LT5554IUH-PBF [Linear]

Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA; 宽带超低失真7位数字控制VGA
LT5554IUH-PBF
型号: LT5554IUH-PBF
厂家: Linear    Linear
描述:

Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA
宽带超低失真7位数字控制VGA

文件: 总32页 (文件大小:602K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5554  
Broadband Ultra Low  
Distortion 7-Bit Digitally  
Controlled VGA  
FEATURES  
DESCRIPTION  
The LT®5554 is a 7-bit digitally controlled programmable  
gain (PG) amplifier with 16dB gain control range. It  
consists of a 50Ω input variable attenuator, followed by  
a high linearity variable transconductance amplifier. The  
coarse4dBinputattenuatorstepisimplementedvia2-bits  
of digital control (PG5, PG6). The fine transconductance  
amplifier 0.125dB step within 3.875dB gain control range  
is set via 5-bits digital control (PG0 to PG4). The LT5554  
gain control inputs (PGx) and the STROBE input can be  
directly coupled to TTL or ECL drivers. The seven parallel  
gain control inputs time skew can be eliminated by using  
the STROBE input positive transition.  
n
1GHz Bandwidth at all Gains  
n
48dBm OIP3 at 200MHz, 2V into 50Ω,  
P-P  
R
= 100Ω  
OUT  
n
–88dBc IMD3 at 200MHz, 2V into 50Ω,  
OUT  
P-P  
R
= 100Ω  
n
n
n
n
n
n
n
n
1.4nV/√Hz Input-Referred-Noise (RTI)  
20dBm Output P1dB at 70MHz, R  
= 130Ω  
OUT  
= 50Ω)  
2dB to 18dB Gain Range (R  
0.125dB Gain Step Size  
OUT  
30ps Group Delay Variation  
5ns Fast Gain Settling Time  
5ns Fast Overdrive Recovery  
–80dB Reverse Isolation  
The internal output resistor R = 400Ω limits the maxi-  
O
mum overall gain to 36dB for open outputs. The internal  
circuitry of open output collectors enables the LT5554 to  
be unconditionally stable over any loading conditions (in-  
cluding external SAW filters) and provides –80dB reverse  
isolation at 300MHz.  
APPLICATIONS  
n
Differential ADC Driver  
n
IF Sampling Receivers  
n
VGA IF Power Amplifier  
50Ω Driver  
n
The LT5554 is internally protected during overdrive and  
has an on-chip power supply regulator.  
n
Instrumentation  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
With 0.125dB step resolution and 5ns settling time, the  
LT5554 is suitable in applications where continuous gain  
control is required.  
TYPICAL APPLICATION  
OIP3 and SFDR vs Frequency  
132  
130  
128  
126  
49  
46  
43  
40  
R
OUT  
= 50Ω  
5V  
V
MODE  
CC  
0.1μF  
+
IN  
OIP3  
IF  
IF  
BPF  
RF  
INPUT  
DEC  
LT5554  
BPF  
ADC  
AMPLIFIER  
+
IN  
7 BITS  
0.1μF  
DEC  
LO  
5554 TA01  
PGx GAIN CONTROL  
STROBE  
SFDR  
C
0.1μF  
0
50  
100  
FREQUENCY (MHz)  
150  
200  
5554 TA01b  
5554f  
1
LT5554  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage  
V ..........................................................................6V  
CC  
32 31 30 29 28 27 26 25  
Pin Voltages and Currents  
GND  
GND  
DEC  
1
2
3
4
5
6
7
8
24  
V
CC  
+
OUT , OUT ............................................................7V  
23 ENB  
STROBE, PGx..........................................–0.5V to V  
GND  
22  
21  
CC  
CC  
+
ENB, MODE.............................................–0.5V to V  
IN  
OUT  
33  
+
+
IN  
20 OUT  
GND  
IN , IN , DEC ........................................... –0.5V to 4V  
DEC  
GND  
GND  
19  
18 MODE  
17  
Operating Ambient Temperature Range  
LT5554............................................... –40°C to +85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................. –65°C to +150°C  
V
CC  
9
10 11 12 13 14 15 16  
UH PACKAGE  
32-LEAD (5mm s 5mm) PLASTIC QFN  
= 150°C, θ = 34°C/W, θ = 3°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 33) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
32-Lead (5mm × 5mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LT5554IUH#PBF  
LT5554IUH#TRPBF  
5554  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
5554f  
2
LT5554  
AC ELECTRICAL CHARACTERISTICS (ROUT = 50Ω) Specifications are at TA = 25°C. VCC = 5V, VCCO = 5V,  
ENB = 3V, MODE = 5V, STROBE = 2.2V, VIH = 2.2V, VIL = 0.6V, maximum gain (Notes 3, 6), (Test circuits shown in Figure 16), unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Dynamic Performance  
BW  
Large Signal –3dB Bandwidth  
All Gain Settings (Note 7)  
LF – 1000  
20  
MHz  
dBm  
S
OP1dB  
Output 1dB Compression Point  
Amplifier Transconductance at G  
All Gain Settings, R  
= 130Ω, 70MHz  
OUT  
G
F
IN  
F
IN  
= 100MHz  
0.15  
–6  
M
MAX  
CMRR  
Common Mode Gain to Single-Ended  
Output  
= 100MHz, Figure 19  
dB  
S12  
Reverse Isolation  
F
IN  
F
IN  
= 100MHz  
= 400MHz  
–86  
–78  
dB  
dB  
Overdrive Recovery Time  
5ns Input Pulse, V  
within 10ꢀ  
5
ns  
OUT  
Noise/Linearity Performance Two Tones, P  
= 4dBm/Tone (2V into 50Ω), Δf = 200kHz  
P-P  
OUT  
IIP3  
Input Third Order Intercept Point  
G
G
, F = 200MHz  
27  
30  
dBm  
dBm  
MAX IN  
–3.875dB, F = 200MHz  
MAX  
IN  
OIP3  
IMD3  
OIP3  
OIP3  
HD3  
Output Third Order Intercept Point for  
Max-Gain  
F
F
= 100MHz  
= 200MHz  
45  
46  
dBm  
dBm  
IN  
IN  
Intermodulation Product for Max-Gain  
F
IN  
F
IN  
= 100MHz  
= 200MHz  
–82  
–84  
dBc  
dBc  
Output Third Order Intercept Point for  
–3.875dB STEP  
F
IN  
F
IN  
= 100MHz  
= 200MHz  
44  
40  
dBm  
dBm  
Output Third Order Intercept Point  
G
G
, F1 = 88MHz, F2 = 112MHz  
40.5  
38  
47  
44  
dBm  
dBm  
MAX  
MAX  
–3.875dB, F1 = 88MHz, F2 = 112MHz  
Third Harmonic Distortion  
Pout = 10dBm, F = 100MHz, G  
–62  
dBc  
IN  
MAX  
V
Output Noise Noise Spectral Density  
G
MAX  
, F = 200MHz  
MAX IN  
10.7  
7.3  
nV/√Hz  
nV/√Hz  
ONOISE  
G
–3.875dB, F = 200MHz  
IN  
NF  
Noise Figure  
G
G
, F = 200MHz  
10  
10.5  
dB  
dB  
MAX IN  
–3.875dB, F = 200MHz  
MAX  
IN  
RTI  
Input Referred Noise Spectral Density  
(RMS) (Note 5)  
G
G
, F = 200MHz  
1.34  
1.42  
nV/√Hz  
nV/√Hz  
MAX IN  
–3.875dB, F = 200MHz  
MAX  
IN  
SFDR  
Spurious Free Dynamic Range in 1Hz  
BW.  
G
G
, F = 200MHz  
128  
129  
dBm/Hz  
dBm/Hz  
MAX IN  
–3.875dB, F = 200MHz  
MAX  
IN  
Amplifier Voltage Gain and Gain Step  
G
G
G
Maximum Voltage and Power Gain  
Minimum Voltage and Power Gain  
Gain Step Size (Note 9)  
F
F
= 112MHz  
15.3  
17.6  
1.725  
0.125  
19.7  
dB  
dB  
MAX  
MIN  
IN  
= 100MHz  
IN  
Except For –4dB, –8dB, –12dB Steps  
For –4dB, –8dB, –12dB Steps  
0.25  
0.35  
dB  
dB  
STEP  
GD  
Group Delay Step Accuracy  
F
IN  
= 100MHz  
10  
ps  
ERROR  
AMPLIFIER I/O Differential IMPEDANCE  
R
Input Resistance  
F
IN  
F
IN  
= 100MHz, G  
= 100MHz, G  
to G –3.875dB  
MAX  
43  
47  
IN  
MAX  
MAX  
–4dB to G  
MIN  
C
Input Capacitance  
Output Resistance  
Output Capacitance  
F
IN  
F
IN  
F
IN  
= 100MHz  
= 100MHz  
= 100MHz  
2.8  
400  
1.9  
pF  
IN  
R
O
O
C
pF  
5554f  
3
LT5554  
AC ELECTRICAL CHARACTERISTICS (ROUT = 100Ω) Specifications are at TA = 25°C. VCC = 5V, VCCO = 5V,  
ENB = 3V, MODE = 5V, STROBE = 2.2V, VIH = 2.2V, VIL = 0.6V, maximum gain (Notes 3, 8), (Test circuits shown in Figure 16), unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
= 4dBm/Tone (2V into 50Ω), Δf = 200kHz  
MIN  
TYP  
MAX  
UNIT  
Noise/Linearity Performance Two Tones, P  
OUT  
P-P  
IIP3  
Input Third Order Intercept Point  
G
G
, F = 200MHz  
27  
27  
dBm  
dBm  
MAX IN  
–3.875dB, F = 200MHz  
MAX  
IN  
OIP3  
IMD3  
Output Third Order Intercept Point for  
Max-Gain  
F
F
= 100MHz  
= 200MHz  
48  
48  
dBm  
dBm  
IN  
IN  
Intermodulation Product for Max-Gain  
Output Noise Noise Spectral Density  
Noise Figure  
F
IN  
F
IN  
= 100MHz  
= 200MHz  
–88  
–88  
dBc  
dBc  
V
G
G
, F = 200MHz  
MAX IN  
21.4  
14.5  
nV/√Hz  
nV/√Hz  
ONOISE  
–3.875dB, F = 200MHz  
MAX  
IN  
NF  
G
G
, F = 200MHz  
10  
10.5  
dB  
dB  
MAX IN  
–3.875dB, F = 200MHz  
MAX  
IN  
RTI  
Input Referred Noise Spectral Density  
(RMS) (Note 5)  
G
G
, F = 200MHz  
