1.222  
–15  
1.240  
–35  
100  
0.2  
1.258  
–60  
300  
0.4  
V
mV  
nA  
CMP(TH)  
+
ΔV  
CMP Falling  
CMP(HYST)  
CMP(BIAS)  
I
I
1V ≤ V  
+ ≤ 1.5V  
CMP  
+
CMP High, I  
= 3mA  
V
CMPOUT(OL)  
CMPOUT  
2940f  
4
LT2940  
ELECTRICAL CHARACTERISTICS The l denotes the speꢀifiꢀations whiꢀh applc over the full operating  
temperature range, otherwise speꢀifiꢀations are at TA = 2±°C. All speꢀifiꢀations applc at 6V ≤ VCC ≤ 80V, unless otherwise speꢀified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
I
CMPOUT Leakage Current  
CMP Low, V = 36V,  
0.15  
1
μA  
CMPOUT(LK)  
CC  
0.4V ≤ V  
≤ 36V  
CMPOUT  
+
l
l
I
I
CMPOUT Output Low Voltage  
CMPOUT Leakage Current  
CMP Low, I  
= 3mA  
CMPOUT  
0.2  
0.4  
1
V
CMPOUT(OL)  
CMPOUT(LK)  
+
CMP High, V = 36V,  
0.15  
μA  
CC  
0.4V ≤ V  
≤ 36V  
CMPOUT  
l
l
l
l
l
t
Comparator Propagation Delay  
LATCH Input Low Voltage  
LATCH Input Open Voltage  
LATCH Input High Voltage  
Output Pulling Down  
0.7  
0.8  
1.5  
2.2  
2
μs  
V
DLY  
V
V
V
0.5  
1.25  
2.0  
1.2  
1.95  
2.5  
10  
LATCH(IL)  
LATCH(IO)  
LATCH(IH)  
LATCH(LK)  
V
V
I
I
LATCH Input Allowable Leakage in  
Open State  
μA  
l
l
LATCH Input Bias Current  
V
V
= 0V  
–11  
11  
–17  
17  
–23  
23  
μA  
μA  
LATCH(BIAS)  
LATCH  
= 80V  
LATCH  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All currents into pins are positive, and all voltages are referenced  
to GND unless otherwise noted. Current sourced by the PMON pin or the  
IMON pin is defined as positive; current sunk as negative.  
Note ꢁ: The LT2940 may safely drive its own PMON and IMON output  
voltages above the absolute maximum ratings. Do not apply any external  
source that drives the voltage above absolute maximum.  
Note 4: Full-scale equals 200μA.  
+
Note ±: V and V pin voltages must each fall within the voltage sense pin  
operating range specification.  
+
Note 6: I and I pin voltages must each fall within the current sense pin  
operating range specification.  
TYPICAL PERFORMANCE CHARACTERISTICS  
PMON Output Current  
PMON Total Error  
vs Sense Input Voltages  
vs Sense Input Voltages  
PMON Error Band vs Temperature  
800  
600  
400  
200  
0
3
2
4
3
ONE REPRESENTATIVE UNIT  
–2V  
V
I
= V + – V  
V
CC  
V
PMON  
≥ 11V  
V
V
V
V = V + – V –  
= 0.5V  
I
I
V
V
= 8V  
V
V
= 80V  
= 12V  
CC  
0V  
2V  
2
–4V  
V
V
= –8V  
–4V  
1
1
CC  
–8V ≤ V ≤ 8V  
V
–2V  
0V  
0
0
–200mV ≤ V ≤ 200mV  
I
2
|V • V | ≤ 0.4V  
V
I
4V  
–1  
–2  
–3  
–4  
–1  
–2  
–3  
V
V
= 12V  
= 80V  
CC  
2V  
V
V
= 8V  
–200  
2
4V  
8V  
|V • V | ≤ 0.4V  
V I  
T
= 25°C  
A
CC  
–400  
0
200  
–200  
–100  
0
100  
200  
–200  
–50  
0
25  
50  
75 100 125  
–25  
V (mV)  
I
V (mV)  
I
TEMPERATURE (°C)  
2940 G01  
2940 G02  
2949 G03  
2940f  
5
LT2940  
TYPICAL PERFORMANCE CHARACTERISTICS  
PMON Current  
vs Power Sense Produꢀt  
PMON and IMON Voltage  
Complianꢀe  
Supplc Current vs Supplc Voltage  
1500  
1000  
500  
300  
200  
100  
0
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
V
V
≥ 15V  
T = 25°C  
A
CC  
V
= 40 • V  
I
I = 200μA  
I
I
= 200μA  
= 200μA  
PMON  
IMON  
V
= 30V  
CC  
V
PMON  
= 0V  
V
= 6V  
V
CC  
= 12V  
CC  
I
I
= 0μA  
= 0μA  
0
PMON  
IMON  
V
PMON  
= 0.5V  
–500  
–1000  
–1500  
V
= 4V  
–100  
–200  
–300  
PMON  
I = –200μA  
= 6V = 12V  
I
I
= –200μA  
= –200μA  
PMON  
IMON  
V =  
CC  
30V  
V
CC  
V
CC  
–4  
–2  
0
2
4
–5  
0
5
10  
15  
20  
0
20  
40  
60  
80  
100  
2
V
• V (V )  
OUTPUT VOLTAGE (V)  
V
CC  
(V)  
V
I
2940 G04  
2940 G05  
2940 G06  
IMON Current vs Current  
Sense Voltage  
IMON Total Error vs Current  
Sense Voltage  
IMON Error Band vs Temperature  
300  
200  
100  
0
3
2
2
1
V = V + – V –  
I
I
I
ONE REPRESENTATIVE UNIT  
–200mV ≤ V ≤ 200mV  
I
V
= 12V  
I
V
V
= 12V  
= 80V  
CC  
1
V
= 12V  
= 80V  
CC  
CC  
V
IMON  
= 0V  
0
0
V
CC  
–100  
–200  
–300  
V
IMON  
= 0.5V  
–1  
–2  
–3  
V
V
= 12V  
= 80V  
CC  
OUTPUT CURRENT IS  
APPROXIMATELY FLAT  
TO ABSOLUTE MAXIMUM  
VOLTAGE LIMITS  
–1  
CC  
–2  
–300  
–100  
0
100  
200  
300  
–200  
0
200  
–200  
–50  
0
25  
50  
75 100 125  
–25  
V (mV)  
I
V (mV)  
I
TEMPERATURE (°C)  
2940 G07  
2940 G08  
2949 G09  
PMON Step Response  
PMON Step Response  
IMON Step Response  
R
C
= 2k ON 2V BIAS  
DC  
R
C
= 2k ON 2V BIAS  
R
C
= 2k ON 2V BIAS  
PMON DC  
IMON  
L
PMON  
L
DC  
= 8pF  
= 8pF  
= 8pF  
L
V
T
= 12V  
V
T
= 12V  
V
T
= 12V  
= 25°C  
CC  
CC  
CC  
= 25°C  
= 25°C  
A
A
A
V = 200mV  
I
V
I
=
2V  
V = 200mV  
I
V = 2V  
V
V
V = 200mV  
V
V
V
IMON  
200mV/DIV  
IMON  
IMON  
200mV/DIV  
200mV/DIV  
2940 G12  
2940 G10  
2940 G11  
250ns/DIV  
500ns/DIV  
250ns/DIV  
2940f  
6
LT2940  
TYPICAL PERFORMANCE CHARACTERISTICS  
PMON Input Feedthrough  
vs Frequenꢀc  
Power Supplc Rejeꢀtion Ratio  
vs Frequenꢀc  
0
–10  
–20  
–30  
–40  
–50  
–60  
80  
60  
40  
20  
0
RELATIVE TO 1V  
PK  
R
= 5k ON 2V BIAS  
DC  
PMON  
A
T
= 25°C  
IMON  
PMON  
V
I
= 2V  
PK  
V
V = 0mV, dV = 0  
V = 200mV  
V
I
PK  
V
= 0V, dI = 0  
V
R
R
= 12V  
CC  
= 5k ON 2V BIAS  
= 5k ON 2V BIAS  
PMON  
IMON  
= 25°C  
DC  
DC  
T
A
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
2940 G14  
FREQUENCY (Hz)  
2940 G13  
SEE TEST CIRCUITS FOR LOADING CONDITIONS  
PMON Frequenꢀc Response  
to Voltage Sense  
PMON Frequenꢀc Response  
to Current Sense  
10  
0
10  
0
I-TO-V  
AMP  
RELATIVE TO DC GAIN  
OUTPUT  
RELATIVE TO DC GAIN  
I-TO-V  
AMP  
OUTPUT  
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
R
=
L
R
L
= 2k  
L
2k  
V
=
2V  
V = 2V  
V DC  
V
PK  
V = 200mV  
V = 200mV  
I
DC  
I
PK  
I
=
200μA (NOM)  
I
=
200μA (NOM)  
R = 5k  
L
R
= 5k  
PMON  
A
PK  
PMON  
A
PK  
T
= 25°C  
T
= 25°C  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
2940 G15  
FREQUENCY (Hz)  
2940 G16  
SEE TEST CIRCUITS FOR LOADING CONDITIONS  
SEE TEST CIRCUITS FOR LOADING CONDITIONS  
IMON Frequenꢀc Response  
to Current Sense  
Open Colleꢀtor Current  
vs Open Colleꢀtor Voltage  
10  
25  
20  
15  
10  
5
T
= 25°C  
I-TO-V  
AMP  
A
OUTPUT PULLING LOW  
RELATIVE TO DC GAIN  
OUTPUT  
0
–10  
–20  
–30  
–40  
V
= 80V  
= 6V  
CC  
R
=
L
2k  
V
CC  
V = 200mV  
I
PK  
I
= 200μA (NOM)  
PK  
IMON  
R
L
= 5k  
T
= 25°C  
A
0
100  
1k  
10k  
FREQUENCY (Hz)  
SEE TEST CIRCUITS FOR LOADING CONDITIONS  
100k  
1M  
10M  
2940 G17  
0.1  
10  
OPEN COLLECTOR VOLTAGE (V)  
100  
1
2940 G18  
2940f  
7
LT2940  
PIN FUNCTIONS  
+
CMPOUT (Pin 1): Inverting Open-Collector Comparator  
V , V (Pins 8, 7): Voltage Sense Inputs. The voltage  
difference between these pins is the voltage input factor  
to the power calculation multiplier. The difference may be  
positive or negative, but both pin voltages must be at or  
above GND – 100mV. The input differential voltage range  
is 8V. Do not exceed 36V on either pin.  
Output. When the LATCH pin’s state does not override the  
+
comparator, CMPOUT pulls low when CMP > 1.24V. The  
+
pull-down shuts off when CMP < 1.21V, or V < 2.5V or  
CC  
when the LATCH pin is low. CMPOUT may be pulled up to  
36V maximum. Do not sink more than 22mA DC.  
CMPOUT(Pin2):NoninvertingOpen-CollectorComparator  
LATCH(Pin9):ComparatorModeInput. Conditionsatthis  
three-state input pin control the comparator’s behavior.  
When LATCH is open, the comparator’s outputs track its  
input conditions (with hysteresis). When LATCH is held  
Output. When the LATCH pin’s state does not override the  
+
comparator, CMPOUT pulls low when CMP < 1.21V, or  
V
< 2.5V, or when the LATCH pin is low. The pull-down  
CC  
+
+
shuts off when CMP > 1.24V. CMPOUT may be pulled up  
above 2.5V, the comparator’s outputs latch when CMP  
to 36V maximum. Do not sink more than 22mA DC.  
exceeds1.24V(CMPOUTopen,CMPOUTpull-down).While  
LATCH0.5VorV <2.5V,thecomparator’soutputsclear  
+
CC  
CMP (Pin ꢁ): Positive Comparator Input. The integrated  
(CMPOUT pull-down, CMPOUT open) regardless of the  
comparator resolves to high when the pin voltage exceeds  
the 1.24V internal reference. The comparator input has  
35mV of negative hysteresis, which makes its falling trip  
+
CMP pin voltage. The LATCH pin high impedance input  
state tolerates 10μA of leakage current. Bypass this pin  
to GND to compensate for high dV/dt on adjacent pins.  
Do not exceed 100V on this pin.  
+
point approximately 1.21V. Do not exceed 36V. Tie CMP  
to GND if unused.  
+
I ,I (Pins11,10):CurrentSenseInputs.Thevoltagediffer-  
enceatthesepinsrepresentsthecurrentinputfactortothe  
power calculation multiplier and to the current scaler. The  
differencemaybepositiveornegative,butbothpinvoltages  
must be at least 4V and no more than 80V above GND,  
PMON(Pin4):Proportional-to-PowerMonitorOutput.This  
push-pull output sources or sinks a current proportional  
to the product of the voltage sense and current sense  
inputs. A resistor from PMON to GND creates a positive  
voltage when the power product is positive. The full-scale  
completely independent of the V voltage. Both pins sink  
CC  
output of 200μA is generated for a sense input product  
approximately 100μA of bias current in addition to having  
aneffective5kΩshuntbetweenthem.Theinputdifferential  
voltage range is 200mV. Do not exceed 36V differ-  
entially or 100V on either pin.  
2
of 0.4V . Do not exceed V + 1V, up to 16V maximum.  
CC  
Tie PMON to GND if unused.  
IMON (Pin ±): Proportional-to-Current Monitor Output.  
This push-pull output sources or sinks a current propor-  
tional to the voltage at the current sense input, which is  
typically generated by a sense resistor that measures a  
current. A resistor from IMON to GND creates a positive  
voltage when the sensed current is positive. The full-scale  
output of 200μA is generated by a current sense input  
V
(Pin 12): Voltage Supply. The voltage supply operat-  
CC  
ing range is 6V to 80V. When operating with V > 15V,  
CC  
package heating can be reduced by adding an external  
seriesdroppingresistor.BypassthispintoGNDtoimprove  
supply rejection at frequencies above 10kHz as needed.  
Do not exceed 100V on this pin.  
of 200mV. Do not exceed V + 1V, up to 16V maximum.  
CC  
Tie IMON to GND if unused.  
Exposed Pad (Pin 1ꢁ in DFN Paꢀkage): The exposed pad  
may be left open or connected to device ground. For best  
thermal performance, the exposed pad must be soldered  
to the PCB.  
GND (Pin 6): Device Ground.  
2940f  
8
LT2940  
FUNCTIONAL BLOCK DIAGRAM  
11 10  
+
μA  
V
I
I
G
K
= 1000  
= 500  
IMON  
V
CC  
12  
6
+
IMON  
5
GND  
μA  
PMON  
2
V
+
V
+
8
7
PMON  
CMPOUT  
CMPOUT  
4
1
V
4-QUADRANT  
MULTIPLIER  
+
CMP  
+
3
9
D
Q
1.24V  
UVLC  
BGAP REF  
AND UVLC  
CLR  
V
CC  
LE  
2
LATCHLO  
LATCHHI  
LATCH  
THREE-STATE  
DECODE  
2940 BD  
TEST CIRCUITS  
Resistor on DC Bias  
I-to-V Amplifier  
12V  
PMON  
V
OUT  
OR  
IMON  
R
C
499Ω  
R
FB  
R
PMON  
OR  
IMON  
4.99k  
L
V
OUT  
2V  
Q1  
2N2369  
2940 TC01  
2V  
2940 TC02  
2940f  
9
LT2940  
APPLICATIONS INFORMATION  
Introduꢀtion  
Multiplier Operation  
The LT2940 power and current monitor brings together  
circuitsnecessarytomeasure, monitorandcontrolpower.  
In circuits where voltage is constant, power is directly  
proportional to current. The LT2940 enables power moni-  
toring and control in applications where both the current  
and the voltage may be variable due to supply voltage  
uncertainty, component parametric changes, transient  
conditions, time-varying signals, and so forth.  
The LT2940 power and current monitor contains a four-  
quadrant multiplier designed to measure the voltage and  
current of a generator or load, and output signals propor-  
tional to power and current. Figure 1 shows a signal path  
block diagram. The operating ranges of the voltage sense  
and current sense inputs are included. To simplify the  
notation, the differential input voltages are defined as:  
+
V = V – V  
(1a)  
(1b)  
V
V
V
The LT2940’s four-quadrant multiplier calculates in-  
stantaneous power from its voltage sense and current  
sense inputs. Its output driver sources and sinks cur-  
rent proportional to power (magnitude and direction),  
which affords flexible voltage scaling, simple filtering  
and, into a reference, bipolar signals. Its onboard  
comparator is the final piece required for integrated  
power monitoring. In addition, the LT2940 provides a  
proportional-to-current output that allows for equally  
straightforward scaling, filtering and monitoring of the  
sensed current.  
+
V = V – V  
I
I
I
2
The full scale output of the multiplier core is 0.4V , which  
the PMON output driver converts to current through a  
scale factor of K  
.
PMON  
I
= K  
• V • V  
(2)  
PMON  
I
PMONµA V  
KPMON = 500  
V2  
(3)  
Thevoltageacrossthecurrentsenseinputpinsisconverted  
to a current by the IMON output driver through the scale  
factor of G  
.
IMON  
Please note: although standard convention defines cur-  
rents as positive going into a pin (as is generally the case  
in the Electrical Characteristics table), the opposite is  
true of the PMON and IMON pins. Throughout this data  
sheet the power and current monitor output currents  
are defined positive coming out of PMON and IMON,  
respectively.Adoptingthisconventionletspositivevoltage  
differences at the current and voltage sense pins yield  
positive currents sourced from PMON and IMON that  
can be scaled to positive ground referenced voltages  
with a resistor.  
I
= G  
• V  
I
(4)  
IMON  
IMON  
µA  
V
GIMON = 1000  
(5)  
Both the PMON and IMON outputs reach full-scale at  
200μA.  
The headroom and compliance limits for the input and  
output pins are summarized in Table 1 for easy reference.  
+
It is important to note that the current sense inputs, I  
and I , operate over a 4V to 80V range completely inde-  
pendent of the LT2940’s supply pin, V . Note also that  
CC  
the inputs accept signals of either polarity, and that the  
V = V + – V  
I
I
I
200mV (MAX)  
11 10  
μA  
V
LT2940  
IMON  
+
G
2
= 1000  
I
I
IMON  
+
200μA  
FULL-SCALE  
5
4
μA  
V
K
PMON  
= 500  
2
+
V
• V = 0.4V FULL-SCALE  
V
V
V
I
+
8
7
= V + – V  
V V  
8V (MAX)  
V
V
PMON  
200μA  
FULL-SCALE  
2940 F01  
Figure 1. LT2940 Signal Path Diagram  
2940f  
10  
LT2940  
APPLICATIONS INFORMATION  
Table 1. LT2940 Essential Operating Parameters to Aꢀhieve Speꢀified Aꢀꢀuraꢀc (VCC Operating Range = 6V to 80V)  
SENSE  
INPUT  
PINS  
INPUT  
OPERATING  
RANGE  
SCALING  
TO  
OUTPUT  
MONITOR  
OUTPUT  
PARA-  
METER  
PIN VOLTAGE  
LIMIT  
OUTPUT OPERATING  
OUTPUT  
VOLTAGE COMPLIANCE  
PINS  
RANGE  
+
Voltage  
V , V  
0V to V – 3V at V ≤ 12V  
V = 8V  
V
-
-
-
-
CC  
CC  
0V TO 9V at 12V < V < 30V  
CC  
0V to 18V at V ≥ 30V  
CC  
+
Current  
Power  
I , I  
4V to 80V*  
V = 200mV  
G
=
IMON  
I =  
IMON  
Sourcing:  
I
IMON  
1000μA/V  
200μA  
0V to V – 4.5V at V ≤ 7.5V  
CC CC  
+
2
0V to 7.5V at 12V < V < 30V  
V , V ,  
See Above Limits  
V • V = 0.4V  
K
=
PMON  
I
=
CC  
V
I
PMON  
PMON  
+
2
I , I  
500μA/V  
200μA  
0V to 12V at V ≥ 30V  
CC  
Sinking:  
As Above, Except Minimum is 0.5V  
* The current sense range is completely independent of the supply voltage.  
PMONandIMONoutputsarecapableofindicatingforward  
and reverse flow of power and current, provided they are  
advantageously biased.  
Essential Design Equations  
Afewequationsareneededtocalculateinputscalingfactors  
and achieve a desired output. Consider the basic applica-  
tion in Figure 3, where the power P is to be measured  
2
The multiplier core full-scale product of 0.4V may  
IN  
be reached over a range of voltage and current inputs,  
as shown in Figure 2. For example, voltage sense and  
current sense combinations of 8V and 50mV, 4V and  
as the product of voltage V and current I :  
IN  
IN  
P = V • I  
(6)  
IN  
IN IN  
2
TheactualmeasuredquantitiesV andI arescaledtobe  
100mV, and 2V and 200mV each multiply to 0.4V , and  
IN  
IN  
level-compatiblewiththeLT2940. Inthisbasicapplication,  
thus produce 200μA at PMON. This arrangement allows  
the core to operate at full-scale, and therefore at best ac-  
curacy, over a 4:1 range of current and voltage, a readily  
appreciated feature when monitoring power in variable  
supply applications.  
a simple resistive voltage divider scales V , and a sense  
IN  
resistor scales I .  
IN  
V = V • k  
(7a)  
V
IN  
V
R1  
R1+ R2  
kV =  
200  
(7b)  
(8a)  
(8b)  
I
PMON  
= 200μA  
V = I • k  
I
IN  
I
100  
50  
k = R  
100μA  
I
SENSE  
50μA  
The PMON output current is given by:  
25μA  
12.5μA  
I
= K  
• V • k • I • k  
(9a)  
PMON  
PMON  
IN  
V
IN  
I
25  
or  
I
= P • K  
• k • k  
V I  
(9b)  
PMON  
IN  
PMON  
12.5  
0.5  
4
1
2
8
The output current may be positive (sourcing) or  
negative (sinking) depending on the signs of V , k ,  
= V + – V (V)  
V V  
V
V
2940 F02  
IN  
V
Figure 2. PMON Output Current as a Funꢀtion  
of Sense Input Voltages  
I , and k . Provided that the magnitudes of V and V  
IN  
I
V
I
do not exceed 8V and 200mV as shown in Figure 2, at  
2940f  
11  
LT2940  
APPLICATIONS INFORMATION  
I
IN  
P
V
= V • I  
IN IN  
IN  
IN  
R
SENSE  
LOAD  
11 10  
+
LT2940  
I
I
+
I
I
IMON  
IMON  
5
4
V
V
IMON  
R1  
R1 + R2  
R1  
R1 + R2  
V
V
= V  
m
m
k =  
V
IN  
R
R
IMON  
R2  
R1  
V = I • R  
I
k = R  
I SENSE  
IN  
SENSE  
+
V
V
+
8
7
PMON  
PMON  
PMON  
PMON  
2940 F03  
Figure ꢁ. Basiꢀ Power Sensing Appliꢀation Showing Derivation of kV and kI  
Aꢀꢀuraꢀc  
the full-scale output current of 200μA, the achievable  
full-scale power is:  
The principal accuracies of the power and current monitor  
outputs are characterized as absolute percentages of full-  
scale output currents, using the nominal values of scaling  
parameters. The total error of the I  
typically 2%, and is defined as:  
0.4V2  
P
=
IN(FS)  
kV • kI  
(10)  
output, E  
, is  
PMON  
PMON  
In some applications the PMON output is converted to a  
voltage by a load resistor:  
µA  
V2  
200µA  
IPMON 500  
(VV • V )  
I
V
PMON  
= I  
• R  
PMON  
(11)  
PMON  
EPMON  
=
• 100%  
The complete end-to-end scaling is then given by:  
= P • K • k • k • R  
(17)  
Contributorstothepoweroutputaccuracysuchasthescal-  
ing(K ), theoutputoffset(I ), andthevoltage  
V
(12)  
PMON  
IN  
PMON  
V
I
PMON  
The current monitor output current at IMON is found by  
combining Equations 4 and 8a:  
PMON  
PMON(OS)  
and current sense input offsets (V  
and V  
), are  
V(OSP)  
I(OSP)  
separately specified at key conditions and may be totaled  
using the root sum-of-squares (RSS) method.  
I
= I • G  
• k  
(13)  
The output current may be positive (sourcing) or negative  
(sinking) depending on the signs of I and k . Provided  
IMON  
IN  
IMON  
I
The total error of the I  
output, E  
, is typically  
IMON  
IMON  
IN  
I
1.5%, and is defined as:  
that the magnitude of V does not exceed 200mV, at the  
I
full-scale output current of 200μA the achievable full-  
scale input current is:  
μA  
IIMON 1000  
• V  
I
V
EIMON  
=
• 100%  
0.2V  
kI  
200μA  
IIN(FS)  
=
(18)  
Contributors to the current output accuracy such as the  
scaling(G )andthecurrentsenseinputoffset(V  
(14)  
If IMON current is converted to a voltage by a load resis-  
tor, then:  
)
I(OSI)  
IMON  
are separately specified at key conditions. Here again, use  
the RSS method of totaling errors.  
V
IMON  
= I  
• R  
IMON  
(15)  
IMON  
and the final end-to-end scaling is given by:  
= I • G • k • R  
V
(16)  
IMON  
IN  
IMON  
I
IMON  
2940f  
12  
LT2940  
APPLICATIONS INFORMATION  
Multiplier Operating Regions  
these regions. Inputs beyond those ranges, and out to the  
absolute maximum ratings, are clipped internally.  
The operating regions of the four-quadrant multiplier are  
illustrated in Figure 4. Note that while Figure 2’s axes em-  
ployedlogarithmic(octave)scalestoallowconstant-power  
trajectories to be straight lines, Figure 4’s axes are linear  
to better accommodate negative inputs. Constant-power  
trajectories are thus arcs.  
Range and Aꢀꢀuraꢀc Considerations  
The LT2940’s performance and operating range may best  
beexploitedbylettingthebroadapplicationcategorysteer  
design direction.  
Constant-power applications comprise power level alarm  
circuits, whether tripping a circuit breaker, activating aux-  
iliary circuits, or simply raising an alarm, and single-level  
power servo loops. In such applications, accuracy is best  
whenthefull-scaleoutputcurrentoftheLT2940represents  
The heavy line circumscribing the guaranteed accuracy  
region is limited both by the product of the sense inputs  
(the curved edges) and by each sense input’s differential  
range (the straight edges). The maximum product that  
2
realizes the specified accuracy is V • V = 0.4V , and it  
V
I
the power level of interest, i.e., the I  
= 200μA load  
produces nominally full-scale output currents of I  
=
PMON  
PMON  
line (A) on Figure 5. Spans of voltage or current up to 4:1  
naturally fit into the operating range of the LT2940.  
200μA. At the same time, the voltage and current sense  
inputs must not exceed 8V and 200mV, respectively.  
In the shaded functional region, multiplying occurs but  
the output current accuracy is derated as specified in the  
Electrical Characteristics section.  
Specialconstant-powerapplicationsarethesametypesof  
circuits (level measuring, servos) with additional restric-  
tions. If operating within the guaranteed accuracy region  
of Figure 4 is important over voltage or current spans  
wider than 4:1, let a PMON current less than full-scale  
represent the power level. For example, the load line (B)  
The shaded functional region offers headroom beyond the  
guaranteed range in all quadrants, and excellent sourcing  
2
currentoperationbeyondthestandard+0.4V senseprod-  
uct limit in quadrants I and III. In quadrants II and IV, the  
PMONcurrentislimitedbycompliancerange,soaccuracy  
isnotspecified.SeetheElectricalCharacteristicsandTypi-  
cal Performance Characteristics sections for operation in  
of I  
= 50μA in Figure 5 covers a span of 16:1 (V = 8V  
PMON V  
to 0.5V and V = 200mV to 12.5mV). Note that operating  
I
along line (C), I  
channel offsets reduce the value of doing so. Operating  
= 25μA allows a span of 32:1, but the  
PMON  
300  
400  
II  
I
CURRENT SENSE CLIPPING  
I
CURRENT SENSE CLIPPED  
250  
200  
150  
100  
50  
LIMITED  
BY PMON  
200  
100  
50  
COMPLIANCE  
I
PMON  
= 200μA  
GUARANTEED  
ACCURACY  
100μA  
(A)  
0
50μA  
–50  
–100  
–150  
–200  
–250  
–300  
25μA  
(D)  
(B)  
LIMITED  
BY PMON  
COMPLIANCE  
25  
(C)  
(V)  
GUARANTEED  
ACCURACY  
CURRENT SENSE CLIPPED  
III  
IV  
12.5  
6
8
10 12  
2940 F04  
–12  
–8  
–6 –4 –2  
0
2
4
–10  
0.5  
4
16  
1
2
8
V
(V)  
V
V
V
2940 F05  
Figure 4. Multiplier Operating Regions vs Sense Input  
Voltages. Aꢀꢀuraꢀc Is Derataed in Shaded Areas  
Figure ±. Various Constant-Power Curves in Quadrant I  
2940f  
13  
LT2940  
APPLICATIONS INFORMATION  
below full-scale also affords scaling flexibility. Line (D)  
similar way, a capacitor load on IMON produces a volt-  
age proportional to charge that can be used to create a  
coulomb counter.  
along I  
= 100μA covers a 4:1 range like (A), but the  
PMON  
maximum V is 100mV, which reduces voltage drop and  
I
dissipation in the sense resistor.  
Comparator Funꢀtion  
Variable power applications comprise power measuring,  
whether battery charging, energy metering or motor  
monitoring, variable load-boxes, and other circuits where  
the significant metric is not a single value, and voltage  
and current may be independent of each other. Design in  
this case requires mapping the LT2940’s sense ranges to  
cover the maximum voltage and the maximum current,  
while considering whether the power represented is at,  
The LT2940’s integrated comparator features an internal  
fixed reference, complementary open-collector outputs  
and configurable latching. A rising voltage at the CMP  
+
pin is compared to the internal 1.24V threshold. 35mV  
(typical)negativehysteresisprovidesglitchprotectionand  
makes falling inputs trip the comparator at about 1.21V.  
The comparator result drives the open-collector CMPOUT  
and CMPOUT pins which, when pulling down, sink at  
least 3mA down to 0.4V. See the Typical Performance  
Characteristics for more information. Complementary  
comparator outputs save external components in some  
applications. The CMPOUT and CMPOUT pins may be  
pulled up externally to 36V maximum.  
above, or below full-scale I  
. For example, setting it  
PMON  
at full-scale puts all values in the accurate range, setting  
it above puts more accuracy in nominal power levels and  
less accuracy in perhaps rarely encountered high levels,  
and setting below might afford flexibility to lower dissipa-  
tion in the current sense resistor.  
Comparator Latꢀhing  
Output Filtering and Integration  
The LATCH pin controls the behavior of the comparator  
outputs. When the LATCH pin is open, the comparator  
output latch is transparent. Leakage currents up to 10μA  
willnotchangethedecodedstateoftheLATCHpin.Internal  
circuits weakly drive the pin to about 1.5V. Adding a 10nF  
capacitor between LATCH and GND protects against high  
dV/dt on adjacent pins and traces. Where more than 30V  
and long inductive leads will be connected to LATCH,  
damp potentially damaging ringing with a circuit like that  
shown in Figure 6.  
Lowpass filtering the output power or current signal is as  
simple as adding a capacitor in parallel with the output  
voltage scaling resistor at PMON or IMON. For example,  
adding 1nF in parallel with the PMON load resistor on the  
front page application creates a lowpass corner frequency  
of approximately 6.4kHz on the power monitor voltage.  
Loaded by only a capacitor, the PMON pin voltage is pro-  
portional to the time-integral of power, which is energy.  
The integrating watt-hour meter application shown on  
the back page takes advantage of this convenience. In a  
4V TO 80V  
R9B  
49.9k  
R9A  
20k  
LONG  
WIRE  
+
I
I
RESET  
LATCH  
LT2940  
C2  
10nF  
GND  
2940 F06  
Figure 6. LATCH Pin Proteꢀtive Damping  
2940f  
14  
LT2940  
APPLICATIONS INFORMATION  
When the LATCH pin voltage exceeds 2.5V, the next high  
result from the comparator also enables the comparator  
latch.TheCMPOUTpingoesopen(high),andtheCMPOUT  
pin sinks current (low) regardless of the changes to the  
Thermal Considerations  
Ifoperatingathighsupplyvoltages, donotignorepackage  
dissipation. At 80V the dissipation could reach 400mW;  
more if IMON or PMON current exceeds full-scale. Pack-  
age thermal resistance is shown in the Pin Configuration  
section. Package dissipation can be reduced by simply  
+
CMP level until the latch is cleared. Latch activation is  
+
level sensitive, not edge sensitive, so if CMP > 1.24V  
when LATCH is brought above 2.5V, the comparator result  
is high, and the latch is set immediately. The LATCH pin  
adding a dropping resistor in series with the V pin, as  
CC  
showninFigure7.Theoperatingrangeofthecurrentsense  
voltage may be taken safely to 80V regardless of the V  
pin voltage.  
+
CC  
input pins I and I , which extends to 80V independent  
+
of V , make this possible. The voltage ranges of the V ,  
V , PMON and IMON pins are, however, limited by V .  
CC  
The latch is released and the comparator reports a low  
CC  
Consult Table 1 during design. Operating an open-col-  
lector output pin with simultaneously large current and  
large voltage bias also contributes to package heating and  
must be avoided.  
when LATCH ≤ 0.5V or when V < 2.3V regardless of the  
CC  
+
CMP pin voltage. In this state, the CMPOUT pin sinks  
current (low), while the CMPOUT pin goes open (high).  
As with latching, clearing is level-sensitive: comparator  
outputsreacttotheinputsignalassoonasLATCH1.25V  
and V > 2.7V.  
CC  
R
S
100V MAX  
R12  
0A TO 1.3A  
LOAD  
30V TO 80V  
150mΩ  
1/2W  
5mA  
3.9k  
MAX  
10% 1/8W  
36V MAX  
+
V
CC  
I
I
R14  
20k  
R2  
140k  
LATCH  
+
OVP  
CMPOUT  
V
V
LT2940  
GND  
R1  
10.0k  
CMPOUT  
OVERPOWER (OVP) GOES HIGH  
WHEN LOAD POWER > 40W  
+
CMP  
PMON  
IMON  
2940 F07  
R3  
6.19k  
R4  
13.7k  
1
15  
W
V
k
=
V
V
SCALE = 10  
PMON  
k = 150mΩ  
I
40W FULL-SCALE  
Figure 7. Supplc Resistor Reduꢀes Paꢀkage Heating bc Reduꢀing VCC Voltage  
2940f  
15  
LT2940  
TYPICAL APPLICATIONS  
120W Supplc Monitor Inꢀludes ICC of LT2940  
R
S
SUPPLY  
30V TO 80V  
100V (MAX)  
0A TO 4A  
LOAD  
R12  
50mΩ  
1W  
5mA  
MAX  
3.9k  
1/8W  
V
LOGIC  
+
I
I
V
CC  
R14  
3.9k  
R2  
140k  
LATCH  
+
OVP  
CMPOUT  
CMPOUT  
V
V
LT2940  
GND  
OVERPOWER (OVP) GOES HIGH  
WHEN SUPPLY POWER > 120W  
R1  
10.0k  
+
CMP  
PMON  
IMON  
2940 TA02  
R3  
6.19k  
R4  
13.7k  
W
V
1
15  
k
=
V
SCALE = 30  
V
PMON  
120W FULL-SCALE  
k = 50mΩ  
I
12.±W PWM Heat Sourꢀe  
R
S
200mΩ  
3
INPUT  
9.5V TO 14.5V  
HEATSINK  
Q = 12.5W  
+
D1  
1N5819  
R7*  
7Ω  
C1  
100μF  
25V  
Q3  
2N3906  
Q2  
R6  
TP0610  
10k  
+
V
I
I
CC  
R2  
LT2940  
R5  
10k  
102k  
+
LATCH  
V
V
R1  
25.5k  
CMPOUT  
CMPOUT  
+
CMP  
1
=
PMON GND IMON  
k
V
5
200mΩ  
3
z 1.7ms  
k =  
I
C4  
4.7μF  
R4  
15.0k  
t
OFF  
Q1  
FDS3672  
2940 TA03  
* SEVEN 50Ω, 5W RESISTORS IN PARALLEL.  
MULTIPLE UNITS FACILITATE SPREADING HEAT.  
2940f  
16  
LT2940  
TYPICAL APPLICATIONS  
ꢁ0W Linear Heat Sourꢀe  
R
S
200mΩ  
3
10V TO 40V  
C1  
100μF  
50V  
+
R3  
10k  
+
V
CC  
I
I
R2  
LT2940  
C2  
22nF  
102k  
+
D2  
27V  
V
V
R1  
25.5k  
+
V
R
PMON GND IMON  
LM334  
HEATSINK  
Q = 30W  
V
R4  
R6  
51Ω  
680Ω  
R5  
6.8k  
Q1  
VN2222  
D1  
1N457  
R7  
R8  
1k  
3.3k  
Q2  
C3  
470pF  
TIP129  
1
=
k
R9  
10k  
V
15  
Q3  
D44VH11  
200mΩ  
3
k =  
I
R10  
100Ω  
10A/V  
R11  
100mΩ  
2940 TA04  
Wide Input Range 10W PWM Heat Sourꢀe  
R
S
200mΩ  
3
22.4V TO 72V  
12V  
C1  
100μF  
100V  
+
R6  
10k  
+
Q3  
2N3906  
V
I
I
CC  
D2  
R2  
1N4148  
LT2940  
D1  
R5  
10k  
220k  
R7  
50Ω  
25W  
HEATSINK  
Q = 10W  
+
MUR1100E  
12V  
LATCH  
V
V
R1  
13k  
Q2  
BSS123  
CMPOUT  
CMPOUT  
D3  
1N4148  
+
CMP  
PMON GND IMON  
C2  
100nF  
13  
233  
k
=
V
C4  
4.7μF  
R4  
68k  
200mΩ  
3
k =  
I
t
z 2ms  
OFF  
Q1  
FDS3672  
2940 TA05  
2940f  
17  
LT2940  
TYPICAL APPLICATIONS  
8V to ꢁ2V, 8W Load  
12V  
R
S
200mΩ  
8V TO 32V  
12V  
R3  
2k  
+
V
CC  
I
I
C1  
R2  
100nF  
30k  
LT2940  
R7  
6.8Ω  
10W  
+
V
+
V
R
R1  
10k  
LM334  
V
V
R5  
6.8k  
R4  
680Ω  
IMON GND PMON  
D1  
1N457  
R6  
10Ω  
1
4
k
=
V
Q1  
FDB3632  
200μA/A  
CURRENT  
MONITOR  
OUTPUT  
k = 200mΩ  
I
C4  
100nF  
2940 TA06  
Adjustable 0W to 10W Load Box with UVLO and Thermal Shutdown  
10V TO 40V  
INPUT  
R2  
120k  
R11  
33Ω  
12V  
+
+
V
V
I
C11  
10nF  
12V  
R1  
D1  
30k  
R15  
10k  
R16  
10k  
1N4003  
12V  
C13  
LT2940  
0W TO 10W ADJ  
10-TURN  
10nF  
200mV  
+
V
CC  
REF  
R
R12  
12k  
S
R17  
100Ω  
R19  
10k  
200mΩ  
OA  
Q3  
2N3906  
LATCH  
I
Q4  
2N3906  
R14  
10Ω  
+
1A/V  
LT1635  
Q1  
FDB3632  
CURRENT  
MONITOR  
OUTPUT  
PMON  
R13  
10k  
I
CONTROL  
= 50mW/μA  
R18  
1k  
CMPOUT  
CMPOUT  
+
1
5
k
=
V
IMON  
GND CMP  
R3B  
91k  
k = 200mΩ  
I
R4  
4.99k  
UVLO  
R3A  
13k  
Q2  
2N3904*  
TEMP R10  
ADJ  
500Ω  
2940 TA07  
*THERMAL SHUTDOWN; COUPLE TO Q1’s HEAT SINK  
2940f  
18  
LT2940  
TYPICAL APPLICATIONS  
1-Cell Monitor with Bottom-Side Sense  
12V  
C1  
100nF  
R
R
S2  
215Ω  
S1  
R12  
1k  
5%  
215Ω  
+
1W/V  
LOAD  
CHARGER  
CYCLON  
+
V
I
I
CC  
R4 2.5W MAX  
+
12.4k  
+
PMON  
V
V
R2  
30k  
1%  
R1  
121k  
R5  
4.99k  
2V, 4.5AH  
DT CELL*  
LT2940  
IMON  
LT1635  
D1  
5.1V  
1A/V  
1A MAX  
200mV  
+
Q1  
REF  
2N3904  
12V  
+
Q2  
2N3904  
OA  
GND  
2940 TA08  
R9  
200Ω  
1%  
R6  
1k  
1%  
R7  
200Ω  
1%  
R8  
1k  
1%  
121  
151  
k
=
= 0.8  
V
R
S3  
200mΩ  
k = 200mΩ  
I
LOAD  
*www.hawkerpowersource.com  
(423) 238-5700  
CHARGER  
Motor Monitor with Cirꢀuit Breaker  
R
S
25mΩ  
2
12V  
+
C10  
100μF  
25V  
+
R2A  
10k  
1%  
V
I
I
CC  
MUR120  
LT2940  
+
RESET  
LATCH  
V
V
R3  
10k  
GE  
R1  
10k  
1%  
5BPA34KAA10B  
12V, 8A  
CMPOUT  
CMPOUT  
PM FIELD  
R2B  
10k  
1%  
+
CMP  
IMON GND PMON  
V
V
PMON  
IMON  
1
k
=
V
6.5A/V  
100W/V  
3
C5  
R5  
R4  
4.99k  
C4  
100nF  
25mΩ  
2
33nF 12.4k  
k =  
I
OVERCURRENT TRIP = 8A  
Q1  
FDB3632  
2940 TA09  
2940f  
19  
LT2940  
TYPICAL APPLICATIONS  
28V Power to Frequenꢀc Converter  
R
S
200mΩ  
28V INPUT  
10V TO 40V  
LOAD  
C7  
R2  
1
5
k
=
120k  
V
k = 200mΩ  
R1A  
30k  
I
+
10nF  
V
I
I
CC  
R1B  
30k  
+
P
= 10W  
V
MAX  
LATCH  
PMON  
V
10W  
1000Hz  
f
=
OUT  
LT2940  
Q2  
R5, 100k  
D3  
CMPOUT  
V
CC  
D4  
R6, 100k  
V
CMPOUT  
CC  
+
IMON GND CMP  
Q3  
D1  
10V  
LTC1440  
+
IN  
IN  
+
+
V
C5  
C6  
100nF  
V
CC  
OUT  
1μF  
CENTRAL SEMI  
CCLM2700  
WIMA  
HYST  
REF  
R9  
1M  
D2  
= 1N4148  
= 2N7000  
OPTO-ISOLATOR  
Q1  
R4B  
10k  
V
GND  
C4  
2.2nF  
R4A  
240k  
2940 TA10  
Seꢀondarc-Side AC Cirꢀuit Breaker  
T1  
R2  
120k  
RESISTIVE  
LOAD  
12.6VAC  
SECONDARY  
R9  
10k  
C1A  
220μF  
25V  
R1  
30k  
+
R
S
2X  
FDS3732  
200mΩ  
3
Q4  
Q1  
V
Q2  
D1  
Q5  
1N4001  
R10  
1k  
+
R0  
10Ω  
CC  
V
I
I
CC  
LATCH  
R11  
10k  
+
V
V
R6  
1k  
R7  
1k  
Q3  
LT2940  
R12  
10k  
D2  
1N4001  
D3  
5.1V  
CMPOUT  
IMON  
Q6  
Q7  
CMPOUT  
+
CMP  
GND PMON  
C1B  
220μF  
25V  
+
Q8  
30  
1
=
k
=
V
1A/V  
PK  
1.25A  
TRIP  
10W/V  
150  
5
= 2N3906  
3A  
30W  
PK  
200mΩ  
3
R3  
15k  
R4  
15k  
k =  
I
2940 TA11  
2940f  
20  
LT2940  
TYPICAL APPLICATIONS  
AC Power and Current Monitor  
T1  
12.6VAC  
SECONDARY  
LOAD  
R
S
C1A  
220μF  
25V  
+
200mΩ  
3
D1  
1N4001  
+
R3  
10Ω  
V
CC  
I
I
+
C1B  
220μF  
25V  
+
V
V
1
5
k
=
V
R1  
LT2940  
30k  
200mΩ  
3
k =  
I
D2  
D3  
5.1V  
R2  
120k  
1N4001  
R6  
1k  
GND PMON  
IMON  
2940 TA12  
R4  
15k  
R5  
15k  
10W/V  
1A/V  
3A  
PK  
30W  
PK  
Fullc Isolated AC Power and Current Monitor  
7A  
117V  
“L”  
1
T1  
500  
R
R
S2  
S1  
4.99Ω 4.99Ω  
V
CC  
V
CC  
LOAD  
R2A  
200Ω  
1%  
+
R6  
10k  
15V  
D2  
D4  
V
I
I
CC  
1kW/V  
853 W  
C1  
47μF  
25V  
+
R12  
1k  
V
R4  
4.22k  
PK  
R1A  
68.1Ω  
• •  
PMON  
IMON  
R5  
4.99k  
LT2940  
GND  
10.8V  
117V  
C2  
100nF  
R2B  
200Ω  
1%  
R1B  
68.1Ω  
D1  
5.1V  
C12  
100nF  
T2  
10A/V  
V
10A  
R7  
10k  
PK  
D3  
D5  
117V  
“N”  
2940 TA13  
ISOLATION  
BARRIER  
= 1N4148  
T1 = MINNTRONIX 4810966R  
T2 = 1168:108 POTENTIAL TRANSFORMER  
68.1+ 68.1  
108  
1
kV  
=
=
200 + 200 + 68.1+ 68.1 1168 42.58  
4.99 + 4.99  
10  
kI =  
=
500  
501  
IN CONSTRUCTING THIS CIRCUIT, THE CUSTOMER AGREES THAT, IN ADDITION TO THE TERMS AND CONDITIONS ON LINEAR TECHNOLOGY CORPORATION’S  
(LTC) PURCHASE ORDER DOCUMENTS, LTC AND ANY OF ITS EMPLOYEES, AGENTS, REPRESENTATIVES AND CONTRACTORS SHALL HAVE NO LIABILITY,  
UNDER CONTRACT, TORT OR ANY OTHER LEGAL OR EQUITABLE THEORY OF RECOVERY, TO CUSTOMER OR ANY OF ITS EMPLOYEES, AGENTS,  
REPRESENTATIVES OR CONTRACTORS, FOR ANY PERSONAL INJURY, PROPERTY DAMAGE, OR ANY OTHER CLAIM (INCLUDING WITHOUT LIMITATION, FOR  
CONSEQUENTIAL OR INCIDENTAL DAMAGES) RESULTING FROM ANY USE OF THIS CIRCUIT, UNDER ANY CONDITIONS, FORESEEABLE OR OTHERWISE.  
CUSTOMER ALSO SHALL INDEMNIFY LTC AND ANY OF ITS EMPLOYEES, AGENTS, REPRESENTATIVES AND CONTRACTORS AGAINST ANY AND ALL LIABILITY,  
DAMAGES, COSTS AND EXPENSES, INCLUDING ATTORNEY’S FEES, ARISING FROM ANY THIRD PARTY CLAIMS FOR PERSONAL INJURY, PROPERTY DAMAGE,  
OR ANY OTHER CLAIM (INCLUDING WITHOUT LIMITATION, FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES) RESULTING FROM ANY USE OF THIS CIRCUIT,  
UNDER ANY CONDITIONS, FORESEEABLE OR OTHERWISE.  
2940f  
21  
LT2940  
PACKAGE DESCRIPTION  
DD Paꢀkage  
12-Lead Plastiꢀ DFN (ꢁmm × ꢁmm)  
(Reference LTC DWG # 05-08-1725 Rev A)  
0.70 ±0.05  
2.38 ±0.05  
1.65 ±0.05  
3.50 ±0.05  
2.10 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.45 BSC  
2.25 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
0.40 ± 0.10  
TYP  
7
12  
2.38 ±0.10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
PIN 1 NOTCH  
PIN 1  
TOP MARK  
R = 0.20 OR  
0.25 × 45°  
CHAMFER  
(SEE NOTE 6)  
6
1
0.23 ± 0.05  
0.45 BSC  
0.75 ±0.05  
0.200 REF  
2.25 REF  
(DD12) DFN 0106 REV A  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD AND TIE BARS SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2940f  
22  
LT2940  
PACKAGE DESCRIPTION  
MS Package  
12-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1668 Rev Ø)  
0.889 p 0.127  
(.035 p .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
4.039 p 0.102  
(.159 p .004)  
(NOTE 3)  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
TYP  
0.406 p 0.076  
(.016 p .003)  
REF  
12 11 10 9 8 7  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0o – 6o TYP  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
0.254  
(.010)  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
1
2 3 4 5 6  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MS12) 1107 REV Ø  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
2940f  
23  
LT2940  
TYPICAL APPLICATION  
Integrating Watt-Hour Meter  
6V TO 80V  
0A TO 2A  
LOAD  
5V  
+
(80W MAX)  
R
S
V
100mΩ  
5V  
IN  
OUT  
S1B  
S2B  
S3B  
S4B  
R2  
215k  
+
CB  
R17  
309k  
C17  
0.47μF  
SHDN  
C16  
1μF  
LT3014  
+
CB  
V
CC  
I
I
ADJ  
LTC6943  
R16  
GND  
+
100k  
S1A  
S2A  
S3A  
S4A  
C
V
V
R1  
11.3k  
+
C1  
1μF  
CA  
CA  
R15  
+
V
24.9k  
+
+
LT2940  
CMP  
SHA  
C19  
0.1μF  
OSC  
V
R14  
20.0k  
C18  
0.1μF  
LTC6702  
CMPOUT  
5V  
+
R18  
49.9k  
LATCH  
C20  
0.1μF  
R13  
4.99k  
V
DD  
12V  
1024 COUNTS  
= 1 WATT-HOUR  
Q
F
CMPOUT  
GND  
1
20  
k
V
=
RESET  
V
PMON GND  
IMON  
SS  
CD4040  
k = 100mΩ  
I
C
T
Q1  
2N7002  
RESET  
2.2μF  
2940 TA14  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
2.7V to 12V Supply Voltage, 170ꢀA Supply Current  
LTC1966  
Precision Micropower Delta-Sigma RMS-to-DC  
Converter  
LTC1968  
Precision Wide Bandwidth RMS-to-DC Converter 4.5V to 6V Supply Voltage, 500kHz 3dB-Error BW  
LTC6101/  
LTC6101HV  
High Voltage, High Side, Precision Current Sense 4V to 60V/5V to 100V, Gain Configurable, SOT-23  
Amplifiers  
LTC6104  
Bidirectional High Side, Precision Current Sense  
Amplifier  
4V to 60V, Gain Configurable, 8-Pin MSOP  
2.7V to 36V, Gain Configurable, SOT23  
Wide Operating Range: 7V to 80V  
LTC6106  
Low Cost, High Side Precision Current Sense  
Amplifier  
2
LTC4151  
LTC4215  
High Voltage I C Current and Voltage Monitor  
2
Positive Hot Swap Controller with ADC and I C  
8-Bit ADC Monitoring Current and Voltages, Supplies from 2.9V to 15V  
LT4256-1/  
LT4256-2  
Positive 48V Hot Swap Controllers with Open-  
Circuit Detect  
Foldback Current Limiting, Open-Circuit and Overcurrent Fault Output,  
Up to 80V Supply  
LTC4260  
Positive High Voltage Hot Swap Controller With  
Wide Operating Range: 8.5V to 80V  
2
ADC and I C Monitoring  
LTC4261  
Negative Voltage Hot Swap Controller With ADC  
Floating Topology Allows Very High Voltage Operation  
2
and I C Monitoring  
2940f  
LT 1109 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5554IUH#TRPBF

LT5554 - Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5554IUH-PBF

Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA
Linear

LT5554IUH-TRPBF

Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA
Linear

LT5557

400MHz to 3.8GHz 3.3V High Signal Level Downconverting Mixer
Linear

LT5557EUF#PBF

LT5557 - 400MHz to 3.8GHz 3.3V Active Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5557EUF#TR

IC SPECIALTY TELECOM CIRCUIT, PQCC16, 4 X 4 MM, PLASTIC, MO-220, QFN-20, Telecom IC:Other
Linear

LT5557EUF#TRPBF

LT5557 - 400MHz to 3.8GHz 3.3V Active Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5557EUF-PBF

400MHz to 3.8GHz 3.3V High Signal Level Downconverting Mixer
Linear

LT5558

600MHz to 1100MHz High Linearity Direct Quadrature Modulator
Linear

LT5558EUF

600MHz to 1100MHz High Linearity Direct Quadrature Modulator
Linear

LT5558EUF#PBF

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5558EUF#TR

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear