LT5557 [Linear]

400MHz to 3.8GHz 3.3V High Signal Level Downconverting Mixer; 400MHz至3.8GHz的3.3V高信号电平下变频混频器
LT5557
型号: LT5557
厂家: Linear    Linear
描述:

400MHz to 3.8GHz 3.3V High Signal Level Downconverting Mixer
400MHz至3.8GHz的3.3V高信号电平下变频混频器

文件: 总16页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5557  
400MHz to 3.8GHz  
3.3V High Signal Level  
Downconverting Mixer  
U
FEATURES  
DESCRIPTIO  
The LT®5557 active mixer is optimized for high linearity,  
wide dynamic range downconverter applications. The IC  
includes a high speed differential LO buffer amplifier  
driving a double-balanced mixer. Broadband, integrated  
transformers on the RF and LO inputs provide single-  
ended 50Ω interfaces. The differential IF output allows  
convenient interfacing to differential IF filters and amplifi-  
ers, or is easily matched to drive a single-ended 50Ω load,  
with or without an external transformer.  
3.3V Operation for Reduced Power  
50  
Ω Single-Ended RF and LO Ports  
Wide RF Frequency Range: 400MHz to 3.8GHz*  
High Input IP3: 25.6dBm at 900MHz  
24.7dBm at 1950MHz  
23.7dBm at 2.6GHz  
Conversion Gain: 3.3dB at 900MHz  
2.9dB at 1950MHz  
–3dBm LO Drive Level  
Low LO Leakage  
Low Noise Figure: 10.6dB at 900MHz  
11.7dB at 1950MHz  
Very Few External Components  
16-Lead (4mm ×U4mm) QFN Package  
The RF input is internally matched to 50Ω from 1.6GHz to  
2.3GHz, and the LO input is internally matched to 50Ω  
from 1GHz to 5GHz. The frequency range of both ports is  
easily extended with simple external matching. The IF  
output is partially matched and usable for IF frequencies  
up to 600MHz.  
APPLICATIO S  
The LT5557’s high level of integration minimizes the total  
solution cost, board space and system-level variation.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
*Operation over a wider frequency range is possible with reduced performance. Consult factory for  
information and assistance.  
Cellular, CDMA, WCDMA, TD-SCDMA and UMTS  
Infrastructure  
WiMAX  
Wireless Infrastructure Receiver  
Wireless Infrastructure PA Linearization  
900MHz/2.4GHz/3.5GHz WLAN  
U
TYPICAL APPLICATIO  
High Signal Level Downmixer for Multi-Carrier Wireless Infrastructure  
Conversion Gain, IIP3, SSB NF and  
LO Leakage vs RF Frequency  
LO INPUT  
–3dBm (TYP)  
26  
24  
22  
20  
18  
16  
14  
0
IIP3  
LT5557  
10  
20  
30  
LOW-SIDE LO  
IF = 240MHz  
4.7pF  
P
= –3dBm  
LO  
T
= 25°C  
A
+
100nH  
V
CC  
= 3.3V  
IF  
IF  
SSB NF  
1nF  
12  
10  
8
IF  
150nH  
100nH  
OUTPUT  
240MHz  
40  
4.7pF  
RF  
RF  
INPUT  
LO-IF  
LO-RF  
6
50  
60  
BIAS  
EN  
4
G
C
V
V
CC1  
GND  
CC2  
2
1700  
1900  
2000  
2100  
2200  
1800  
3.3V  
1nF  
1μF  
RF FREQUENCY (MHz)  
5557 TA01a  
5557 TA01b  
5557fa  
1
LT5557  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Supply Voltage (VCC1, VCC2, IF+, IF) ......................... 4V  
Enable Voltage ............................... –0.3V to VCC + 0.3V  
LO Input Power (380MHz to 4.2GHz) ............... +10dBm  
LO Input DC Voltage ............................ –1V to VCC + 1V  
RF Input Power (400MHz to 3.8GHz) ............... +12dBm  
RF Input DC Voltage ............................................ 0.1V  
Operating Temperature Range ............... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 125°C  
Junction Temperature (TJ)................................... 125°C  
ORDER PART  
NUMBER  
16 15 14 13  
NC  
NC  
RF  
NC  
1
2
3
4
12 GND  
+
LT5557EUF#PBF  
11 IF  
17  
IF  
10  
9
GND  
5
6
7
8
UF PART MARKING  
5557  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 37°C/W  
EXPOSED PAD (PIN 17) IS GND  
MUST BE SOLDERED TO PCB  
CAUTION: This part is sensitive to electrostatic discharge  
(ESD). It is very important that proper ESD precautions be  
observed when handling the LT5557.  
Order Options Tape and Reel: Add #TR  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
DC ELECTRICAL CHARACTERISTICS  
VCC = 3.3V, EN = High, TA = 25°C, unless otherwise specified. Test circuit shown in Figure 1. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Requirements (V  
Supply Voltage  
)
CC  
2.9  
3.3  
3.9  
V
Supply Current  
V
V
(Pin 7)  
25.1  
3.3  
53.2  
81.6  
mA  
mA  
mA  
mA  
CC1  
(Pin 6)  
CC2  
+
IF + IF (Pin 11 + Pin 10)  
Total Supply Current  
60  
92  
Enable (EN) Low = Off, High = On  
Shutdown Current  
EN = Low  
100  
μA  
V
Input High Voltage (On)  
Input Low Voltage (Off)  
EN Pin Input Current  
Turn-ON Time  
2.7  
0.3  
90  
V
EN = 3.3V DC  
53  
2.8  
2.9  
μA  
μs  
μs  
Turn-OFF Time  
AC ELECTRICAL CHARACTERISTICS  
Test circuit shown in Figure 1. (Notes 2, 3)  
MIN  
PARAMETER  
CONDITIONS  
TYP  
MAX  
UNITS  
RF Input Frequency Range  
No External Matching (Midband)  
With External Matching (Low Band or High Band)  
1600 to 2300  
MHz  
MHz  
400  
380  
3800  
LO Input Frequency Range  
No External Matching  
With External Matching  
1000 to 4200  
MHz  
MHz  
IF Output Frequency Range  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
LO Input Power  
Requires Appropriate IF Matching  
0.1 to 600  
>12  
MHz  
dB  
Z = 50Ω, 1600MHz to 2300MHz (No External Matching)  
O
Z = 50Ω, 1000MHz to 5000MHz (No External Matching)  
>10  
dB  
O
Differential at 240MHz  
529Ω||2.6pF  
R||C  
1200MHz to 4200MHz  
380MHz to 1200MHz  
–8  
–5  
–3  
0
2
5
dBm  
dBm  
5557fa  
2
LT5557  
AC ELECTRICAL CHARACTERISTICS  
IF output measured at 240MHz, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)  
Standard Downmixer Application: VCC = 3.3V, EN = High, TA = 25°C,  
PRF = 6dBm (–6dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), fLO = fRF – fIF, PLO = –3dBm (0dBm for 450MHz and 900MHz tests),  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
RF = 450MHz, IF = 70MHz, High Side LO  
RF = 900MHz, IF = 140MHz  
RF = 1750MHz  
RF = 1950MHz  
RF = 2150MHz  
2.9  
3.3  
3.0  
2.9  
2.9  
2.5  
1.7  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
RF = 2600MHz, IF = 360MHz  
RF = 3600MHz, IF = 450MHz  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
T = 40°C to 85°C, RF = 1950MHz  
–0.0217  
dB/°C  
A
RF = 450MHz, IF = 70MHz, High Side LO  
RF = 900MHz, IF = 140MHz  
RF = 1750MHz  
RF = 1950MHz  
RF = 2150MHz  
RF = 2600MHz, IF = 360MHz  
RF = 3600MHz, IF = 450MHz  
24.1  
25.6  
25.5  
24.7  
24.3  
23.7  
23.5  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Single-Sideband Noise Figure  
RF = 450MHz, IF = 70MHz, High Side LO  
RF = 900MHz, IF = 140MHz  
RF = 1750MHz  
RF = 1950MHz  
RF = 2150MHz  
12.7  
10.6  
11.3  
11.7  
12.8  
13.2  
15.4  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
RF = 2600MHz, IF = 360MHz  
RF = 3600MHz, IF = 450MHz  
LO to RF Leakage  
f
f
= 380MHz to 1600MHz  
= 1600MHz to 4000MHz  
<–50  
<–45  
dBm  
dBm  
LO  
LO  
LO to IF Leakage  
f
f
= 380MHz to 2200MHz  
= 2200MHz to 4000MHz  
<–42  
<–38  
dBm  
dBm  
LO  
LO  
RF to LO Isolation  
f
f
= 400MHz to 1700MHz  
= 1700MHz to 3800MHz  
>50  
>42  
dB  
dB  
RF  
RF  
RF to IF Isolation  
f
f
= 400MHz to 2300MHz  
= 2300MHz to 3800MHz  
>41  
>37  
dB  
dB  
RF  
RF  
2RF-2LO Output Spurious Product  
900MHz: f = 830MHz at –6dBm, f = 140MHz  
–61  
–53  
dBc  
dBc  
RF  
IF  
(f = f + f /2)  
1950MHz: f = 1830MHz at –6dBm, f = 240MHz  
RF  
LO  
IF  
RF IF  
3RF-3LO Output Spurious Product  
(f = f + f /3)  
900MHz: f = 806.67MHz at –6dBm, f = 140MHz  
–83  
–70  
dBc  
dBc  
RF  
IF  
1950MHz: f = 1790MHz at –6dBm, f = 240MHz  
RF  
LO  
IF  
RF  
IF  
Input 1dB Compression  
RF = 450MHz, IF = 70MHz, High Side LO  
RF = 900MHz, IF = 140MHz  
RF = 1950MHz  
RF = 2600MHz, IF = 360MHz  
RF = 3600MHz, IF = 450MHz  
10.0  
8.8  
8.8  
8.6  
9.1  
dBm  
dBm  
dBm  
dBm  
dBm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Note 4: SSB Noise Figure measurements performed with a small-signal  
noise source and bandpass filter on RF input, and no other RF signal  
applied.  
Note 2: 450MHz and 900MHz performance measured with external LO and  
RF matching. 2600MHz and 3600MHz performance measured with  
external RF matching. See Figure 1 and Applications Information.  
5557fa  
3
LT5557  
U W  
VCC = 3.3V, Test circuit shown in Figure 1.  
TYPICAL PERFOR A CE CHARACTERISTICS  
Midband (No external RF/LO matching) 240MHz IF output, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), PLO = –3dBm,  
unless otherwise noted.  
Conversion Gain, IIP3 and NF  
vs RF Frequency  
LO Leakage and RF Isolation vs  
LO and RF Frequency  
Supply Current vs Supply Voltage  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
–20  
–30  
–40  
–50  
–60  
55  
45  
35  
25  
15  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
IIP3  
85°C  
LOW-SIDE LO  
HIGH-SIDE LO  
RF-LO  
RF-IF  
60°C  
25°C  
LO-IF  
SSB NF  
–10°C  
–40°C  
T
= 25°C  
6
A
LO-RF  
IF = 240MHz  
T
= 25°C  
G
C
A
4
P
= –3dBm  
LO  
2.4  
LO/RF FREQUENCY (GHz)  
2
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3  
1.2  
1.5  
1.8  
2.1  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
RF FREQUENCY (GHz)  
SUPPLY VOLTAGE (V)  
5557 G01  
5557 G02  
5557 G03  
Conversion Gain and IIP3  
vs Temperature (Low-Side LO)  
Conversion Gain and IIP3  
vs Temperature (High-Side LO)  
1950MHz Conversion Gain, IIP3  
and NF vs Supply Voltage  
27  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
IIP3  
25  
23  
21  
19  
17  
15  
13  
11  
9
IIP3  
IIP3  
–40°C  
25°C  
85°C  
1750MHz  
1950MHz  
2150MHz  
1750MHz  
1950MHz  
2150MHz  
SSB NF  
IF = 240MHz  
IF = 240MHz  
LOW-SIDE LO  
IF = 240MHz  
7
5
7
5
6
4
G
C
G
C
G
C
3
3
2
1
1
0
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
2.9  
3.1  
3.5  
SUPPLY VOLTAGE (V)  
3.7  
3.9  
3.3  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
5557 G04  
5557 G05  
5557 G06  
1750MHz Conversion Gain, IIP3  
and NF vs LO Power  
1950MHz Conversion Gain, IIP3  
and NF vs LO Power  
2150MHz Conversion Gain, IIP3  
and NF vs LO Power  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
IIP3  
IIP3  
IIP3  
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
SSB NF  
SSB NF  
SSB NF  
LOW-SIDE LO  
IF = 240MHz  
LOW-SIDE LO  
IF = 240MHz  
LOW-SIDE LO  
IF = 240MHz  
6
4
6
4
7
5
G
G
C
C
G
C
2
2
3
0
0
1
–9  
–7  
–5  
–3  
–1  
1
3
–9  
–7  
–5  
–3  
–1  
1
3
–9  
–7  
–5  
–3  
–1  
1
3
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5557 G08  
5557 G09  
5557 G07  
5557fa  
4
LT5557  
U W  
VCC = 3.3V, Test circuit shown in Figure 1.  
Midband (No external RF/LO matching) 240MHz IF output, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), PLO = –3dBm,  
TYPICAL PERFOR A CE CHARACTERISTICS  
unless otherwise noted.  
IF Output Power, IM3 and IM5 vs  
RF Input Power (2 Input Tones)  
IFOUT, 2 × 2 and 3 × 3 Spurs  
2 × 2 and 3 × 3 Spurs  
vs RF Input Power (Single Tone)  
vs LO Power (Single Tone)  
10  
0
15  
5
–40  
–45  
–50  
–55  
T
= 25°C  
IF  
A
OUT  
LO = 1710MHz  
IF = 240MHz  
(RF = 1950MHz)  
IF  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–5  
P
= –6dBm  
T
= 25°C  
RF  
A
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
LO = 1710MHz  
IF = 240MHz  
2RF-2LO  
(RF = 1830MHz)  
T
A
= 25°C  
RF1 = 1949.5MHz  
RF2 = 1950.5MHz  
LO = 1710MHz  
–60  
–65  
2RF-2LO  
(RF = 1830MHz)  
–70  
–75  
–80  
3RF-3LO  
(RF = 1790MHz)  
3RF-3LO  
(RF = 1790MHz)  
IM3  
–15  
RF INPUT POWER (dBm/TONE)  
IM5  
–18  
–12  
–9  
–6  
–3  
0
–9  
–7  
–5  
–1  
1
3
–15  
–9 –6 –3  
0
3
6
9
12  
–3  
–12  
RF INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5557 G10  
5557 G12  
5557 G11  
Conversion Gain Distribution at  
1950MHz  
SSB Noise Figure Distribution at  
1950MHz  
IIP3 Distribution at 1950MHz  
35  
30  
30  
27  
24  
21  
18  
15  
12  
9
40  
35  
30  
25  
20  
15  
10  
5
85°C  
T
= 25°C  
T
= 25°C  
A
A
25°C  
LOW-SIDE LO  
IF = 240MHz  
LOW-SIDE LO  
IF = 240MHz  
–40°C  
25  
LOW-SIDE LO  
IF = 240MHz  
20  
15  
10  
5
6
3
0
0
0
23  
26  
25  
IIP3 (dBm)  
28  
24  
27  
11.0 11.2 11.4 11.6 11.8 12.0 12.2  
2.9  
CONVERSION GAIN (dB)  
2.6  
2.7  
2.8  
3.0  
3.1  
3.2  
SSB NOISE FIGURE (dB)  
5557 G26  
5557 G27  
5557 G25  
450MHz application (with external RF/LO matching) 70MHz IF output, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests,  
Δf = 1MHz), high-side LO at 0dBm, unless otherwise noted.  
Conversion Gain, IIP3 and NF  
vs RF Frequency  
450MHz Conversion Gain,  
IIP3 and NF vs LO Power  
LO Leakage vs LO Frequency  
450MHz and 900MHz Applications  
25  
23  
21  
19  
17  
15  
13  
11  
9
–35  
–40  
–45  
–50  
–55  
–60  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
T
= 25°C  
LO  
LO-RF  
LO-IF  
A
IIP3  
P
= 0dBm  
IIP3  
–40°C  
25°C  
85°C  
HIGH-SIDE LO  
= 25°C  
T
A
IF = 70MHz  
SSB NF  
SSB NF  
900MHz  
APPLICATION  
HIGH-SIDE LO  
IF = 70MHz  
7
G
C
5
6
450MHz  
APPLICATION  
3
4
G
C
1
2
600  
800  
1000  
400  
1200  
2
4
6
400  
450  
475  
500  
–6  
–4  
–2  
0
425  
LO FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
RF FREQUENCY (MHz)  
5557 G15  
5557 G14  
5557 G13  
5557fa  
5
LT5557  
U W  
VCC = 3.3V, Test circuit shown in Figure 1.  
TYPICAL PERFOR A CE CHARACTERISTICS  
900MHz application (with external RF/LO matching), 140MHz IF output, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, Δf = 1MHz),  
low-side LO at 0dBm, unless otherwise noted.  
900MHz Conversion Gain, IIP3 and  
NF vs LO Power  
IFOUT, 2 × 2 and 3 × 3 Spurs  
Conversion Gain, IIP3 and NF vs  
RF Frequency  
vs RF Input Power (Single-Tone)  
15  
5
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
IIP3  
IIP3  
–5  
T
= 25°C  
A
IF  
OUT  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
LO = 760MHz  
IF = 140MHz  
LOW-SIDE LO  
–40°C  
25°C  
85°C  
(RF = 900MHz)  
T
= 25°C  
A
IF = 140MHz  
SSB NF  
2RF-2LO  
(RF = 830MHz)  
SSB NF  
LOW-SIDE LO  
IF = 140MHz  
7
5
3
1
G
C
6
4
2
3RF-3LO  
(RF = 806.67MHz)  
G
C
–15 –12 –9 –6 –3  
0
3
6
9
12  
750  
800  
850  
900  
950 1000 1050  
RF INPUT POWER (dBm)  
RF FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
5557 G18  
5557 G16  
5557 G17  
2.3-2.7GHz application (with external RF matching) 360MHz IF output, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, Δf = 1MHz),  
PLO = –3dBm, unless otherwise noted.  
LO Leakage and RF Isolation vs  
LO and RF Frequency  
Conversion Gain, IIP3 and SSB  
NF vs RF Frequency  
2.6GHz Conversion Gain, IIP3 and  
NF vs LO Power  
–20  
–30  
–40  
–50  
45  
35  
25  
15  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
RF-LO  
RF-IF  
IIP3  
IIP3  
LOW-SIDE LO  
HIGH-SIDE LO  
–40°C  
25°C  
85°C  
SSB NF  
SSB NF  
LO-RF  
LO-IF  
LOW-SIDE LO  
T
A
= 25°C  
6
4
6
4
G
C
G
C
2
2
–60  
5
0
0
1.9  
2.1  
2.3  
2.5  
2.7  
2.9  
3.1  
2.3  
2.4  
2.5  
2.6  
2.7  
–9  
–7  
–5  
–3  
–1  
1
3
LO/RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
LO INPUT POWER (dBm)  
5557 G21  
5557 G19  
5557 G20  
3.3-3.8GHz application (with external RF matching) 450MHz IF output, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, Δf = 1MHz),  
low-side LO at –3dBm, unless otherwise noted.  
Conversion Gain, IIP3 and SSB NF  
vs RF Frequency  
3.6GHz Conversion Gain, IIP3 and  
SSB NF vs LO Power  
LO Leakage and RF Isolation vs LO  
and RF Frequency  
24  
22  
20  
18  
16  
14  
12  
10  
8
–30  
–40  
–50  
–60  
–70  
55  
24  
22  
20  
18  
16  
14  
12  
10  
8
IIP3  
IIP3  
RF-LO  
45  
SSB NF  
RF-IF  
SSB NF  
35  
–40°C  
25°C  
85°C  
LO-IF  
LO-RF  
6
25  
6
T
= 25°C  
A
4
G
C
4
G
C
2
2
0
15  
0
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
–9  
–5  
–3  
–1  
1
3
–7  
3.3  
3.5  
3.6  
3.7  
3.8  
3.4  
LO INPUT POWER (dBm)  
LO/RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5557 G24  
5557 G23  
5557 G22  
5557fa  
6
LT5557  
U
U
U
PI FU CTIO S  
NC(Pins 1, 2, 4, 8, 13, 14, 16): Not Connected Internally.  
Thesepinsshouldbegroundedonthecircuitboardforthe  
best LO-to-RF and LO-to-IF isolation.  
be externally connected to the VCC2 pin and decoupled  
with 1000pF and 1μF capacitors.  
GND (Pins 9, 12): Ground. These pins are internally  
connected to the backside ground for improved isolation.  
They should be connected to the RF ground on the circuit  
board, although they are not intended to replace the  
primary grounding through the backside contact of the  
package.  
IF, IF+ (Pins 10, 11): Differential Outputs for the IF  
Signal. An impedance transformation may be required to  
match the outputs. These pins must be connected to VCC  
through impedance matching inductors, RF chokes or a  
transformer center tap. Typical current consumption is  
26.6mA each (53.2mA total).  
RF (Pin 3): Single-Ended Input for the RF Signal. This pin  
is internally connected to the primary side of the RF input  
transformer,whichhaslowDCresistancetoground.Ifthe  
RF source is not DC blocked, then a series blocking  
capacitormustbeused.TheRFinputisinternallymatched  
from 1.6GHz to 2.3GHz. Operation down to 400MHz or up  
to 3.8GHz is possible with simple external matching.  
EN (Pin 5): Enable Pin. When the input enable voltage is  
higher than 2.7V, the mixer circuits supplied through Pins  
6, 7, 10 and 11 are enabled. When the input voltage is less  
than 0.3V, all circuits are disabled. Typical input current is  
53μA for EN = 3.3V and 0μA when EN = 0V. The EN pin  
should not be left floating. Under no conditions should the  
EN pin voltage exceed VCC + 0.3V, even at start-up.  
LO (Pin 15): Single-Ended Input for the Local Oscillator  
Signal. This pin is internally connected to the primary side  
of the LO transformer, which is internally DC blocked. An  
external blocking capacitor is not required. The LO input is  
internallymatchedfrom1GHzto5GHz. Operationdownto  
380MHz is possible with simple external matching.  
VCC2 (Pin 6): Power Supply Pin for the Bias Circuits.  
Typical current consumption is 3.3mA. This pin should be  
externally connected to the VCC1 pin and decoupled with  
1000pF and 1μF capacitors.  
Exposed Pad (Pin 17): Circuit Ground Return for the  
EntireIC.Thismustbesolderedtotheprintedcircuitboard  
ground plane.  
VCC1 (Pin 7): Power Supply Pin for the LO Buffer Circuits.  
Typical current consumption is 25.1mA. This pin should  
W
BLOCK DIAGRA  
15  
LO  
REGULATOR  
EXPOSED  
17  
PAD  
LIMITING  
AMPLIFIERS  
V
REF  
12  
11  
GND  
V
+
CC1  
IF  
RF  
IF  
3
10  
9
DOUBLE-BALANCED  
MIXER  
GND  
BIAS  
EN  
V
V
CC1  
CC2  
5
6
7
5557 BD  
5557fa  
7
LT5557  
TEST CIRCUITS  
LO  
IN  
L4  
C4  
RF  
GND  
εR = 3.7  
0.015"  
0.062"  
0.015"  
DC1131A  
BOARD  
BIAS  
GND  
STACK-UP  
(NELCO N4000-13)  
16  
15 14  
13  
EXTERNAL MATCHING  
FOR LO BELOW 1GHz  
NC LO NC NC  
1
2
12  
11  
T1  
NC  
NC  
GND  
+
3
2
1
4
6
IF  
Z
O
C3  
LT5557  
L1  
RF  
IN  
50Ω  
3
4
10  
9
IF  
OUT  
IF  
GND  
NC  
RF  
240MHz  
L (mm)  
C5  
NC  
EN  
V
V
CC2 CC1  
LOW-PASS MATCH  
FOR 450MHz, 900MHz  
AND 3.6GHz RF  
5
6
7
8
EN  
C5  
3.9pF  
V
CC  
(2.9V to 3.9V)  
RF  
IN  
C1  
C2  
L5  
3.6nH  
5557 F01  
*HIGH-PASS MATCH  
FOR 2.6GHz RF  
APPLICATION  
LO  
RF MATCH  
LO MATCH  
IF MATCH  
L1 C3  
RF  
IF  
L
C5  
L4  
C4  
450MHz High Side 70MHz 6.5mm  
900MHz Low Side 140MHz 1.7mm  
12pF  
10nH  
8.2pF  
270nH  
15pF  
3.9pF  
2.7nH  
3.9pF  
180nH  
47nH  
39nH  
3.9pF  
1.2pF  
2.6GHz  
3.6GHz  
360MHz  
HIGH-PASS*  
450MHz 2.9mm  
1pF  
REF DES  
C1  
VALUE  
SIZE  
0402  
0603  
0402  
PART NUMBER  
REF DES  
L4, C4, C5  
L1  
VALUE  
SIZE  
PART NUMBER  
1000pF  
1μF  
AVX 04025C102JAT  
0402  
0603  
See Applications Information  
Toko LLQ1608-F82NG  
Mini-Circuits TC8-1+  
C2  
AVX 0603ZD105KAT  
AVX 04025A2R2BAT  
82nH  
8:1  
C3  
2.2pF  
T1  
Figure 1. Standard Downmixer Test Schematic—Transformer-Based Bandpass IF Matching (240MHz IF)  
LO  
RF  
GND  
IN  
L4  
C4  
εR = 4.4  
0.018"  
0.062"  
DC910A  
BOARD  
STACK-UP  
(FR-4)  
DISCRETE  
IF BALUN  
BIAS  
GND  
0.018"  
16  
15 14  
13  
EXTERNAL MATCHING  
FOR LO BELOW 1GHz  
NC LO NC NC  
1
2
12  
11  
C6  
L1  
NC  
NC  
GND  
+
IF  
C3  
IF  
OUT  
240MHz  
Z
O
L3  
LT5557  
RF  
IN  
50Ω  
C7  
3
4
10  
9
IF  
GND  
NC  
RF  
L (mm)  
C5  
NC  
L2  
EN  
V
V
CC2 CC1  
LOW-PASS MATCH  
FOR 450MHz, 900MHz  
AND 3.6GHz RF  
5
6
7
8
EN  
V
(2.9V to 3.9V)  
CC  
C1  
C2  
5557 F02  
REF DES  
C1, C3  
C2  
VALUE  
SIZE  
0402  
0603  
0402  
PART NUMBER  
REF DES  
VALUE  
SIZE  
PART NUMBER  
1000pF  
1μF  
AVX 04025C102JAT  
AVX 0603ZD105KAT  
AVX 04025A4R7CAT  
L4, C4, C5  
L1, L2  
L3  
0402  
0603  
0603  
See Applications Information  
Toko LL1608-FSLR10J  
Toko LL1608-FSLR15J  
100nH  
150nH  
C6, C7  
4.7pF  
Figure 2. Downmixer Test Schematic—Discrete IF Balun Matching (240MHz IF)  
5557fa  
8
LT5557  
W U U  
APPLICATIO S I FOR ATIO  
U
Introduction  
band edge can be optimized with a series 3.9pF capacitor  
at Pin 3, which improves the 1.6GHz return loss to greater  
than 25dB. Likewise, the 2.3GHz match can be improved  
to greater than 25dB with a series 1.5nH inductor. A series  
2.7nH/2.2pFnetworkwillsimultaneouslyoptimizethelower  
and upper band edges and expand the RF input bandwidth  
to 1.2GHz-2.5GHz. Measured RF input return losses for  
these three cases are also plotted in Figure 4a.  
The LT5557 consists of a high linearity double-balanced  
mixer, RF buffer amplifier, high speed limiting LO buffer  
amplifier and bias/enable circuits. The RF and LO inputs  
are both single ended. The IF output is differential. Low  
side or high side LO injection can be used.  
Two evaluation circuits are available. The standard evalu-  
ationcircuit, showninFigure1, incorporatestransformer-  
based IF matching and is intended for applications that  
require the highest dynamic range and the widest IF  
bandwidth. The second evaluation circuit, shown in Fig-  
ure 2, replaces the IF transformer with a discrete IF balun  
for reduced solution cost and size. The discrete IF balun  
delivershigherconversiongain,butslightlydegradedIIP3  
and noise figure, and reduced IF bandwidth.  
Alternatively, the input match can be shifted as low as  
400MHzorupto3800MHzbyaddingashuntcapacitor(C5)  
to the RF input. A 450MHz input match is realized with C5  
= 12pF, located 6.5mm away from Pin 3 on the evaluation  
board’s50Ωinputtransmissionline.A900MHzinputmatch  
requires C5 = 3.9pF, located at 1.7mm. A 3.6GHz input  
match is realized with C5 = 1pF, located at 2.9mm. This  
0
NO EXT MATCH  
–5  
RF Input Port  
The mixer’s RF input, shown in Figure 3, consists of an  
integrated transformer and a high linearity differential  
amplifier. The primary terminals of the transformer are  
connectedtotheRFinput(Pin3)andground. Thesecond-  
ary side of the transformer is internally connected to the  
amplifier’s differential inputs. The DC resistance of the  
primaryis4.2Ω. IftheRFsourcehasDCvoltagepresent,  
thenacouplingcapacitormustbeusedinserieswiththe  
RF input pin.  
–10  
–15  
–20  
SERIES 2.7nH  
AND 2.2pF  
–25  
SERIES 3.9pF  
SERIES 1.5nH  
–30  
2.7 3.2  
FREQUENCY (GHz)  
0.2 0.7 1.2 1.7 2.2  
3.7 4.2  
5557 F04a  
TheRFinputisinternallymatchedfrom1.6GHzto2.3GHz,  
requiring no external components over this frequency  
range. The input return loss, shown in Figure 4a, is typi-  
cally 12dB at the band edges. The input match at the lower  
(4a) Series Reactance Matching  
0
–5  
–10  
–15  
–20  
–25  
–30  
LOW-PASS MATCH  
FOR 450MHz, 900MHz  
and 3.6GHz RF  
3.6GHz  
L = 2.9mm  
C5 = 1pF  
TO  
MIXER  
NO EXT  
Z
= 50Ω  
O
MATCH  
RF  
RF  
IN  
IN  
450MHz  
L = 6.5mm  
C5 = 12pF  
900MHz  
L = 1.7mm  
C5 = 3.9pF  
L = L (mm)  
RF  
3
C5  
2.6GHz  
SERIES 3.9pF  
SHUNT 3.6nH  
5557 F03  
C5  
2.7 3.2  
FREQUENCY (GHz)  
0.2 0.7 1.2 1.7 2.2  
3.7 4.2  
HIGH-PASS MATCH  
FOR 2.6GHz RF  
AND WIDEBAND RF  
5557 F04b  
L5  
(4b) Series Shunt Matching  
Figure 4. RF Input Return Loss With  
and Without External Matching  
Figure 3. RF Input Schematic  
5557fa  
9
LT5557  
W U U  
U
APPLICATIO S I FOR ATIO  
series transmission line/shunt capacitor matching topol-  
ogy allows the LT5557 to be used for multiple frequency  
standards without circuit board layout modifications. The  
series transmission line can also be replaced with a series  
chip inductor for a more compact layout.  
LO Input Port  
The mixer’s LO input, shown in Figure 5, consists of an  
integratedtransformerandhighspeedlimitingdifferential  
amplifiers. The amplifiers are designed to precisely drive  
the mixer for the highest linearity and the lowest noise  
figure. An internal DC blocking capacitor in series with the  
transformer’s primary eliminates the need for an external  
blocking capacitor.  
Input return losses for the 450MHz, 900MHz, 2.6GHz and  
3.6GHz applications are plotted in Figure 4b. The input  
return loss with no external matching is repeated in Figure  
4b for comparison. The 2.6GHz RF input match uses the  
high-pass matching network shown in Figures 1 and 3  
with C5 = 3.9pF and L5 = 3.6nH. The high-pass input  
matching network is also used to create a wideband or  
dual-band input match. For example, with C5 = 3.3pF and  
L5 = 10nH, the RF input is matched from 800MHz to  
2.2GHz, with optimum matching in the 800MHz to 1.1GHz  
and 1.6GHz to 2.2GHz bands, simultaneously.  
The LO input is internally matched from 1 to 5GHz. The  
input match can be shifted down, as low as 750MHz, with  
a single shunt capacitor (C4) on Pin 15. One example is  
plotted in Figure 6 where C4 = 2.7pF produces a 750MHz  
to 1GHz match.  
LO input matching below 750MHz requires the series  
inductor (L4)/shunt capacitor (C4) network shown in  
Figure 5. Two examples are plotted in Figure 6 where L4 =  
2.7nH/C4 = 3.9pF produces a 650MHz to 830MHz match  
and L4 = 10nH/C4 = 8.2pF produces a 460MHz to 560MHz  
match. The evaluation boards do not include pads for L4,  
so the circuit trace needs to be cut near Pin 15 to insert L4.  
A low cost multilayer chip inductor is adequate for L4.  
RF input impedance and S11 versus frequency (with no  
external matching) are listed in Table 1 and referenced to  
Pin 3. The S11 data can be used with a microwave circuit  
simulator to design custom matching networks and simu-  
late board-level interfacing to the RF input filter.  
Table 1. RF Input Impedance vs Frequency  
EXTERNAL  
MATCHING  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
S11  
MAG  
0.832  
0.706  
0.639  
0.588  
0.506  
0.380  
0.229  
0.163  
0.184  
0.274  
0.374  
0.481  
0.568  
0.645  
0.700  
ANGLE  
174.7  
153.8  
145.8  
138.7  
123.4  
97.5  
FOR LO < 1GHz  
TO  
MIXER  
50  
4.6 + j2.3  
9.1 + j11.2  
12.0 + j14.5  
14.7 + j17.4  
20.5 + j23.3  
34.4 + j30.3  
59.6 + j23.8  
69.2 + j2.8  
59.2 – j18.1  
41.5 – j24.5  
28.3 – j21.3  
19.0 – j13.5  
13.9 – j5.1  
10.8 + j3.4  
9.4 + j12.3  
LO  
IN  
L4  
C4  
LO  
300  
15  
LIMITER  
450  
600  
REGULATOR  
V
REF  
V
CC2  
900  
5557 F05  
1300  
1700  
1950  
2200  
2450  
2700  
3000  
3300  
3600  
3900  
Figure 5. LO Input Schematic  
55.8  
6.9  
0
–10  
–20  
–30  
–53.5  
–94.2  
–120.3  
–145.5  
–167.3  
171.9  
151.4  
NO EXT  
MATCH  
L4 = 10nH  
C4 = 8.2pF  
L4 = 2.7nH  
L4 = 0  
C4 = 3.9pF  
C4 = 2.7pF  
0.3  
1
5
LO FREQUENCY (GHz)  
5557 G06  
Figure 6. LO Input Return Loss  
5557fa  
10  
LT5557  
W U U  
APPLICATIO S I FOR ATIO  
U
The optimum LO drive is –3dBm for LO frequencies above  
1.2GHz, although the amplifiers are designed to accom-  
modate several dB of LO input power variation without  
significant mixer performance variation. Below 1.2GHz,  
0dBmLOdriveisrecommendedforoptimumnoisefigure,  
although –3dBm will still deliver good conversion gain  
and linearity.  
The IF output impedance can be modeled as 560Ω in  
parallel with 2.6pF at low frequencies. An equivalent  
small-signal model (including bondwire inductance) is  
shown in Figure 8. Frequency-dependent differential IF  
output impedance is listed in Table 3. This data is refer-  
enced to the package pins (with no external components)  
and includes the effects of IC and package parasitics. The  
IF output can be matched for IF frequencies as low as  
several kHz or as high as 600MHz.  
Custom matching networks can be designed using the  
port impedance data listed in Table 2. This data is refer-  
enced to the LO pin with no external matching.  
Table 3. IF Output Impedance vs Frequency  
DIFFERENTIAL OUTPUT  
Table 2. LO Input Impedance vs Frequency  
FREQUENCY (MHz)  
IMPEDANCE (R || X )  
IF IF  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
S11  
1
560 || – j63.7k (2.6pF)  
556 || – j870 (2.6pF)  
551 || – j440 (2.6pF)  
523 || – j320 (2.6pF)  
529 || – j254 (2.6pF)  
509 || – j200 (2.66pF)  
483 || – j163 (2.7pF)  
448 || – j125 (2.83pF)  
396 || – j92 (2.88pF)  
MAG  
0.991  
0.820  
0.632  
0.474  
0.350  
0.241  
0.196  
0.167  
0.102  
0.039  
0.143  
0.263  
0.290  
0.154  
0.271  
ANGLE  
–17.4  
–99.2  
–155.9  
151.8  
100.8  
31.3  
70  
50  
10.0 – j326  
8.5 – j41.9  
11.8 – j10.1  
18.8 + j10.9  
35.0 + j27.4  
72.9 + j19.3  
70.0 – j12.6  
55.0 – j17.0  
47.8 – j9.7  
53.6 – j1.9  
66.7 + j0.7  
82.1 – j13.9  
69.0 – j30.1  
43.7 – j13.2  
36.4 + j19.8  
140  
190  
240  
300  
360  
450  
600  
300  
500  
700  
900  
1200  
1500  
1800  
2200  
2600  
3000  
3500  
4000  
4500  
5000  
–26.1  
–64.3  
–97.2  
–26.8  
2.1  
Two methods of differential to single-ended IF matching  
are described:  
–17.4  
–43.5  
–107.5  
111.6  
• Transformer - Based Bandpass  
• Discrete IF balun  
+
8:1  
IF  
IF  
OUT  
11  
10  
50Ω  
IF Output Port  
C3  
L1 V  
CC  
The IF outputs, IF+ and IF, are internally connected to the  
collectors of the mixer switching transistors (see Fig-  
ure 7). Both pins must be biased at the supply voltage,  
which can be applied through the center tap of a trans-  
former or through matching inductors. Each IF pin draws  
26.6mA of supply current (53.2mA total). For optimum  
single-ended performance, these differential outputs  
should be combined externally through an IF transformer  
or a discrete IF balun circuit. The standard evaluation  
board (see Figure 1) includes an IF transformer for  
impedancetransformationanddifferentialtosingle-ended  
transformation. A second evaluation board (see Figure 2)  
realizes the same functionality with a discrete IF balun  
circuit.  
IF  
V
CC  
5557 F07  
Figure 7. IF Output with External Matching  
0.7nH  
S
+
IF  
IF  
11  
10  
R
C
R || X  
IF IF  
S
0.7nH  
5557 F08  
Figure 8. IF Output Small-Signal Model  
5557fa  
11  
LT5557  
W U U  
U
APPLICATIO S I FOR ATIO  
0
Transformer-Based Bandpass IF Matching  
Thestandardevaluationboard(showninFigure1)usesan  
L-CbandpassIFmatchingnetwork,withan8:1transformer  
connected across the IF pins. The L-C network maximizes  
mixer performance at the desired IF frequency. The  
transformer performs impedance transformation and  
provides a single-ended 50Ω output.  
–10  
–20  
–30  
B
A
C
D
E
The value of L1 is calculated as:  
50  
150  
250  
350  
450  
550  
IF FREQUENCY (MHz)  
L1 = 1/[(2πfIF)2 • CIF]  
5557 G09  
A: 70MHz, L1 = 270nH, C3 = 15pF  
B: 140MHz, L1 = 180nH, C3 = 3.9pF  
C: 240MHz, L1 = 82nH, C3 = 2.2pF  
D: 360MHz, L1 = 47nH, C3 = 1.2pF  
E: 450MHz, L1 = 39nH, C3 = 0pF  
where CIF is the sum of C3 and the internal IF capacitance  
(listed in Table 3). The value of C3 is selected such that L1  
falls on a standard value, while satisfying the desired IF  
bandwidth. The IF bandwidth can be estimated as:  
Figure 9. IF Output Return Loss with  
Transformer-Based Bandpass Matching  
BWIF = 1/(2πREFFCIF)  
Discrete IF Balun Matching  
where REFF, the effective IF resistance when loaded with  
thetransformerandinductorloss,isapproximately200Ω.  
For many applications, it is possible to replace the IF  
transformer with the discrete IF balun shown in Figure 2.  
The values of L1, L2, C6 and C7 are calculated to realize a  
180 degree phase shift at the desired IF frequency and  
provide a 50Ω single-ended output, using the equations  
listed below. Inductor L3 is calculated to cancel the  
internal2.6pFcapacitance.L3alsosuppliesbiasvoltageto  
the IF+ pin. Low cost multilayer chip inductors are ad-  
equate for L1, L2 and L3. C3 is a DC blocking capacitor.  
Below 40MHz, the magnitude of the internal IF reactance  
is relatively high compared to the internal resistance. In  
this case, L1 (and C3) can be eliminated, and the 8:1  
transformer alone is adequate for IF matching.  
The LT5557 was characterized with IF frequencies of  
70MHz, 140MHz, 240MHz, 360MHz and 450MHz. The  
values of L1 and C3 used for these frequencies are  
tabulated in Figure 1 and repeated in Figure 9. In all cases,  
L1 is a high-Q 0603 wire-wound chip inductor, for highest  
conversion gain. Low-cost multi-layer chip inductors can  
be substituted, with a slight reduction in conversion gain.  
The measured IF output return losses are plotted in  
Figure 9.  
RIF ROUT  
L1, L2 =  
ωIF  
1
C6,C7 =  
ωIF • RIF ROUT  
XIF  
L3 =  
ωIF  
5557fa  
12  
LT5557  
W U U  
APPLICATIO S I FOR ATIO  
U
0
Theseequationsgiveagoodstartingpoint, butitisusually  
necessary to adjust the component values after building  
and testing the circuit. The final solution can be achieved  
withlessiterationbyconsideringtheparasiticsofL3inthe  
above calculations. Specifically, the effective parallel re-  
sistanceofL3(calculatedfromthemanufacturer’sQdata)  
will reduce the value of RIF, which in turn influences the  
calculated values of L1 (=L2) and C6 (=C7). Also, the  
effective parallel capacitance of L3 (taken from the manu-  
facturers SRF data) must be considered, since it is in  
parallel with XIF (from table 3). Frequently, the calculated  
value for L1 does not fall on a standard value for the  
desired IF. In this case, a simple solution is to load the IF  
output with a high-value external chip resistor in parallel  
with L3, which reduces the value of RIF, until L1 is a  
standard value.  
–10  
–20  
–30  
360 MHz  
240 MHz  
190 MHz  
150 250  
IF FREQUENCY (MHz)  
450 MHz  
50  
350 450  
550  
5557 F10  
Figure 10. IF Output Return Losses with Discrete Balun Matching  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
–10  
–20  
–30  
–40  
–50  
–60  
–70  
IIP3  
190IF  
240IF  
360IF  
450IF  
Discrete IF balun element values for four common IF  
frequencies (190MHz, 240MHz, 360MHz and 450MHz)  
are listed in Table 4. The 190MHz application circuit uses  
a 3.3kΩ resistor in parallel with L3 as described above.  
The corresponding measured IF output return losses are  
shown in Figure 10. Typical conversion gain, IIP3 and LO-  
IF leakage, versus RF input frequency, for all four ex-  
amples is shown in Figure 11. Typical conversion gain,  
IIP3 and noise figure versus IF output frequency is shown  
in Figure 12.  
LOW-SIDE LO (–3dBm)  
= 25°C  
T
A
LO-IF  
6
G
C
4
2
1700  
1900  
2000  
2100  
2200  
1800  
RF INPUT FREQUENCY (MHz)  
5557 F11  
Figure 11. Conversion Gain, IIP3 and LO-IF Leakage  
vs RF Input Frequency and IF Output Frequency  
(in MHz) Using Discrete IF Balun Matching  
Compared to the transformer-based IF matching tech-  
nique, this network delivers approximately 1dB higher  
conversion gain (since the IF transformer loss is elimi-  
nated), thoughnoisefigureandIIP3aredegradedslightly.  
The most significant performance difference, as shown in  
Figure 12, is the limited IF bandwidth available from the  
discrete approach. For low IF frequencies, the absolute  
bandwidth is small, whereas higher IF frequencies offer  
wider bandwidth.  
26  
24  
IIP3  
22  
20  
18  
16  
14  
12  
10  
8
190IF  
240IF  
360IF  
450IF  
SSB NF  
RF = 1950MHz  
LOW-SIDE LO (–3dBm)  
Table 5. Discrete IF Balun Element Values (R  
= 50Ω)  
OUT  
T
= 25°C  
A
IF FREQUENCY  
6
G
C
(MHz)  
190  
L1, L2  
120nH  
100nH  
56nH  
C6, C7  
6.0pF  
4.7pF  
3.0pF  
2.2pF  
L3  
270nH || 3.3kΩ  
150nH  
4
2
150  
250 300 350 400 450 500  
IF OUTPUT FREQUENCY (MHz)  
200  
240  
5557 F12  
360  
82nH  
Figure 12. Conversion Gain, IIP3 and SSB NF vs IF Output  
Frequency Using Discrete IF Balun Matching  
450  
47nH  
47nH  
5557fa  
13  
LT5557  
W U U  
U
APPLICATIO S I FOR ATIO  
Differential IF Output Matching  
performance goals, IF frequency, IF bandwidth and filter  
(or amplifier) input impedance. Contact the factory for  
applications assistance.  
For fully differential IF architectures, the mixer’s IF out-  
puts can be matched directly into a SAW filter or IF  
amplifier, thus eliminating the IF transformer. One ex-  
ample is shown in Figure 13, where the mixer’s 500Ω  
differential output resistance is matched into a 100Ω  
differential SAW filter using the tapped-capacitor tech-  
nique. Inductors L1 and L2 form the inductive portion of  
the matching network, cancel the internal 2.6pF capaci-  
tance, and supply DC bias current to the mixer core.  
CapacitorsC6throughC9arethecapacitiveportionofthe  
matching, and perform the impedance step-down.  
Enable Interface  
Figure 14 shows a simplified schematic of the EN pin  
interface. The voltage necessary to turn on the LT5557 is  
2.7V. To disable the chip, the enable voltage must be less  
than0.3V.IftheENpinisallowedtofloat,thechipwilltend  
to remain in its last operating state. Thus it is not recom-  
mended that the enable function be used in this manner.  
If the shutdown function is not required, then the EN pin  
should be connected directly to VCC.  
The calculations for tapped-capacitor matching are cov-  
ered in the literature, and are not repeated here. Other  
differential matching options include low-pass, high-  
pass and band-pass. The choice depends on the system  
The voltage at the EN pin should never exceed the power  
supply voltage (VCC) by more than 0.3V. If this should  
occur, the supply current could be sourced through the  
EN pin ESD diode, potentially damaging the IC.  
C6  
LT5557  
V
CC2  
SAW  
FILTER  
C8  
IF  
AMP  
L1  
L2  
+
EN  
IF  
IF  
5
22k  
5557 F13  
C7  
C9  
V
CC  
C2  
SUPPLY  
DECOUPLING  
C1  
5557 F14  
Figure 13. Differential IF Matching Using  
the Tapped-Capacitor Technique  
Figure 14. Enable Input Circuit  
Standard Evaluation Board Layout (DC1131A)  
Discrete IF Evaluation Board Layout (DC910A)  
5557fa  
14  
LT5557  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 0.05  
4.35 0.05  
2.90 0.05  
2.15 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 0.05  
R = 0.115  
TYP  
4.00 0.10  
(4 SIDES)  
15  
16  
0.55 0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 0.10  
(4-SIDES)  
(UF16) QFN 10-04  
0.200 REF  
0.30 0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5557fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT5557  
RELATED PARTS  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
LT5511  
LT5512  
LT5514  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
1KHz-3GHz High Signal Level Active Mixer  
20dBm IIP3 from 30MHz to 900MHz, Integrated LO Buffer, HF/VHF/UHF Optimized  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
LT5515  
LT5516  
1.5GHz to 2.5GHz Direct Conversion Quadrature  
Demodulator  
20dBm IIP3, Integrated LO Quadrature Generator  
21.5dBm IIP3, Integrated LO Quadrature Generator  
21dBm IIP3, Integrated LO Quadrature Generator  
0.8GHz to 1.5GHz Direct Conversion Quadrature  
Demodulator  
LT5517  
LT5519  
40MHz to 900MHz Quadrature Demodulator  
0.7GHz to 1.4GHz High Linearity Upconverting Mixer 17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
LT5520  
LT5521  
LT5522  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer 15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended  
LO Port Operation  
400MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
LT5525  
LT5526  
High Linearity, Low Power Downconverting Mixer  
High Linearity, Low Power Downconverting Mixer  
Single-Ended 50Ω RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
LT5527  
LT5528  
LT5568  
400MHz to 3.7GHz, 5V High Signal Level  
Downconverting Mixer  
23.5dBm IIP3 at 1.9GHz, NF = 12.5dB, Single-Ended RF and LO Ports  
1.5GHz to 2.4GHz High Linearity Direct I/Q  
Modulator  
21.8dBm OIP3 at 2GHz, –159dBm/Hz Noise Floor, 50Ω Interface at all Ports  
600MHz to 1.2GHz High Linearity Direct I/Q  
Modulator  
22.9dBm OIP3, –160.3dBm/Hz Noise Floor, –46dBc Image Rejection,  
–43dBm Carrier Leakage  
RF Power Detectors  
LTC®5505  
LTC5507  
LTC5508  
RF Peak Detectors with >40dB Dynamic Range  
300MHz to 3GHz, Temperature Compensated, –32dBm to 12dBm  
100kHz to 1GHz, Temperature Compensated, –34dBm to 14dBm  
100kHz to 1000MHz RF Peak Power Detector  
300MHz to 7GHz RF Peak Power Detector  
44dB Dynamic Range, Temperature Compensated, SC70 Package,  
–32dBm to 12dBm  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
300MHz to 3GHz RF Peak Power Detector  
36dB Dynamic Range, Low Power Consumption, SC70 Package, –30dBm to 6dBm  
300MHz to 7GHz Precision RF Peak Power Detector Precision V  
300MHz to 7GHz Precision RF Peak Power Detector Precision V  
300MHz to 7GHz Precision RF Peak Power Detector Precision V  
Offset Control, Shutdown, Adjustable Gain, –32dBm to 10dBm  
Offset Control, Shutdown, Adjustable Offset, –32dBm to 10dBm  
Offset Control, Adjustable Gain and Offset,  
OUT  
OUT  
OUT  
35mV Offset Voltage Tolerence  
LTC5533  
LT5534  
300MHz to 11GHz Dual Precision RF Peak Detector –32dBm to 12dBm, Adjustable Offset, 45dB Ch-Ch Isolation  
50MHz to 3GHz RF Log Detector with 60dB  
Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time  
LTC5536  
LT5537  
Precision 600MHz to 7GHz RF Peak Detector  
with Fast Comparator Output  
25ns Response Time, Comparator Reference Input, Latch Enable Input,  
–26dBm to +12dBm Input Range  
90dB Dynamic Range RF Log Detector  
LF to 1GHz, –79dBm to 12dBm, Very Low Tempco  
Low Voltage RF Building Block  
LT5546  
500MHz Quadrature Demodulator with VGA and  
17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V Supply, –7dB to  
17MHz Baseband Bandwidth  
56dB Linear Power Gain  
5557fa  
LT/CGRAFX 0407 REV A • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2006  

相关型号:

LT5557EUF#PBF

LT5557 - 400MHz to 3.8GHz 3.3V Active Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5557EUF#TR

IC SPECIALTY TELECOM CIRCUIT, PQCC16, 4 X 4 MM, PLASTIC, MO-220, QFN-20, Telecom IC:Other
Linear

LT5557EUF#TRPBF

LT5557 - 400MHz to 3.8GHz 3.3V Active Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5557EUF-PBF

400MHz to 3.8GHz 3.3V High Signal Level Downconverting Mixer
Linear

LT5558

600MHz to 1100MHz High Linearity Direct Quadrature Modulator
Linear

LT5558EUF

600MHz to 1100MHz High Linearity Direct Quadrature Modulator
Linear

LT5558EUF#PBF

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5558EUF#TR

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5558EUF#TRBPF

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQCC16, 4 X 4 MM, LEAD FREE, PLASTIC, MO-220WGGC, QFN-16, Cellular Telephone Circuit
Linear

LT5558EUF#TRPBF

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5560

0.01MHz to 4GHz Low Power Active Mixer
Linear

LT5560EDD

0.01MHz to 4GHz Low Power Active Mixer
Linear