1.34  
1.42  
nV/√Hz  
nV/√Hz  
MAX IN  
–3.875dB, F = 200MHz  
MAX  
IN  
SFDR  
Spurious Free Dynamic Range in  
1Hz BW.  
G , F = 200MHz  
MAX IN  
128  
dBm/Hz  
G
G
Maximum Voltage Gain  
Maximum Power Gain  
F
F
= 100MHz  
23.6  
20.6  
dB  
dB  
VMAX  
IN  
= 100MHz  
PMAX  
IN  
AC ELECTRICAL CHARACTERISTICS (Timing Diagram) (ROUT = 50Ω) Specifications are  
at TA = 25°C. VCC = 5V, VCCO = 5V, ENB = 3V, MODE = 5V, STROBE = 3V, VIH = 2.2V, VIL = 0.6V, maximum gain (Test circuit shown in  
Figure 16), unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PGx and Strobe Timing Characteristics  
T
T
T
T
T
T
Setup Time PGx vs STROBE  
Hold Time PGx vs STROBE  
STROBE Pulse Width  
0
1
2
4
4
5
ns  
ns  
ns  
ns  
ns  
ns  
SU  
HOLD  
PW  
STROBE Period  
R
Latency Time of the Previous Gain State  
Output Settles within 1ꢀ  
LATENCY  
GLITCH  
Time Between Previous Stable Gain State Output Settles within 1ꢀ  
to Next Stable State  
A
Max Glitch Amplitude  
V
= 0 (No Signal or STROBE Transition During  
1
3
mV  
dB  
GLITCH  
IN  
Output Signal Zero Crossing)  
STROBE Transition when Output Power is at  
Peak + 10dBm Power  
5554f  
4
LT5554  
AC ELECTRICAL CHARACTERISTICS (Timing Diagram)  
Timing Diagram  
PG0, 1, 2, 3, 4, 5, 6  
INPUTS  
T
T
T
PW  
SU  
HOLD  
STROBE  
INPUTS  
DATA  
TRANSPARENT  
DATA  
LATCH  
T
GLITCH  
T
LATENCY  
STATE (i)  
STATE (i + 1)  
STATE (i + 2)  
OUT SIGNAL  
5554 TD01  
DC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. VCC = 5V, VCCO = 5V, ENB = 3V,  
MODE = 5V, unless otherwise noted. (Note 3) (Test circuit shown in Figure 16), unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Normal Operating Conditions  
V
V
Supply Voltage  
4.75  
5
5
5.25  
6
V
V
CC  
+
OUT , OUT Output Pin DC Common Mode (Note 4)  
Voltage  
CCO  
Shutdown DC Characteristics, ENB = 0.6V  
+
V
DEC, IN , IN Bias Voltage  
PGx, STR Input Current  
PGx, STR Input Current  
2
0
2.15  
V
μA  
IN(BIAS)  
IL(PG)  
IH(PG)  
OUT  
I
I
I
I
V
V
= 0.6V  
= 5V  
IN  
210  
μA  
IN  
+
OUT , OUT Current  
Supply Current  
20  
μA  
V
CC  
4
5.1  
mA  
CC  
Enable Input DC Characteristics  
V
V
ENB Input LOW Voltage  
ENB Input HIGH Voltage  
ENB Input Current  
Disable  
Enable  
0.6  
V
V
IL(EN)  
IH(EN)  
IL(EN)  
IH(EN)  
IH(EN)  
3
V
CC  
I
I
I
V
IN  
V
IN  
V
IN  
= 0.6V  
= 3V  
20  
μA  
μA  
μA  
ENB Input Current  
70  
ENB Input Current  
= 5V  
220  
300  
5554f  
5
LT5554  
DC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. VCC = 5V, VCCO = 5V, ENB = 3V,  
MODE = 5V, unless otherwise noted. (Note 3) (Test circuit shown in Figure 16), unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DEC External Capacitor Charge/Discharge CURRENT  
I
I
DEC Pin Source Current  
DEC Pin Sink Current  
V
V
= 4V  
27  
50  
70  
mA  
mA  
IH(DEC)  
IL(DEC)  
DEC  
= 1.8V  
–70  
–38  
–14  
DEC  
Mode Input Three-State DC Characteristics  
V
V
V
MODE Input LOW Voltage for AC-Couple  
MODE Input OPEN  
PGx AC-Coupled, STROBE AC-Coupled  
PGx AC-Coupled, STROBE DC-Coupled  
PGx DC-Coupled, STROBE DC-Coupled  
0
0.6  
2.3  
V
V
IL(MODE)  
OPEN(MODE)  
IH(MODE)  
IL(MODE)  
1.7  
OPEN  
MODE Input HIGH Voltage  
MODE Input Current  
V
CC  
– 0.4  
V
V
CC  
I
I
V
MODE  
V
MODE  
= 0V  
= 5V  
–42  
43  
–31  
72  
–23  
100  
μA  
μA  
MODE Input Current  
IH(MODE)  
PGx (MODE = V ) and STROBE (MODE = OPEN or MODE = V ) INPUTS for DC-Coupled  
CC  
CC  
V
V
Input LOW Voltage  
0.6  
V
V
IL  
Input HIGH Voltage  
Input Current  
2.2  
125  
0
IH  
I
I
V
V
= 0.6V  
30  
μA  
μA  
IL(DC)  
IH(DC)  
IN  
Input Current  
= 5V  
170  
220  
IN  
PGx (MODE = 0V or MODE = OPEN) and STROBE (MODE = 0V) INPUTS for AC-Coupled  
V
V
Input Pulse Range  
Instantaneous Input Voltage  
4.6  
V
IN(AC)  
Input Pulse Amplitude  
Rise and Fall Time <5ns  
Rise and Fall Time >80ns  
600  
300  
mV  
mV  
IN(AC)P-P  
P-P  
P-P  
V
Maximum Input Noise Amplitude  
Input Current  
No LT5554 Gain Update  
100  
–155  
420  
mV  
IN(AC)MAX  
P-P  
I
I
V
IN  
V
IN  
= 0V  
= 5V  
–210  
310  
–100  
530  
μA  
IL(AC)  
Input Current  
μA  
IH(AC)  
Amplifier DC Characteristics  
V
V
DEC  
G
G
1.85  
1.8  
2
2.25  
2.2  
V
V
IN(DEC)  
IN(BIAS)  
MAX  
+
IN , IN Bias Voltage  
2.04  
MAX  
R
IN  
INPUT Differential Resistance  
G
MAX  
G
MIN  
48  
50  
G
Amplifier Transconductance  
G
0.15  
47  
S
M
MAX  
+
I
I
I
OUT , OUT Quiescent Current  
Output Current Mismatch  
V
= 5V  
33  
57  
mA  
μA  
ODC  
OUT  
+
IN , IN Open  
200  
OUT(OFFSET)  
CC  
V
CC  
Supply Current  
G
G
G
G
, MODE = 0V  
78  
77  
75  
75  
110  
109  
106  
106  
132  
131  
127  
127  
mA  
mA  
mA  
mA  
MAX  
MIN  
MAX  
MIN  
, MODE = 0V  
, MODE = 5V  
, MODE = 5V  
I
Total Supply Current  
I
CC  
+ 2 • I (G )  
ODC MAX  
200  
mA  
CC(TOTAL)  
+
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
load resistance as seen at OUT , OUT pins.  
All dBm figures are with respect to 50Ω. Specifications refer to differential  
inputs and differential outputs.  
Note 4: An external power supply equal to V  
inductors or center-tap transformer output interfaces. Whenever OUT ,  
OUT pins are biased via resistors, the voltage drop produced by the DC-  
is used for choke  
CCO  
+
Note 2: All voltage values are with respect to GND ground.  
Note 3: R = R = 50Ω Input matching is assumed. P is the available  
S
IN  
IN  
input power. P  
is the power into R . R  
= R || R  
is the total  
output current (I  
= 45mA typical) may require a larger output external  
OUT  
OUT OUT  
O
LOAD  
ODC  
+
output resistance at amplifier open-collectors outputs (used in G G gain  
calculation). R = 400Ω is LT5554 internal output impedance. R  
power supply. However, care must be taken not to exceed the OUT ,  
V,  
P
is  
OUT absolute maximum rating when the LT5554 is disabled.  
O
LOAD  
5554f  
6
LT5554  
ELECTRICAL CHARACTERISTICS  
+
Note 5: RTI (Referred-To-Input) stands for the total input-referred noise  
voltage source. RTI is close to output noise voltage divided by voltage gain  
(the exact equation is given in Definition of Specification section). The  
Note 8: The external loading at OUT /OUT pins is R  
= 133Ω.  
LOAD  
R
= R || R = 100Ω.  
LOAD O  
OUT  
Note 9: Depending on the actual input matching conditions and frequency  
of operation, the LT5554 steps involving the input attenuator tap change  
may show less than 0.125dB change. These steps are G  
equivalent noise source e is twice the RTI value.  
Note 6: The external loading at LT5554 OUT /OUT pins is R  
N
+
= 57Ω.  
–4dB, G  
MAX MAX  
LOAD  
R
= R  
|| R = 50Ω.  
–8dB, G  
–12dB, and the code is given in the Programmable Gain Table.  
OUT  
LOAD  
O
MAX  
+
The LT5554 monotonic operation for 0.125dB step resolution can still be  
obtained by skipping any such code with a gain error excedding 0.125dB.  
Note 7: The IN , IN , DEC pins are internally biased. The time-constant  
of input coupling capacitor sets the low frequency corner (LF) at input.  
The output coupling capacitors or the transformer sets the low frequency  
corner (LF) at the output. The LT5554 operates internally down to DC.  
TYPICAL PERFORMANCE CHARACTERISTICS (ROUT = 50Ω) TA = 25°C. VCC = 5V, VCCO = 5V,  
ENB = 3V, MODE = 5V, STROBE = 3V, VIH = 2.2V, VIL = 0.6V (Test circuit shown in Figure 16), unless otherwise noted.  
Gain vs Frequency for  
0.5dB Steps, Figure 17  
Differential Gain Error vs  
Frequency at –40°C  
Differential Gain Error vs  
Frequency at 85°C  
20  
18  
16  
14  
12  
10  
8
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
12dB  
12dB  
4dB  
8dB  
4dB  
8dB  
6
4
–0.1  
–0.2  
–0.1  
–0.2  
2
0
0
100 200 300 400 500 600 700 800 9001000  
50  
75  
100  
125  
150  
175  
200  
50  
75  
100  
125  
150  
175  
200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
5554 G01  
5554 G02  
5554 G03  
Differential Gain Error vs  
Attenuation at 50MHz  
Differential Gain Error vs  
Attenuation at 100MHz  
Differential Gain Error vs  
Attenuation at 200MHz  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
–0.1  
–0.2  
–0.1  
–0.2  
–0.1  
–0.2  
0
–4  
–8  
–12  
–16  
0
–4  
–8  
–12  
–16  
0
–4  
–8  
–12  
–16  
ATTENUATION (dB)  
ATTENUATION (dB)  
ATTENUATION (dB)  
5554 G04  
5554 G05  
5554 G06  
5554f  
7
LT5554  
TYPICAL PERFORMANCE CHARACTERISTICS (ROUT = 50Ω) TA = 25°C. VCC = 5V, VCCO = 5V,  
ENB = 3V, MODE = 5V, STROBE = 3V, VIH = 2.2V, VIL = 0.6V (Test circuit shown in Figure 16), unless otherwise noted.  
Integral Gain Error vs  
Attenuation at 50MHz  
Integral Gain Error vs  
Attenuation at 100MHz  
Integral Gain Error vs  
Attenuation at 200MHz  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
–0.1  
–0.1  
–0.1  
0
–4  
–8  
–12  
–16  
0
–4  
–8  
–12  
–16  
0
–4  
–8  
–12  
–16  
ATTENUATION (dB)  
ATTENUATION (dB)  
ATTENUATION (dB)  
5554 G07  
5554 G08  
5554 G09  
Maximum Gain vs Temperature  
P
OUT vs PIN at Maximum Gain  
POUT vs PIN at GMAX – 3.875dB  
18.0  
17.8  
17.6  
17.4  
17.2  
17.0  
24  
16  
8
24  
16  
8
70MHz  
140MHz  
200MHz  
70MHz  
140MHz  
200MHz  
50MHz  
100MHz  
200MHz  
0
0
–8  
–8  
–16  
–16  
–40 –20  
0
20  
40  
60  
80  
–35  
–25  
–15  
–5  
5
15  
–35  
–25  
–15  
–5  
5
15  
TEMPERATURE (°C)  
PIN (dBm)  
PIN (dBm)  
5554 G10  
5554 G11  
5554 G12  
(ROUT = 50Ω) TA = 25°C. VCC = 5V, VCCO = 5V, ENB = 3V, MODE = 5V, STROBE = 3V, VIH = 2.2V, VIL = 0.6V (Test circuit shown in Figure  
16) POUT = 4dBm/tone (2VP-P into 50ꢀ), Δf = 200kHz, unless otherwise noted.  
Two-Tone OIP3 vs Frequency at  
Max Gain, Three Temperatures  
Two-Tone IMD3 vs Frequency at  
Max Gain, Three Temperatures  
IIP3 vs Frequency at Max Gain,  
Three Temperatures  
49  
46  
43  
40  
–76  
–79  
–82  
–85  
–88  
32  
30  
28  
26  
24  
85°C  
85°C  
25°C  
25°C  
–40°C  
25°C  
–40°C  
–40°C  
85°C  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
5554 G13  
5554 G14  
5554 G15  
5554f  
8
LT5554  
TYPICAL PERFORMANCE CHARACTERISTICS (ROUT = 50Ω) TA = 25°C. VCC = 5V, VCCO = 5V,  
ENB = 3V, MODE = 5V, STROBE = 3V, VIH = 2.2V, VIL = 0.6V (Test circuit shown in Figure 16) POUT = 4dBm/tone (2VP-P into 50ꢀ),  
Δf = 200kHz, unless otherwise noted.  
Two-Tone OIP3 vs Frequency for  
GMAX and Critical Gain Steps  
Two-Tone IMD3 vs Frequency for  
GMAX and Critical Gain Steps  
IIP3 vs Frequency for GMAX and  
GMAX –3.875dB  
32  
30  
28  
26  
24  
49  
46  
43  
40  
–70  
–76  
–82  
–88  
G
– 3.875dB  
MAX  
G
MAX  
– 12dB  
G
MAX  
G
MAX  
G
MAX  
– 3.875dB  
G
– 15.875dB  
MAX  
G
– 15.875dB  
MAX  
G
MAX  
– 3.875dB  
G
MAX  
G
– 12dB  
100  
MAX  
50  
100  
150  
200  
50  
100  
150  
200  
50  
150  
200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
5554 G18  
5554 G16  
5554 G17  
Two-Tone IMD3 and OIP3 vs  
Attenuation at 50MHz  
Two-Tone IMD3 and OIP3 vs  
Attenuation at 70MHz  
–70  
–74  
–78  
–82  
–86  
48  
46  
44  
42  
40  
–70  
48  
46  
44  
42  
OIP3  
OIP3  
–74  
–78  
–82  
–86  
IMD3  
IMD3  
40  
0
–4  
–8  
–12  
–16  
0
–4  
–8  
–12  
–16  
ATTENUATION (dB)  
ATTENUATION (dB)  
5554 G19  
5554 G20  
Two-Tone IMD3 and OIP3 vs  
Attenuation at 100MHz  
Two-Tone IMD3 and OIP3 vs  
Attenuation at 140MHz  
–70  
–74  
–78  
–82  
–86  
48  
–70  
–74  
–78  
–82  
–86  
48  
46  
44  
42  
OIP3  
46  
44  
42  
40  
OIP3  
IMD3  
IMD3  
40  
0
–4  
–8  
–12  
–16  
0
–4  
–8  
–12  
–16  
ATTENUATION (dB)  
ATTENUATION (dB)  
5554 G21  
5554 G22  
5554f  
9
LT5554  
TYPICAL PERFORMANCE CHARACTERISTICS (ROUT = 50Ω) TA = 25°C. VCC = 5V, VCCO = 5V,  
ENB = 3V, MODE = 5V, STROBE = 3V, VIH = 2.2V, VIL = 0.6V (Test circuit shown in Figure 16) POUT = 4dBm/tone (2VP-P into 50ꢀ),  
Δf = 200kHz, unless otherwise noted.  
Two-Tone IMD3 and OIP3 vs  
Attenuation at 200MHz  
Two-Tone OIP3 vs Tone Power at  
Max-Gain  
Two-Tone OIP3 vs Tone Power at  
Min-Gain  
–70  
–74  
–78  
–82  
–86  
48  
46  
44  
42  
40  
47  
44  
41  
38  
47  
44  
41  
38  
IMD3  
50MHz  
70MHz  
100MHz  
140MHz  
200MHz  
OIP3  
50MHz  
70MHz  
100MHz  
140MHz  
200MHz  
0
–4  
–8  
–12  
–16  
0
3
6
9
12  
0
3
6
9
12  
ATTENUATION (dB)  
OUTPUT TONE POWER (dBm)  
OUTPUT TONE POWER (dBm)  
5554 G23  
5554 G25  
5554 G24  
Two-Tone OIP3 vs VCCO, for GMAX  
–3.875dB  
Two-Tone OIP3 vs ROUT, for GMAX  
Two-Tone OIP3 vs VCCO, for GMAX  
48  
45  
42  
39  
36  
48  
45  
42  
39  
36  
50  
48  
46  
44  
25MHz  
70MHz  
140MHz  
200MHz  
25MHz  
70MHz  
140MHz  
200MHz  
25MHz  
70MHz  
140MHz  
200MHz  
2
3
4
5
6
2
3
4
5
6
50  
75  
(Ω)  
100  
OUTPUT COMMON MODE VOLTAGE (V)  
OUTPUT COMMON MODE VOLTAGE (V)  
R
OUT  
5554 G28  
5554 G30  
5554 G52  
Harmonic Distortion vs  
Attenuation, 50MHz,  
POUT = 10dBm, Figure 17  
OIP3 vs Frequency for GMAX and  
GMIN, POUT = 10dBm  
50  
45  
40  
35  
–70  
–75  
–80  
HD3  
–85  
–90  
G
MIN  
–95  
G
MAX  
–100  
–105  
HD5  
50  
100  
150  
200  
0
–4  
–8  
–12  
–16  
FREQUENCY (MHz)  
ATTENUATION (dB)  
5554 G29  
5554 G27  
5554f  
10  
LT5554  
TYPICAL PERFORMANCE CHARACTERISTICS (ROUT = 50Ω) TA = 25°C. VCC = 5V, VCCO = 5V,  
ENB = 3V, MODE = 5V, STROBE = 3V, VIH = 2.2V, VIL = 0.6V (Test circuit shown in Figure 16) POUT = 4dBm/tone (2VP-P into 50ꢀ),  
Δf = 200kHz, unless otherwise noted.  
HD3 vs Frequency for GMAX and  
GMIN, POUT = 10dBm, Figure 17  
HD5 vs Frequency for GMAX and  
GMIN, POUT = 10dBm, Figure 17  
–50  
–56  
–62  
–68  
–74  
–80  
–70  
–76  
G
MAX  
G
MAX  
–82  
G
MIN  
G
MIN  
–88  
–94  
–100  
50  
100  
150  
200  
50  
100  
150  
200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
5554 G31  
5554 G32  
(ROUT = 50Ω) TA = 25°C. VCC = 5V, VCCO = 5V, ENB = 3V, MODE = 5V, STROBE = 3V, VIH = 2.2V, VIL = 0.6V (Test circuit shown in Figure 16),  
maximum gain, unless otherwise noted.  
HD3 and HD5 vs POUT  
for GMAX, Figure 17  
Single-Ended Output NF vs  
Frequency, Figure 18  
Noise Figure vs Frequency  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
20  
15  
10  
5
20  
15  
10  
5
70MHz  
140MHz  
G
–3.875  
MAX  
G
–3.875  
G
MAX  
HD3  
HD3  
HD5  
G
MAX  
MAX  
HD5  
0
0
7
10  
13  
16  
0
200  
400  
FREQUENCY (MHz)  
600  
800  
0
200  
400  
FREQUENCY (MHz)  
600  
800  
OUTPUT POWER (dBm)  
5554 G33  
5554 G34  
5554 G35  
Noise Figure vs Attenuation,  
140MHz  
Input Referred Noise vs  
Attenuation, 140MHz  
Output Noise Density vs  
Attenuation, 140MHz  
25  
20  
15  
10  
5
6
4
2
0
12  
9
6
3
0
0
0
–4  
–8  
–12  
–16  
0
–4  
–8  
–12  
–16  
0
–4  
–8  
–12  
–16  
ATTENUATION (dB)  
ATTENUATION (dB)  
ATTENUATION (dB)  
5554 G36  
5554 G37  
5554 G38  
5554f  
11  
LT5554  
TYPICAL PERFORMANCE CHARACTERISTICS ( ROUT = 50Ω) TA = 25°C. VCC = 5V, VCCO = 5V,  
ENB = 3V, MODE = 5V, STROBE = 3V, VIH = 2.2V, VIL = 0.6V (Test circuit shown in Figure 16), maximum gain, unless otherwise noted.  
Single-Ended Output Current vs  
Attenuation  
Total ICC Current vs Attenuation  
98  
96  
94  
92  
215  
208  
200  
193  
185  
85°C  
25°C  
–40°C  
25°C  
85°C  
–40°C  
0
–4  
–8  
ATTENUATION (dB)  
–12  
–16  
0
–4  
–8  
–12  
–16  
ATTENUATION (dB)  
5554 G39  
5554 G40  
I
CC Shutdown Current vs VCC,  
VIN(BIAS) vs Attenuation  
ENB = 0.6V  
5
4
3
2
1
0
2.2  
2.1  
2.0  
85°C  
–40°C  
–40°C  
25°C  
85°C  
25°C  
4.7  
4.9  
5.1  
(V)  
5.3  
5.5  
0
–4  
–8  
–12  
–16  
V
ATTENUATION (dB)  
CC  
5554 G41  
5554 G42  
5554f  
12  
LT5554  
TYPICAL PERFORMANCE CHARACTERISTICS (ROUT = 50Ω) TA = 25°C. VCC = 5V, VCCO = 5V,  
ENB = 3V, MODE = 5V, STROBE = 3V, VIH = 2.2V, VIL = 0.6V (Test circuit shown in Figure 16), maximum gain, unless otherwise noted.  
2dB-Step Response (PG4)  
120MHz Signal  
8dB-Step Response (PG6)  
120MHz Signal  
8dB-Step Response (PG6)  
120MHz Pulse Signal  
0.1V/DIV  
0.1V/DIV  
0.2V/DIV  
5554 G46  
5554 G47  
5554 G48  
10ns/DIV  
10ns/DIV  
5ns/DIV  
MODE = HIGH  
MODE = HIGH  
MODE = HIGH  
8dB-Step (PG6) 120MHz  
Sinusoidal Signal for 2dB  
Overdrive  
8dB-Step (PG6) 120MHz  
Sinusoidal Signal for 8dB  
Overdrive  
8dB-Step (PG6) 120MHz Pulse  
Signal for 8dB Overdrive  
1V/DIV  
1V/DIV  
1V/DIV  
5554 G49  
5554 G50  
5554 G51  
5ns/DIV  
5ns/DIV  
10ns/DIV  
MODE = HIGH  
MODE = HIGH  
MODE = HIGH  
PIN FUNCTIONS  
GND (Pins 1, 2, 7, 8, 10, 13, 15, 16, 19, 22, 25, 26, 28,  
31): Ground Pins.  
PG0 (Pin 12): 0.125dB Step Amplifier Programmable  
Gain Control Input Pin. Input levels are controlled by  
MODE pin.  
DEC (Pins 3, 6): Decoupling Pin for the Internal DC Bias  
+
Voltage for the Differential Inputs, IN and IN . It is also  
connected to the ‘virtual ground’ of the input resistive  
attenuator. Capacitive de-coupling to ground is recom-  
mended in order to preserve linearity performance when  
STROBE (Pin 14): Strobe Pin for the Programmable Gain  
Control Inputs (PGx). With STROBE in Low-state, the  
Amplifier Gain is not changed by PGx state changes (latch  
mode). With STROBE in High-state, the Amplifier Gain is  
asynchronously set by PGx inputs transitions (transpar-  
ent-mode). A positive STROBE transition updates the  
PGx state. Low-state and High-state depends on MODE  
pin level (Table1).  
+
IN , IN inputs are driven with up to 3dB imbalance.  
+
IN (Pin 4): Positive Signal Input Pin with Internal DC  
Bias to 2V.  
IN (Pin 5): Negative Signal Input Pin with Internal DC  
V
(Pins 17, 24): Power Supply Pins. These pins are  
CC  
Bias to 2V.  
internally connected together.  
PG5 (Pin 9): 4dB Step Amplifier Programmable Gain Con-  
trol Input Pin. Input levels are controlled by MODE pin.  
MODE (Pin 18): PGx and STROBE Functionality and Level  
Control Pin. When MODE is higher than V – 0.4V, the  
CC  
PG6 (Pin 11): 8dB Step Amplifier Programmable Gain  
Control Input Pin. Input levels are controlled by the  
MODE pin.  
PGx and STROBE are DC-coupled. When the MODE pin  
is lower than 0.6V, the PGx and STROBE are AC-coupled.  
5554f  
13  
LT5554  
PIN FUNCTIONS  
When the MODE pin is left open, the PGx inputs are AC-  
couple and the STROBE input is DC-coupled.  
When the ENB input voltage is less than or equal to 0.6V,  
the amplifier is turned off.  
InDC-coupledmode,thePGxandSTROBEinputslevelsare  
0.6V and 2.2V. In AC-coupled mode, the PGx and STROBE  
PG4 (Pin 27): 2dB Step Amplifier Programmable Gain Con-  
trol Input Pin. Input levels are controlled by MODE pin.  
inputs are driven with 0.6V minimum amplitude (with  
P-P  
PG3 (Pin 29): 1dB Step Amplifier Programmable Gain Con-  
trol Input Pin. Input levels are controlled by MODE pin.  
rise and fall time <5ns) regardless the DC voltage level. A  
positive transition sets a High-state. A negative transition  
sets a Low-state (for PGx and STROBE inputs).  
PG2(Pin30):0.5dBStepAmplifierProgrammableGainCon-  
trol Input Pin. Input levels are controlled by MODE pin.  
+
OUT (Pin20):PositiveAmplifierOutputPin.Atransformer  
PG1 (Pin 32): 0.25dB Step Amplifier Programmable  
Gain Control Input Pin. Input levels are controlled by  
MODE pin.  
with a center tap tied to V or a choke inductor is recom-  
CC  
mended to conduct the DC quiescent current.  
OUT (Pin21):NegativeAmplifierOutputPin.Atransformer  
EXPOSED PAD (Pin 33): Ground. This pin must be sol-  
dered to the printed circuit board ground plane for good  
heat dissipation.  
with a center tap tied to V or a choke inductor is recom-  
CC  
mended to conduct the DC quiescent current.  
ENB (Pin 23): Enable Pin for Amplifier. When the ENB  
input voltage is higher than 3V, the amplifier is turned on.  
BLOCK DIAGRAM  
17  
24  
23  
GND  
(15 PINS)  
V
V
ENB  
CC  
CC  
VOLTAGE  
REGULATOR  
AND BIAS  
ENABLE  
CONTROL  
DEC  
3
4
+
ATTENUATOR  
R
+
IN  
IN  
OUT  
25Ω  
21  
R
O
+
AMPLIFIER  
OUT  
400Ω  
IN  
20  
5
6
R
IN  
DEC  
25Ω  
ATTENUATOR  
GAIN LOGIC  
4dB STEPS  
TRANSCONDUCTANCE  
MODE  
STROBE  
LOGIC  
GAIN LOGIC  
0.125dB STEPS  
3.875dB RANGE  
12dB RANGE  
PG6  
PG5  
MODE  
STROBE  
PG4  
PG3  
PG2  
PG1  
PG0  
11  
9
18  
14  
27  
29  
30  
32  
12  
5554 BD  
Figure 1. Functional Block Diagram  
5554f  
14  
LT5554  
FUNCTIONAL CHARACTERISTICS  
Programmable Gain Table  
ATTENUATION  
STATE  
N
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
Step Relative to Max Gain GAIN STATE NAME  
Step Size in dB  
dB  
0.125  
0.25  
H
0.5  
H
H
H
H
L
1
H
H
H
H
H
H
H
H
L
2
H
H
H
H
H
H
H
H
H
H
4
H
H
H
H
H
H
H
H
H
H
8
H
H
H
H
H
H
H
H
H
H
(N – 127) • 0.125dB  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
112  
111  
104  
103  
96  
95  
64  
63  
32  
31  
8
H
L
0.00dB  
G
(Max Gain)  
–0.125dB  
MAX  
H
–0.125dB  
–0.250dB  
–0.375dB  
–0.500dB  
–0.625dB  
–0.750dB  
–0.875dB  
–1.00dB  
G
MAX  
H
L
L
G
–0.25dB  
MAX  
MAX  
L
G
–0.375dB  
H
L
H
G
–0.5dB  
MAX  
H
L
G
–0.625dB  
–0.75dB  
MAX  
H
L
L
L
G
MAX  
L
L
H
L
H
H
H
G
–1dB  
MAX  
H
L
–1.125dB  
G
–1.125dB  
MAX  
L
L
L
L
H
L
H
H
H
H
–1.875dB  
–2.00dB  
G
G
G
G
–1.875dB  
MAX  
H
H
H
H
G
–2dB  
MAX  
L
L
L
H
L
L
L
H
H
H
H
–2.875dB  
–3.00dB  
–2.875dB  
MAX  
H
H
H
G
–3dB  
MAX  
L
L
L
L
L
H
L
H
H
–3.875dB  
–4.00dB  
–3.875dB  
MAX  
H
H
H
H
H
G
–4dB  
MAX  
L
L
L
L
L
L
H
L
–7.875dB  
–8.00dB  
–7.875dB  
MAX  
H
H
H
H
H
H
G
–8dB  
MAX  
L
L
L
L
L
H
L
L
L
–11.875dB  
–12.000dB  
G
–11.875dB  
MAX  
H
H
H
H
H
G
–12dB  
MAX  
L
H
L
L
H
H
L
L
H
H
H
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
–14.875dB  
–15.000dB  
–15.125dB  
–15.250dB  
–15.375dB  
–15.500dB  
–15.625dB  
–15.750dB  
–15.875dB  
G
G
G
–14.875dB  
MAX  
7
G
–15dB  
MAX  
6
–15.125dB  
–15.25dB  
–15.375dB  
MAX  
5
H
L
G
MAX  
MAX  
4
L
3
H
L
H
H
L
G
–15.5dB  
MAX  
2
L
G
–15.625dB  
–15.75dB  
(Min Gain)  
MAX  
1
H
L
L
G
MAX  
MIN  
0
L
L
G
5554f  
15  
LT5554  
DEFINITION OF SPECIFICATIONS  
Amplifier Impedance and Gain Definitions  
(Differential)  
G
G
LT5554 differential voltage gain:  
V
VOUT  
GV = 20log  
= 20log G •R  
in dB  
OUT  
(
)
M
R
S
Input source resistor. Input matching is assumed:  
R = R  
V
IN  
S
IN  
LT5554 differential power gain:  
P
R
LT5554 input resistance (internal, 50Ω)  
LT5554 input capacitance (internal)  
LT5554 output resistance (internal, 400Ω)  
LT5554 output capacitance (internal)  
IN  
IN  
2
G = 10log(R • G • R ) in dB  
P
IN  
M
OUT  
C
P
IN  
Power available at LT5554 input, R = R =  
50Ω input matching:  
S
IN  
R
O
O
C
2
V
2
IN  
R
Load resistance as seen by LT5554  
output pins  
LOAD  
P =10log  
in dBm,  
IN  
R 1mW  
(
)
IN  
C
Load capacitance as seen by LT5554  
output pins  
LOAD  
R
Total output resistance at LT5554 open-collec-  
OUT  
V is peak -value  
IN  
tors outputs (used in G G gain calculation):  
V,  
P
P
OUT  
Total power delivered by LT5554 open-collec-  
tor outputs:  
R
= R || R  
O LOAD  
OUT  
C
Total output capacitance at LT5554 output  
(used in gain calculation):  
OUT  
2
VOUT  
2
C
= C + C  
LOAD O  
OUT  
POUT =10log  
in dBm,  
R
1mW  
(
)
OUT  
G
LT5554 differential transconductance:  
M
IOUT  
GM =  
V
VOUT is peak -value  
IN  
INTERNAL  
EXTERNAL  
+
OUT  
OUT  
I
= G • V  
M IN  
OUT  
R
O
R
400Ω  
LOAD  
C
O
V
= I  
• R  
C
IDC  
OUT OUT OUT  
LOAD  
1.9pF  
5554 F02  
R
R
R
R
OUT  
OUT  
O
LOAD  
400Ω  
Figure 2. Output Equivalent Circuit and Impedance Definitions  
5554f  
16  
LT5554  
DEFINITION OF SPECIFICATIONS  
Noise Definitions for 50Ω Matched Input  
NF  
Noise figure in dB according to any of the fol-  
lowing equations:  
e
RS  
Source resistor RMS noise voltage:  
2
2
e
2 +iN •RS  
eRS2 = 4•k • T •RS; for RS = 50Ω,  
(
)
N
NF =10log 1+  
=
2
eRS  
0.9nV  
eRS  
=
Hz  
2
1+RTI2  
e
i
Equivalentshort-circuitinputRMSnoisevoltage  
source  
N
1+ VN  
10log  
=10log  
2
2
eRS  
e
RS  
Equivalent open-circuit input RMS noise current  
source  
N
2
v
Equivalent total input RMS noise voltage  
source:  
N
Linearity Definitions for 50Ω Matched Input  
IMD3[dBc]  
Third-order intermodulation product  
(negative value)  
2
2
2
2
v
= e + i • R (R = 50Ω)  
N N S S  
N
RTI  
Referred-to-input LT5554 noise voltage:  
IMD3  
2
IIP3[dBm]  
IIP3 = P (per-tone) –  
IN  
2
2
2
(eRS2+ eN + iN • RS )  
vN  
2
RTI =  
=
2
2
⎝ ⎠  
3
⎛ ⎞  
SFDR[dBm/Hz] SFDR =  
• 174 + IIP3 – NF  
(
)
⎜ ⎟  
V
LT5554 output noise voltage:  
ONOISE  
GV  
20  
2
IMD3  
2
e
OIP3[dBm]  
OIP3=POUT  
=IIP3+GP  
VONOISE  
=
RTI2 +  
• 10⎝  
RS  
2
APPLICATIONS INFORMATION  
Circuit Operation  
Sincenointernalfeedbacknetworkisusedbetweenampli-  
fier outputs and inputs, the LT5554 is able to offer:  
The LT5554 is a high dynamic range programmable-gain  
amplifier. It consists of the following sections:  
• Unconditional stability for I/O reactive loading such  
as filters (no isolation output resistors required)  
• An input variable attenuator with 50ꢁ input imped-  
ance (four 4dB steps, controlled by PG5, PG6 inputs)  
• High reverse isolation  
• A differential programmable transconductance ampli-  
fier (32 steps, 0.125dB each controlled by PG0, PG1,  
PG2, PG3, PG4 inputs)  
The LT5554 is a class-A transconductance amplifier. An  
input signal voltage is first converted to an output cur-  
rent via the LT5554 internal G . And then, the output load  
M
(R ) converts the output current into an output voltage.  
OUT  
• Programmable logic blocks  
• Internal bias (voltage regulators)  
• Enable/disable circuit  
R
setstheLT5554gainandoutputnoiseoor.However,  
OUT  
the SFDR performance is almost independent of R  
values of 25ꢁ to 100ꢁ.  
for  
OUT  
• Overdrive protection circuit  
5554f  
17  
LT5554  
APPLICATIONS INFORMATION  
The PGx gain control inputs and STROBE input can be  
configured to be either DC coupled or AC coupled depend-  
ing on MODE pin level. The LT5554 gain control inputs  
can be connected without external components to a wide  
range of user control interfaces.  
Thisbufferisalsoconnectedtotheinputresistiveattenua-  
tor network. The DEC pin is a ‘virtual ground’ and typically  
connected to an external capacitor C  
(Figures 3 and  
DEC  
4). When C  
is used, the LT5554 will have same input  
DEC  
attenuation for both differential mode and common mode  
signals. The DEC pin de-coupling capacitor improves the  
commonmodeACperformanceevenwhenthedifferential  
The LT5554 has internal overdrive protection circuitry.  
The recovery time from a short duration (less than 5ns)  
overdrive pulse is 5ns.  
+
IN , IN inputs are imbalanced by 3dB.  
TheDECpincanbeusedasavoltagereferenceforexternal  
circuitry when DC input coupling is desired.  
Input Interface  
+
The DC voltage level at the IN , IN inputs are internally  
biased to about 2V when the part is either enabled or  
disabled. The best linearity performance is achieved when  
an input imbalance is less than 2dB.  
Output Interface  
TheoutputinterfacemustconducttheDCcurrentofabout  
+
45mA to the amplifier outputs (OUT OUT ). Two interface  
examples are shown in Figures 5 and 6.  
Two typical Input connection circuits are shown in Figures  
3 and 4.  
A wide band ADC voltage interface is shown in Figure  
5 where L1 and L2 are choke inductors. For a narrow  
band application, a band pass filter can be placed at the  
LT5554’s outputs.  
An input source with 50ꢁ (5ꢀ) is required for best gain  
error performance.  
R
5V  
SRC/2  
25Ω  
C1  
V
CCO  
+
IN  
L1  
CHOKE  
L2  
+
C5  
MAX GAIN:  
OUT  
25Ω  
ADC  
INDUCTORS  
DEC  
C
BIAS  
DEC  
G
G
= 24dB  
LT5554  
V
P
V
SRC  
R1  
66.5Ω  
R2  
66.5Ω  
C6  
0.1μF  
= 18dB  
R
SRC/2  
25Ω  
25Ω  
C2  
+
IN  
LT5554  
IN  
OUT  
+
C3  
OUT  
5554 F03  
R
O
DEC  
400Ω  
ADC  
Figure 3. Input Capacitively-Coupled to a Differential Source  
IN  
OUT  
C4  
5554 F05  
+
IN  
R
R
R
R
SADC  
100Ω  
OUT  
O
LOAD  
OUT  
100Ω  
400Ω 133Ω  
R
SRC  
25Ω  
LT5554  
25Ω  
50Ω  
C
DEC  
Figure 5. Differential Output Interface  
DEC  
0.1μF  
V
SRC  
5V  
V
IN  
+
OUT  
MAX GAIN:  
CCO  
G
G
= 24dB  
= 21dB  
C5  
V
P
5554 F04  
MAX GAIN INTO Z :  
P
O
G
= 18dB  
+
R5  
205Ω  
LT5554  
Figure 4. Input Transformer-Coupled to Single-Ended Source  
IN  
+
T2  
4:1  
OUT  
R
O
Decouple (DEC) Input  
DEC  
400Ω  
Z
O
50Ω  
The DEC pin provides the DC voltage level for differential  
IN  
+
OUT  
R6  
205Ω  
inputs IN , IN via an internal buffer, which is able to fast  
charge/discharge the LT5554 input coupling capacitors  
with about 30mA sourcing or sinking current capability.  
5554 F06  
R
R
R
LOAD  
133Ω  
OUT  
O
100Ω  
400Ω  
Figure 6. Single-Ended Matched Output Interface  
5554f  
18  
LT5554  
APPLICATIONS INFORMATION  
The differential outputs can also be converted to single-  
ended 50ꢁ load using a center-tap transformer interface  
shown in Figure 6 and Figure 16.  
VoltageclippingwilloccurwithR >140ꢁ,inwhichcase  
OUT  
the instantaneous voltage at each OUT and OUT outputs  
is either <2V or >8V.  
+
Theinternal400differentialresistor(R )setstheoutput  
The output OP1dB = 20dBm can be achieved when R  
130ꢁ. In this case, the LT5554 outputs reach both current  
and voltage limiting for maximum output power.  
=
O
OUT  
impedanceandthemaximumvoltagegain(G  
)to36dB  
MAX  
+
when outputs OUT , OUT are open.  
Figure 7 shows the Voltage and Power Gains as a func-  
Gain Control Interface  
tion of R , which is the total output loading at the open  
OUT  
The MODE pin selects the interface to the LT5554 gain  
control pins.  
collector amplifier output including the internal resistor  
R = 400ꢁ.  
O
The PGx and STROBE control inputs can be configured  
to be either DC-coupled (for TTL interface) or AC-coupled  
(for ECL or low-voltage CMOS interfaces).  
36  
VOLTAGE GAIN  
30  
24  
18  
12  
6
In addition, the STROBE input can be driven such that the  
LT5554 gain state is updated asynchronously (PGx latch  
control in transparent-mode) or controlled by positive  
STROBE transition (PGx latch control in strobed-mode).  
POWER GAIN  
There are several options available for coupling type and  
latch control which are given in the following tables:  
0
Table1. MODE Input Options  
10  
50  
100  
(Ω)  
400  
1000  
R
OUT  
COUPLING TYPE  
5554 F07  
MODE  
(State)  
STROBE  
PGx  
PGx (Latch Control)  
Figure 7. Maximum Voltage and Power Gain vs ROUT  
AC Positive  
Transition  
LOW  
OPEN  
OPEN  
HIGH  
HIGH  
AC  
AC  
AC  
DC  
DC  
Strobe  
Transparent  
Strobe  
The gain vs R  
equations:  
relationship is given by the following  
OUT  
DC >2.2V  
0.6 to 2.2V  
DC >2.2V  
G = 20log(G • R ) in dB  
V
M
OUT  
Transparent  
Strobe  
0.6 to 2.2V  
G = 10log(R • G • R ) in dB  
P
IN  
M2  
OUT  
Where R = 50Ω and G = 0.15 siemens at G  
MAX  
IN  
M
Table2. MODE Input Levels  
For wide band applications, the amplifier bandwidth can  
be extended by inductive peaking technique. The inductor  
MODE  
(State)  
MODE  
(Min Level)  
MODE  
(Max Level)  
+
in series with the LT5554 outputs (OUT OUT ) can have  
LOW  
OPEN  
HIGH  
0
0.6V  
2.5V  
a value up to some tens of nH depending on R  
and board capacitance.  
value  
OUT  
1.5V  
V
– 0.4V  
V
CC  
CC  
The current limiting will occur with R  
<140ꢁ, in which  
OUT  
casetheinstantaneoussignalcurrentattheoutputexceeds  
= 45mA.  
Alternatively, the MODE pin can be left open (2V  
internal).  
I
ODC  
5554f  
19  
LT5554  
APPLICATIONS INFORMATION  
All seven PGx gain control inputs and STROBE input can  
be configured as DC-coupled or ac-coupled. Accordingly,  
therearetwobasicequivalentschematics(showninFigures  
8 and 9) depending on MODE input choice (Table1).  
The AC-coupled interface is shown in Figure 9. The PGx  
inputs and STROBE input state is decided by a signal  
transition rather than signal level.  
A HIGH-state is set by positive transitions. A LOW-state is  
set by negative transitions. The PGx and STROBE inputs  
appear as capacitive coupled inputs. The DC voltage (0V  
Each PGx input circuit shown in Figures 8 and 9 is fol-  
lowed by a transparent latch controlled by the STROBE  
input level (Table 1).  
to V range) presented on any PGx or STROBE input is  
CC  
shifted to the internal 1.4V level by the additional circuit  
shown in Figure 9. Each PGx and STROBE input has an  
independent shift circuit such that each input can have a  
different DC voltage.  
TheDC-coupledinterfaceisshowninFigure8.DClevelsfor  
PGx inputs and STROBE input are V <0.6V, V >2.2V.  
IL  
IH  
V
CC  
R2  
1.5k  
R3  
1.5k  
Each PGx input has a parallel R-C (R1 = 20k, C1 = 2pF)  
with a 40ns time constant. The STROBE input circuit has  
R1 = 20k C1 = 3pF and 60ns time constant. An minimum  
+
OUT  
OUT  
R1  
20k  
Q1  
R4  
20k  
amplitudeof0.6V isrequiredtotripthePGxandSTROBE  
P-P  
INPUT  
Q2  
Q3  
inputs to an appropriate state when the signal period is  
lessthaninputtimeconstant.ThecircuitshowninFigure 8  
converts the single-ended external signal to an internal  
differential signal. Consequently, when the input is idle for  
V1  
C1  
2pF  
1.4V  
I1  
200μA  
IDC  
DC-COUPLED  
5554 F08  
more than the input time constant, a 0.3V transition  
P-P  
will still trigger the gain control state change. All control  
Figure 8. DC-Coupled PGx and STROBE Equivalent Inputs  
(Simplified Schematic)  
inputs have 200mV hysteresis to insure stable logic levels  
when the input noise level is less than 100mV  
.
P-P  
V
CC  
For transparent latch control, the amplifier gain will be  
updated directly with any PGx input state changes. If  
different PGx inputs have an (external) time skew greater  
than 1ns, then a noticeable amplifier output glitch can  
occur. The strobe latch control is recommended to avoid  
this amplifier output glitch.  
R2  
1.5k  
R3  
1.5k  
+
OUT  
OUT  
I3  
IDC  
R1  
20k  
Q1  
R4  
20k  
INPUT  
Q2  
Q3  
C1  
It is not necessary to double buffer the PGx inputs since  
theLT5554hasgoodinternalisolationfromthePGxinputs  
to the amplifier output to any type of external gain control  
circuit without external components.  
2pF  
AC-COUPLED  
IDC  
I2  
V1  
1.4V  
I1  
200μA  
IDC  
If LT5554 is powered up or enabled in latch mode, the  
LT5554 gain initial gain is indeterminate. If the minimum  
gain state is desired at power up, it is recommended to  
set the transparent-mode with all PGx inputs low.  
5554 F09  
Figure 9. AC-Coupled PGx and STROBE Equivalent Inputs  
(Simplified Schematic)  
5554f  
20  
LT5554  
APPLICATIONS INFORMATION  
Gain Step Accuracy  
code whenever PG5, PG6 transitions are involved in or-  
der to preserve high-frequency monotonic behavior for  
0.125dB steps.  
LT5554 internal input signal coupling to the transcon-  
ductance amplifier inputs across the 4dB step attenuator  
increases with frequency. The gain step error is higher  
when the LT5554 gain update changes the input attenua-  
tor tap (PG5, PG6 transitions) and this error is frequency  
dependent.  
Linearity and Noise Performance Throughout the  
Gain Range  
The LT5554’s Noise and Linearity performance across  
the 16dB gain range at 100MHz with R  
SADC  
= 100 and  
OUT  
Gain error is ‘compressive’, effectively reducing LT5554  
gain range. Therefore, it is possible to skip one gain  
R
= 50Ω is shown in Figures 10 through 13.  
12  
9
24  
18  
12  
6
44  
39  
34  
29  
24  
136  
V
ONOISE  
132  
128  
124  
120  
SFDR  
6
NF  
3
IIP3  
RTI  
0
0
0
–4  
–8  
–12  
–16  
0
–4  
–8  
–12  
–16  
ATTENUATION (dB)  
ATTENUATION (dB)  
5554 F10  
5554 F11  
Figure 10. Noise, 140MHz, ROUT = 50Ω  
Figure 11. Noise, 140MHz, ROUT = 50Ω  
–70  
–74  
–78  
–82  
–86  
48  
–70  
–74  
–78  
–82  
–86  
48  
OIP3  
OIP3  
46  
44  
42  
40  
46  
44  
42  
40  
IMD3  
IMD3  
0
–4  
–8  
ATTENUATION (dB)  
–12  
–16  
0
–4  
–8  
ATTENUATION (dB)  
–12  
–16  
5554 F12  
5554 F12  
Figure 12. Linearity, 70MHz, ROUT = 50Ω, 4dBm/Tone  
Figure 13. Linearity, 140MHz, ROUT = 50Ω, 4dBm/Tone  
5554f  
21  
LT5554  
APPLICATIONS INFORMATION  
The LT5554 Noise and Linearity performance throughout  
the 16dB gain range has an obvious discontinuity at every  
4dB gain step. The noise figure is fairly constant from 0dB  
(MaximumGain)to3.875dBattenuationwhenthegainis  
decreasedbyloweringtheamplifiertransconductance.And  
then, the NF increases by 4dB when the input attenuator  
is switched to –4dB attenuation while the amplifier gain  
is switched back to maximum transconductance. This  
pattern repeats for each 4dB gain step change.  
than 1ꢀ or use these two resistors with 1ꢀ component  
tolerance. In this case, the HD2 can be as good as -80dBc  
when the output power is 10dBm at 140MHz.  
When the single-ended input is not converted into well  
balanced inputs to LT5554, the HD2 performance will  
be degraded. For instance, when the T1 transformer is  
improperly rotated by 90 degrees as shown in Figure 15,  
the imbalance of the differential input signals will result in  
14dB degradation in HD2. It is also important to split the  
differential R7 resistor into two single-ended R5 and R6  
resistors at the outputs to reduce the imbalance of the T2  
transformer. If not, 3dB degradation in HD2 performance  
can also be observed.  
SECOND ORDER HARMONIC DISTORTION  
Balanced differential inputs and outputs are important  
for achieving excellent second order harmonic distortion  
(HD2) of the LT5554. When configured in single-ended  
input and output interfaces, therefore, the single-ended  
to differential conversion at the input and differential to  
single-endedconversionattheoutputwillhavesignificant  
impact on the HD2 performance.  
V
CC  
= 5V  
C4  
V
= 5V  
CCO  
0.1μF  
+
IN  
T2  
TC2-1T  
OUT  
OUT  
T1  
1:1  
DEC  
50Ω  
C1  
47nF  
LT5554  
R7  
134Ω  
R
O
Figure 14, for example, shows the desirable singe-ended  
inputandoutputconfigurationusingexternaltransformers  
for the single-ended to differential conversion and differ-  
ential to single-ended conversion. To assure a good HD2  
performance, R5 and R6 should also be matched to better  
ETC1-1-13  
400Ω  
IN  
+
C3  
0.1μF  
C5  
5554 F15  
C2  
47nF  
1μF  
Figure 15. Not Recommended Single-Ended Input and Output  
Configuration, HD2 = –63dBc at 10dBm, 140MHz  
V
= 5V  
CC  
C4  
V
= 5V  
CCO  
R5  
0.1μF  
68.1Ω  
+
IN  
TheHD2performancecanbefurtherimprovedbymounting  
T1  
1:1  
T2  
TC2-1T  
OUT  
OUT  
+
a capacitor from IN to ground (a few pF) and a capaci-  
DEC  
50Ω  
LT5554  
R6  
68.1Ω  
tor from OUT to ground. For narrow band applications,  
R
O
these capacitors cancels to some degree the T1 and T2  
imbalance as shown in Figure 15.  
400Ω  
ETC1-1-13  
IN  
+
C3  
0.1μF  
C5  
5554 F14  
1μF  
ForoptimumHD2performance, fullydifferentialinputand  
output interfaces to the LT5554 part are recommended.  
Figure 14. Recommended Single-Ended Input and Output  
Configuration, HD2 = –80dBc at 10dBm, 140MHz  
5554f  
22  
LT5554  
APPLICATIONS INFORMATION  
Layout Considerations  
The transformer board from Figure 16 was used for char-  
acterization as a function of R . For each R  
option,  
OUT  
OUT  
Attention must be paid to the printed circuit board layout  
to avoid output pin to input pin signal coupling (external  
feedback). The evaluation board layout is a good example.  
The exposed backside pad on the LT5554 package must be  
soldered to PCB ground plane for thermal considerations.  
The T2 transformer model and the matching resistors R5,  
R6 values are given in Table 3. The T2 transformer total  
matching resistance is R  
= R || (R5 + R6) (part  
O
MATCH  
LT5554 internal, and part on board R5 and R6).  
Table 3. Transformer Board ROUT Options  
Characterization Test Circuits  
R
(ꢀ)  
50  
TC2-1T  
2
75  
TC3-1T  
3
100  
TC4-1W  
4
OUT  
T2 (Mini-Circuits)  
The LT5554’s typical performance data are on the test  
circuits shown in Figures 16, 17 and 18 which are simpli-  
fied schematics of the evaluation board schematic from  
Figure 21.  
N
LOAD  
R
LOAD  
Ratio  
(ꢀ)  
57.1  
68.1  
13.2  
92.3  
124  
16  
133.3  
205  
R5, R6 (ꢀ)  
(dB)  
G
17.2  
P_BOARD  
IL(T2) at  
200MHz (dB)  
–0.6  
–0.65  
–1  
J5, 40 PINS  
SMT-TB  
1, 3, 5, 7  
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
PG  
31  
MODE  
33, 35, 37, 38  
2, 4, ...40  
V
V
ENB PG0 PG1 PG2 PG3 PG4 PG5 PG6 STROBE  
V
V
CCO  
CC  
DEC  
R20  
10k  
R21  
10k  
R22  
10k  
R23  
10k  
R24  
10k  
R25  
10k  
R26  
10k  
C4  
0.1μF  
C8  
0.1μF  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
C3  
C19  
4.7μF  
R5  
+
0.1μF  
IN  
68.1Ω  
J1  
50  
T1  
1:1  
OUT  
R
IN  
J3  
50  
50Ω  
LT5554  
OUTPUT  
MATCHING  
R
O
400Ω  
T2  
IN  
+
OUT  
TC2-1T  
2:1  
C18  
0.1μF  
C9  
0.1μF  
R6  
68.1Ω  
C5  
1μF  
ETC1-1-13  
MACOM  
R
R
LOAD  
400Ω 57.1Ω  
O
R
= 50Ω  
OUT  
5554 F16  
V
V
= 5V  
CCO  
CC  
= 5V  
Figure 16. Single-Ended Transformer Test Board (Simplified Schematic)  
5554f  
23  
LT5554  
APPLICATIONS INFORMATION  
The LT5554 output power P  
was obtained by adding  
OUT  
Table 4. Balun Board ROUT Options  
3dB for matching-loss and the transformer loss IL(T2) in  
Table 3 to the board output power at J3 connector. The  
transformer insertion loss (frequency and temperature  
dependent) has been included in characterization.  
R
(Ω)  
25  
0
36  
50  
71  
100  
53.6  
28  
OUT  
R3, R4 (Ω)  
R5, R6 (Ω)  
6.49  
28.7  
1.88  
6.57  
15.4  
28  
30.1  
28  
28.7  
0
IL  
V
3.66  
6.96  
5.76  
7.61  
8.08  
8.66  
PAD  
(V)  
6.29  
The output power matching is required when LT5554  
drives a 50Ω transmission line as shown on the evalua-  
tion board.  
CCO  
The differential-output board from Figure 18 was used  
for R  
= 50Ω wide-band characterization of the LT5554  
When LT5554 drives local (on-board) loads such that  
an ADC part, output power matching is not required and  
OUT  
single-ended outputs.  
OIP3 is defined based on P , total power at LT5554  
OUT  
Both Figure 17 and Figure 18 boards V  
was shifted  
CCO  
open collector outputs.  
up with the voltage drop on R5, R6 produced by 45mA  
+
output DC current such that OUT , OUT DC bias voltage  
Figure 17 shows the evaluation board for wide-band  
is still 5V. The LT5554 part should be always enabled when  
characterization at R  
= 50Ω, where the insertion loss  
OUT  
+
V
>6V. If disabled, the V  
will be applied at OUT ,  
of the output balun is about –1dB at 1GHz. Several R  
CCO  
CCO  
OUT  
OUT exceeding the absolute maximum 6V limit with  
possible LT5554 failure.  
options are given in Table 4 as well as the output padding  
insertion-lossandrequiredV for5VonLT5554outputs.  
CCO  
The LT5554 output power at open collector outputs is:  
P
= P (J3) + IL(T2) + 3dB + IL  
WR PAD  
OUT  
J5, 40 PINS  
SMT-TB  
1, 3, 5, 7  
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
PG  
31  
MODE  
33, 35, 37, 38  
2, 4, ...40  
V
V
ENB PG0 PG1 PG2 PG3 PG4 PG5 PG6 STROBE  
V
V
CCO  
CC  
DEC  
R20  
10k  
R21  
10k  
R22  
10k  
R23  
10k  
R24  
10k  
R25  
10k  
R26  
10k  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
C4  
0.1μF  
C8  
0.1μF  
C3  
0.1μF  
C9  
0.1μF  
C18  
0.1μF  
C19  
4.7μF  
+
R3  
IN  
J3  
50  
J1  
50  
T1  
T2  
15.4Ω  
OUT  
1:1  
1:1  
R
IN  
R5  
50Ω  
LT5554  
28Ω  
50Ω  
MATCHING  
R
R6  
28Ω  
O
400Ω  
IN  
+
OUT  
R4  
15.4Ω  
C5  
1μF  
ETC1-1-13  
MACOM  
ETC1-1-13  
R
R
LOAD  
O
400Ω 57.1Ω  
R
= 50Ω  
OUT  
5554 F17  
V
V
= 5V  
CCO  
CC  
= 7V  
Figure 17. Single Ended Test Board (Simplified Schematic)  
5554f  
24  
LT5554  
APPLICATIONS INFORMATION  
J5, 40 PINS  
SMT-TB  
1, 3, 5, 7  
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
PG  
31  
MODE  
33, 35, 37, 38  
2, 4, ...40  
V
CC  
V
ENB PG0 PG1 PG2 PG3 PG4 PG5 PG6 STROBE  
V
V
CCO  
DEC  
R20  
10k  
R21  
10k  
R22  
10k  
R23  
10k  
R24  
10k  
R25  
10k  
R26  
10k  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
C4  
0.1μF  
C8  
0.1μF  
C3  
0.1μF  
C9  
0.1μF  
C18  
0.1μF  
C19  
4.7μF  
+
IN  
J3  
50  
J1  
50  
T1  
OUT  
OUT  
1:1  
R
IN  
R5  
C10  
50Ω  
LT5554  
66.5Ω  
47nF  
100Ω  
MATCHING  
R
R6  
66.5Ω  
O
400Ω  
IN  
+
J33  
50  
C5  
1μF  
C12  
47nF  
ETC1-1-13  
MACOM  
R
R
LOAD  
57Ω  
O
400Ω  
R
= 50Ω  
OUT  
5554 F18  
V
V
= 5V  
CCO  
ENB = 5V  
CC  
= 8V  
Figure 18. Wideband Differential Output Test Board (Simplified Schematic)  
Common mode characterization for the LT5554 was per-  
formed with input circuit shown in Figure 19.  
source is applied at J6 connector and 50ꢁ terminated by  
R16 and R33 resistors. C66 decouple R33 to ground while  
C16providesDC-decouplingbetweenreferencedtoground  
pulse source and the PG6 DC-voltage. A supply connected  
toPG6turretwillsetthePG6DC-voltagein0Vto5Vrange.  
All other (untested) PGx DC-voltage can be independently  
25Ω  
C1  
47nF  
OUT  
+
IN  
25Ω  
J1  
50  
DEC  
LT5554  
+
25Ω  
+
IN  
OUT  
be applied at V turret decoupled by C88.  
PG  
C
DEC  
5554 F19  
47nF  
Strobe-mode operation is tested with a pulse source ap-  
plied at J7 connector as shown in Figure 20.  
Figure 19. Common Mode Input Interface  
Applying similar modifications around J2 and J4 connec-  
torsshowninFigure21,otherPGxinputscanbeevaluated.  
As described in Table 1 and Table 2, the MODE pin will  
select the desired state.  
TimingcharacterizationandAC-coupledgaincontrolinputs  
are tested on evaluation board. The required circuit modi-  
fications are shown in the Figure 20 simplified schematic  
and detailed below for PG6 (8dB step). The PG6 pulse  
5554f  
25  
LT5554  
APPLICATIONS INFORMATION  
V
PG  
C88  
47nF  
R21  
10k  
R22  
R23 R24  
10k 10k  
10k  
PG1  
PG2  
R28  
0Ω  
PG4  
PG3  
R29  
0Ω  
R30 R31  
C4  
0.1μF  
0Ω  
0Ω  
32  
31  
30  
29  
28  
27  
26  
25  
R8  
0Ω  
PG1 GND PG2 PG3 GND PG4 GND GND  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
GND  
GND  
DEC  
V
V
CC  
V
CC  
DEC  
ENB  
GND  
ENABLE  
+
IN  
OUT  
LT5554  
+
IN  
OUT  
DEC  
GND  
GND  
GND  
MODE  
MODE  
C6  
47nF  
V
CC  
C8  
0.1μF  
PG5 GND PG6 PG0 GND STROBE GND GND  
C5  
1μF  
9
10  
11  
12  
13  
14  
15  
16  
R16  
100Ω  
R17  
100Ω  
C16  
47nF  
C17  
47nF  
R32  
0Ω  
R33  
100Ω  
R27 R34  
0Ω 100Ω  
J6  
J7  
PG5  
PG6  
C27  
47nF  
PG0  
C28  
47nF  
5554 F20  
STROBE  
R25  
10k  
R26  
10k  
R20  
10k  
Figure 20. Timing Test for PG6 and STROBE (Simplified Schematic)  
Evaluation Board  
V
supply enables the LT5554 part. PGx gain control  
CC  
and STROBE inputs will have TTL levels (DC-coupled)  
when MODE = 5V (same power supply). To set LT5554 for  
Figure 21 shows the schematic of the LT5554 evaluation  
board. Transformer T2 is TC2-1T and resistor R5 + R6 =  
maximumgain(G  
)intransparent-mode,allsevenPGx  
MAX  
134Ω (R  
= 50Ω G (J3) = 13.2dB). The silkscreen and  
OUT  
P
and STROBE can be connected to 5V supply. Alternatively,  
a 2.2V power supply at V pin and STROBE turret will  
layout are shown in Figures 22 through Figure 27. The  
boardcontrolJ5edgeconnector(40PINSSMT-TB)allows  
easy access to LT5554 component pins. Alternatively or  
combined with J5, 14 test points (turrets) for signals and  
two for GND are also available. The board is powered with  
PG  
set same G  
state.  
MAX  
J1 (input) and J3 (output) are the default board signal  
portsforevaluationwith50singleendedtestsystem.For  
differential evaluation, the board J11 and J33 connectors  
must be reconfigured.  
a single supply in 4.75V to 5.25V at V and V  
J5 connector or turrets). Connecting the ENABLE pin to  
(either  
CC  
CCO  
5554f  
26  
LT5554  
APPLICATIONS INFORMATION  
J5, 40 PINS  
SMT-TB  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
V
V
V
V
V
9
ENB PG0 PG1 PG2 PG3 PG4 PG5 PG6 STROBE  
V
MODE  
31  
V
V V V  
CC  
CC  
CC  
CC  
DEC  
PG  
PG  
CCO CCO CCO CCO  
1
3
5
7
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
33  
35  
37  
39  
V
DEC  
ENB PG0 PG1 PG2 PG3 PG4 PG5 PG6 STROBE  
V
MODE  
V
CC  
V
CCO  
V
PG  
PG1  
PG4  
R20  
10k  
R21  
10k  
R22  
10k  
R23  
10k  
R24  
10k  
R25  
10k  
R26  
10k  
C11  
C14  
R28  
0Ω  
R31  
0Ω  
47nF  
47nF  
NOT MOUNTED  
J2  
NOT MOUNTED  
J4  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
C21  
0.1μF  
C22  
0.1μF  
C23  
0.1μF  
C24  
0.1μF  
C25  
0.1μF  
C26  
0.1μF  
C27  
0.1μF  
PG2 PG3  
R30  
NOT MOUNTED  
NOT MOUNTED  
C12  
C13  
47nF  
R29  
0Ω  
47nF  
0Ω  
C21 THROUGH C27 ARE NOT MOUNTED  
NOT MOUNTED  
R12  
NOT MOUNTED  
R14  
NOT MOUNTED  
NOT MOUNTED  
V
CCO  
C3  
0.1μF  
C19  
32  
31  
30  
29  
28  
27  
26  
25  
4.7μF  
R8  
PG1 GND PG2 PG3 GND PG4 GND GND  
C4  
0Ω  
R5  
1
24  
GND  
GND  
DEC  
V
V
68.1Ω  
V
CC  
CC  
DEC  
R3  
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
17  
T2  
TC2-1T  
2:1  
ENB  
ENABLE  
+
0Ω  
+
IN  
T1  
OUT  
J1  
J3  
1:1  
GND  
+
IN  
OUT  
R7  
NC  
LT5554  
+
IN  
OUT  
IN  
OUT  
DEC  
GND  
GND  
GND  
ETC1-1-13  
MACOM  
J11  
J33  
R4  
0Ω  
MINI-  
CIRCUITS  
MODE  
MODE  
R6  
681Ω  
C6  
47nF  
R1  
0Ω  
V
CC  
NOT  
MOUNTED  
NOT  
MOUNTED  
C8  
0.1μF  
PG5 GND PG6 PG0 GND STROBE GND GND  
C5  
1μF  
R2  
C18  
0.1μF  
C9  
0.1μF  
0Ω  
9
10  
11  
12  
13  
14  
15  
16  
5554 F21  
NOT MOUNTED  
NOT MOUNTED  
NOT MOUNTED  
R16  
R17  
NOT MOUNTED  
NOT MOUNTED  
R33  
0Ω  
R27 R34  
0Ω 0Ω  
C16  
47nF  
C17  
47nF  
J7  
NOT MOUNTED  
NOT MOUNTED  
J6  
PG6 PG0  
STROBE  
R32  
0Ω  
C15  
47nF  
PG5  
Figure 21. Evaluation Circuit Schematic  
5554f  
27  
LT5554  
APPLICATIONS INFORMATION  
Figure 22. Top Side  
Figure 23. Inner Layer 2 GND  
5554f  
28  
LT5554  
APPLICATIONS INFORMATION  
Figure 24. Inner Layer 3 Power  
Figure 25. Bottom Side  
5554f  
29  
LT5554  
APPLICATIONS INFORMATION  
Figure 26. Silkscreen Top  
Figure 27. Silkscreen Bottom  
5554f  
30  
LT5554  
PACKAGE DESCRIPTION  
UH Package  
32-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1693 Rev D)  
0.70 0.05  
5.50 0.05  
4.10 0.05  
3.45 0.05  
3.50 REF  
(4 SIDES)  
3.45 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.30 TYP  
OR 0.35 × 45° CHAMFER  
R = 0.05  
TYP  
0.00 – 0.05  
R = 0.115  
TYP  
0.75 0.05  
5.00 0.10  
(4 SIDES)  
31 32  
0.40 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
3.45 0.10  
3.50 REF  
(4-SIDES)  
3.45 0.10  
(UH32) QFN 0406 REV D  
0.200 REF  
0.25 0.05  
0.50 BSC  
NOTE:  
1. DRAWING PROPOSED TO BE A JEDEC PACKAGE OUTLINE  
M0-220 VARIATION WHHD-(X) (TO BE APPROVED)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5554f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
31  
LT5554  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Infrastructure  
LT5514  
Ultralow Distortion, IF Amplifier/ADC Driver with  
850MHz Bandwidth, 47 dBm OIP3 at 100MHz, 10.5dB to 33dB Gain  
Control Range  
Digitally Controlled Gain  
LT5517  
LT5518  
40MHz to 900MHz Quadrature Demodulator  
21dBm IIP3, Integrated LO Quadrature Generator  
1.5GHz to 2.4GHz High Linearity Direct Quadrature  
Modulator  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended RF and  
LO Ports, 4-Channel W-CDMA ACPR = –64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5524  
0.7GHz to 1.4GHz High Linearity Upconverting Mixer  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer  
10MHz to 3700MHz High Linearity Upconverting Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Port Operation  
600 MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended  
RF and LO Ports  
Low Power, Low Distortion ADC Driver with Digitally  
Programmable Gain  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
LT5525  
LT5526  
High Linearity, Low Power Downconverting Mixer  
High Linearity, Low Power Downconverting Mixer  
Single-Ended 50Ω RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28A  
CC  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB,  
I
CC  
= 28mA, –65dBm LO-RF Leakage  
LT5527  
LT5528  
LT5557  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
IIP3 = 23.5dBm and NF = 12.5dBm at 1900MHz, 4.5V to 5.25V Supply,  
= 78mA, Conversion Gain = 2dB  
I
CC  
1.5GHz to 2.4GHz High Linearity Direct Quadrature  
Modulator  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 4-Channel W-CDMA ACPR = –66dBc at 2.14GHz  
400MHz to 3.8GHz, 3.3V High Signal Level  
Downconverting Mixer  
IIP3 = 23.7dBm at 2600MHz, 23.5dBm at 3600MHz, I = 82A at 3.3V  
CC  
LT5560  
LT5568  
Ultra-Low Power Active Mixer  
10mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter.  
700MHz to 1050MHz High Linearity Direct Quadrature 22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Modulator  
Interface, 3-Ch CDMA2000 ACPR = –71.4dBc at 850MHz  
LT5572  
LT5575  
LT5579  
1.5GHz to 2.5GHz High Linearity Direct Quadrature  
Modulator  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, High-Ohmic 0.5V  
Baseband Interface, 4-Ch W-CDMA ACPR = –67.7dBc at 2.14GHz  
DC  
800MHz to 2.7GHz High Linearity Direct Conversion  
I/Q Demodulator  
50Ω, Single-Ended RF and LO Inputs. 28dBm IIP3 at 900MHz, 13.2dBm P1dB,  
0.04dB I/Q Gain Mismatch, 0.4° I/Q Phase Mismatch  
1.5GHz to 3.8GHz High Linearity Upconverting Mixer  
27.3dBm OIP3 at 2.14GHz, 9.9dB Noise Floor, 2.6dB Conversion Gain, –35dBm  
LO Leakage  
RF Power Detectors  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
RF Power Detectors with >40dB Dynamic Range  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1GHz, Temperature Compensated, 2.7 to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Precision V  
Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
50MHz to 3GHz Log RF Power Detector with 60dB  
Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time, Log Linear  
Response  
LTC5536  
Precision 600Mhz to 7GHz RF Power Detector with  
Fast Comparator Output  
25ns Response Time, Comparator Reference Input, Latch Enable Input, –26dBm  
to 12dBm Input Range  
LT5537  
LT5538  
LT5570  
Wide Dynamic Range Log RF/IF Detector  
3.8GHz Wide Dynamic Range Log Detector  
2.7GHz RMS Power Detector  
Low Frequency to 1GHz, 83dB Log Linear Dynamic Range  
75dB Dynamic Range, 1dB Output Variation Over Temperature  
Fast Responding, up to 60dB Dynamic Range, 0.3dB Accuracy Over  
Temperature  
5554f  
LT 0708 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5554IUH-TRPBF

Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA
Linear

LT5557

400MHz to 3.8GHz 3.3V High Signal Level Downconverting Mixer
Linear

LT5557EUF#PBF

LT5557 - 400MHz to 3.8GHz 3.3V Active Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5557EUF#TR

IC SPECIALTY TELECOM CIRCUIT, PQCC16, 4 X 4 MM, PLASTIC, MO-220, QFN-20, Telecom IC:Other
Linear

LT5557EUF#TRPBF

LT5557 - 400MHz to 3.8GHz 3.3V Active Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5557EUF-PBF

400MHz to 3.8GHz 3.3V High Signal Level Downconverting Mixer
Linear

LT5558

600MHz to 1100MHz High Linearity Direct Quadrature Modulator
Linear

LT5558EUF

600MHz to 1100MHz High Linearity Direct Quadrature Modulator
Linear

LT5558EUF#PBF

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5558EUF#TR

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5558EUF#TRBPF

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQCC16, 4 X 4 MM, LEAD FREE, PLASTIC, MO-220WGGC, QFN-16, Cellular Telephone Circuit
Linear

LT5558EUF#TRPBF

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear