LT5575EUFTRPBF [Linear]

800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator; 800MHz至2.7GHz的高线性度直接转换正交解调器
LT5575EUFTRPBF
型号: LT5575EUFTRPBF
厂家: Linear    Linear
描述:

800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator
800MHz至2.7GHz的高线性度直接转换正交解调器

文件: 总16页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5575  
800MHz to 2.7GHz  
High Linearity Direct Conversion  
Quadrature Demodulator  
DESCRIPTION  
FEATURES  
The LT®5575 is an 800MHz to 2.7GHz direct conversion  
quadrature demodulator optimized for high linearity  
Input Frequency Range: 0.8GHz to 2.7GHz*  
50Ω Single-Ended RF and LO Ports  
High IIP3: 28dBm at 900MHz, 22.6dBm at 1.9GHz  
High IIP2: 54.1dBm at 900MHz, 60dBm at 1.9GHz  
Input P1dB: 13.2dBm at 900MHz  
I/Q Gain Mismatch: 0.04dB Typical  
I/Q Phase Mismatch: 0.4° Typical  
Low Output DC Offsets  
Noise Figure: 12.8dB at 900MHz, 12.7dB at 1.9GHz  
Conversion Gain: 3dB at 900MHz, 4.2dB at 1.9GHz  
Very Few External Components  
receiver applications. It is suitable for communications  
receivers where an RF signal is directly converted into I  
and Q baseband signals with bandwidth up to 490MHz.  
The LT5575 incorporates balanced I and Q mixers, LO  
bufferamplifiersandaprecision,highfrequencyquadrature  
phaseshifter.Theintegratedon-chipbroadbandtransform-  
ers provide 50Ω single-ended interfaces at the RF and LO  
inputs. Only a few external capacitors are needed for its  
application in an RF receiver system.  
Shutdown Mode  
16-Lead QFN 4mm × 4mm Package with  
Exposed Pad  
The high linearity of the LT5575 provides excellent spur-  
free dynamic range for the receiver. This direct conversion  
demodulator can eliminate the need for intermediate fre-  
quency(IF)signalprocessing,aswellasthecorresponding  
requirements for image filtering and IF filtering. Channel  
filtering can be performed directly at the outputs of the I  
and Q channels. These outputs can interface directly to  
channel-select filters (LPFs) or to baseband amplifiers.  
APPLICATIONS  
Cellular/PCS/UMTS Infrastructure  
RFID Reader  
High Linearity Direct Conversion I/Q Receiver  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
*Operation over a wider frequency range is possible with reduced performance. Consult  
the factory.  
TYPICAL APPLICATION  
Conversion Gain, NF, IIP3 and IIP2  
vs LO Input Power at 1900MHz  
High Signal-Level I/Q Demodulator for Wireless Infrastructure  
+5V  
35  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
IIP2  
V
CC  
LT5575  
+
RF  
INPUT  
BPF  
BPF  
LPF  
I
OUT  
RF  
LNA  
VGA  
A/D  
I
IIP3  
OUT  
0°  
DSB NF  
LO  
LO INPUT  
ENABLE  
–40°C  
25°C  
85°C  
0°/90°  
CONV  
GAIN  
90°  
+
LPF  
Q
Q
OUT  
VGA  
A/D  
OUT  
EN  
0
–5  
–15  
–10  
0
5
5575 TA01  
LO INPUT POWER (dBm)  
5575 TA01b  
5575f  
1
LT5575  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Power Supply Voltage..............................................5.5V  
Enable Voltage ................................ –0.3V to V + 0.3V  
CC  
16 15 14 13  
LO Input Power....................................................10dBm  
RF Input Power....................................................20dBm  
RF Input DC Voltage............................................... 0.1V  
LO Input DC Voltage .............................................. 0.1V  
Operating Ambient Temperature ..............–40°C to 85°C  
Storage Temperature Range...................–65°C to 125°C  
Maximum Junction Temperature .......................... 125°C  
GND  
RF  
1
2
3
4
12  
V
CC  
11 GND  
17  
GND  
GND  
LO  
10  
9
GND  
5
6
7
8
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
= 125°C, θ = 37°C/W  
T
JMAX  
JA  
CAUTION: This part is sensitive to electrostatic discharge  
(ESD). It is very important that proper ESD precautions  
be observed when handling the LT5575.  
EXPOSED PAD (PIN #17) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
16-Lead (4mm × 4mm) QFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LT5575EUF#PBF  
LT5575EUF#TRPBF  
5575  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
DC ELECTRICAL CHARACTERISTICS  
V
= +5V, T = 25°C, unless otherwise noted. (Note 3)  
CC A  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
155  
UNITS  
V
Supply Voltage  
Supply Current  
Shutdown Current  
Turn On Time  
4.5  
132  
< 1  
mA  
µA  
ns  
EN = Low  
100  
120  
750  
Turn Off Time  
ns  
EN = High (On)  
EN = Low (Off)  
EN Input Current  
Output DC Offset Voltage  
2
V
1
V
V
= 5V  
120  
< 9  
µA  
mV  
ENABLE  
f
= 1900MHz, P = 0dBm  
LO  
LO  
+
+
(|I  
– I  
|, |Q  
– Q  
|)  
OUT  
OUT  
OUT  
OUT  
Output DC Offset Variation  
vs Temperature  
–40°C to 85°C  
38  
µV/°C  
5575f  
2
LT5575  
AC ELECTRICAL CHARACTERISTICS Test circuit shown in Figure 1. (Notes 2, 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RF Input Frequency Range  
No External Matching (High Band)  
With External Matching (Low Band, Mid Band)  
1.5 to 2.7  
0.8 to 1.5  
GHz  
GHz  
LO Input Frequency Range  
No External Matching (High Band)  
With External Matching (Low Band, Mid Band)  
1.5 to 2.7  
0.8 to 1.5  
GHz  
GHz  
Baseband Frequency Range  
DC to 490  
MHz  
Baseband I/Q Output Impedance  
Single-Ended  
65Ω// 5pF  
RF Input Return Loss  
LO Input Return Loss  
LO Input Power  
Z = 50Ω, 1.5GHz to 2.7GHz,  
>10  
>10  
dB  
dB  
O
Internally Matched  
Z = 50Ω, 1.5GHz to 2.7GHz,  
O
Internally Matched  
–13 to 5  
dBm  
AC ELECTRICAL CHARACTERISTICS  
(Notes 2, 3, 6)  
V
= +5V, EN = High, T = 25°C, P = –10dBm (–10dBm/tone for  
CC A RF  
2-tone IIP2 and IIP3 tests), Baseband Frequency = 1MHz (0.9MHz and 1.1MHz for 2-tone tests), P = 0dBm, unless otherwise noted.  
LO  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
Voltage Gain, R  
= 1kΩ  
LOAD  
R = 900MHz (Note 5)  
3
dB  
dB  
dB  
dB  
F
R = 1900MHz  
4.2  
3.5  
2
F
R = 2100MHz  
F
R = 2500MHz  
F
Noise Figure (Double-Side Band, Note 4)  
Input 3rd-Order Intercept  
Input 2nd-Order Intercept  
Input 1dB Compression  
I/Q Gain Mismatch  
R = 900MHz (Note 5)  
12.8  
12.7  
13.6  
15.7  
dB  
dB  
dB  
dB  
F
R = 1900MHz  
F
R = 2100MHz  
F
R = 2500MHz  
F
R = 900MHz (Note 5)  
28  
dBm  
dBm  
dBm  
dBm  
F
R = 1900MHz  
22.6  
22.7  
23.3  
F
R = 2100MHz  
F
R = 2500MHz  
F
R = 900MHz (Note 5)  
54.1  
60  
dBm  
dBm  
dBm  
dBm  
F
R = 1900MHz  
F
R = 2100MHz  
56  
F
R = 2500MHz  
52.3  
F
R = 900MHz (Note 5)  
13.2  
11.2  
11  
dBm  
dBm  
dBm  
dBm  
F
R = 1900MHz  
F
R = 2100MHz  
F
R = 2500MHz  
12.3  
F
R = 900MHz (Note 5)  
0.03  
0.01  
0.04  
0.04  
dB  
dB  
dB  
dB  
F
R = 1900MHz  
F
R = 2100MHz  
F
R = 2500MHz  
F
I/Q Phase Mismatch  
R = 900MHz (Note 5)  
0.5  
0.4  
0.6  
0.2  
°
°
°
°
F
R = 1900MHz  
F
R = 2100MHz  
F
R = 2500MHz  
F
LO to RF Leakage  
R = 900MHz (Note 5)  
–60.8  
–64.6  
–60.2  
–51.2  
dBm  
dBm  
dBm  
dBm  
F
R = 1900MHz  
F
R = 2100MHz  
F
R = 2500MHz  
F
5575f  
3
LT5575  
AC ELECTRICAL CHARACTERISTICS  
(Notes 2, 3, 6)  
V
= +5V, EN = High, T = 25°C, P = –10dBm (–10dBm/tone for  
CC A RF  
2-tone IIP2 and IIP3 tests), Baseband Frequency = 1MHz (0.9MHz and 1.1MHz for 2-tone tests), P = 0dBm, unless otherwise noted.  
LO  
PARAMETER  
CONDITIONS  
R = 900MHz (Note 5)  
MIN  
TYP  
MAX  
UNITS  
RF to LO Isolation  
59.7  
57.1  
59.5  
53.1  
dBc  
dBc  
dBc  
dBc  
F
R = 1900MHz  
F
R = 2100MHz  
F
R = 2500MHz  
F
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: 900MHz performance is measured with external RF and LO  
matching. The optional output capacitors C1-C4 (10pF) are also used for  
best IIP2 performance.  
+
Note 6: For these measurements, the complementary outputs (e.g., I  
,
OUT  
Note 2: Tests are performed as shown in the configuration of Figure 1.  
I
) were combined using a 180˚ phase shift combiner.  
OUT  
Note 3: Specifications over the –40˚C to 85˚C temperature range are  
assured by design, characterization and correlation with statistical  
process control.  
Note 7: Large-signal noise figure is measured at an output frequency of  
198.7MHz with RF input signal at f –1MHz. Both RF and LO input signals  
LO  
are appropriately bandpass filtered, as well as baseband output.  
Note 4: DSB Noise Figure is measured with a small-signal noise source  
at the baseband frequency of 15MHz without any filtering on the RF input  
and no other RF signal applied.  
5575f  
4
LT5575  
TYPICAL AC PERFORMANCE CHARACTERISTICS  
Test Circuit Shown in Figure 1 (Note 6).  
V
= 5V, EN = High, T = 25ºC, P = –10dBm  
CC  
A
RF  
(–10dBm/tone for 2-tone IIP2 and IIP3 tests), f = 1MHz (0.9MHz and 1.1MHz for 2-tone tests), P = 0dBm, unless otherwise noted.  
BB  
LO  
Conversion Gain, NF and IIP3  
Supply Current  
vs Supply Voltage  
vs Frequency  
IIP2 vs Frequency  
70  
65  
60  
55  
50  
45  
40  
160  
150  
35  
–40°C  
25°C  
85°C  
30  
25  
20  
15  
10  
5
85°C  
IIP3  
140  
130  
LOW  
MID  
BAND BAND  
25°C  
40°C  
5.00  
HIGH BAND  
DSB NF  
120  
110  
100  
CONV GAIN  
–40°C  
25°C  
85°C  
0
1400  
800  
1400 1700 2000 2300 2600  
800 1100  
1700 2000 2300 2600  
1100  
4.50  
4.75  
5.25  
5.50  
RF INPUT FREQUENCY (MHz)  
RF INPUT FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
5575 G03  
5575 G02  
5575 G01  
Conversion Gain  
vs RF Input Power  
I/Q Gain Mismatch  
I/Q Phase Mismatch  
vs RF Input Frequency  
vs RF Input Frequency  
0.3  
0.2  
3
2
1
0
1
2
3
5
f
= 1MHz  
–40°C  
25°C  
85°C  
f
= 1MHz  
BB  
–40°C  
25°C  
85°C  
BB  
1900MHz  
4
3
900MHz  
0.1  
2500MHz  
0.0  
2
–0.1  
–0.2  
–0.3  
1
0
–1  
800  
1400 1700 2000 2300 2600  
RF FREQUENCY (MHz)  
800  
1400 1700 2000 2300 2600  
RF FREQUENCY (MHz)  
1100  
1100  
–15  
–5  
0
5
10  
15  
–10  
RF INPUT POWER (dBm)  
5575 G04  
5575 G05  
5575 G06  
RF-LO Isolation  
LO-RF Leakage  
Conversion Gain  
vs RF Input Power  
vs LO Input Power  
vs Baseband Frequency  
70  
65  
60  
55  
50  
45  
40  
6
5
40  
45  
–50  
–55  
60  
–65  
–70  
–75  
80  
f
LO  
= 1901MHz  
40°C  
25°C  
900MHz  
4
3
2500MHz  
85°C  
1900MHz  
2500MHz  
900MHz  
2
1
0
1900MHz  
–16  
–8  
–4  
0
4
8
–15  
–5  
–10  
LO INPUT POWER (dBm)  
5
–12  
0
0.1  
1.0  
10  
100  
1000  
RF INPUT POWER (dBm)  
BASEBAND FREQUENCY (MHz)  
5575 G07  
5575 G08  
5575 G09  
5575f  
5
LT5575  
TYPICAL AC PERFORMANCE CHARACTERISTICS  
Test Circuit Shown in Figure 1 (Note 6).  
V
= 5V, EN = High, T = 25ºC, P = –10dBm  
CC A RF  
(–10dBm/tone for 2-tone IIP2 and IIP3 tests), f = 1MHz (0.9MHz and 1.1MHz for 2-tone tests), P = 0dBm, unless otherwise noted.  
BB  
LO  
Conversion Gain, IIP3, NF  
vs LO Input Power at 900MHz  
35  
Output Power and IM3  
vs RF Input Power at 900MHz  
IIP2 vs LO Input Power at 900MHz  
10  
–10  
70  
65  
60  
55  
50  
45  
40  
35  
30  
f
= 901MHz  
–40°C  
25°C  
85°C  
f
LO  
= 901MHz  
f
LO  
= 901MHz  
LO  
IIP3  
30  
25  
20  
15  
10  
5
OUTPUT POWER  
–40°C  
25°C  
85°C  
–30  
–50  
–70  
–90  
–110  
DSB NF  
IM3 PRODUCT  
–40°C  
25°C  
85°C  
CONV GAIN  
–5  
0
–15  
–10  
0
5
–16  
–8  
–4  
0
4
8
–5  
LO INPUT POWER (dBm)  
–12  
–15  
–10  
0
5
RF INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5575 G10  
5575 G11  
5575 G12  
Conversion Gain, IIP3, NF  
vs LO Input Power at 1900MHz  
Output Power and IM3  
vs RF Input Power at 1900MHz  
IIP2 vs LO Input Power  
at 1900MHz  
30  
25  
70  
65  
10  
–10  
f
= 1901MHz  
–40°C  
25°C  
85°C  
f
LO  
= 1901MHz  
f
LO  
= 1901MHz  
LO  
IIP3  
OUTPUT POWER  
20  
15  
60  
55  
–30  
–50  
–70  
–90  
–110  
DSB NF  
IM3 PRODUCT  
10  
5
50  
45  
40  
CONV. GAIN  
–5  
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
0
–15  
–10  
0
5
–15  
–10  
–5  
0
5
–16  
–8  
–4  
0
4
8
–12  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
RF INPUT POWER (dBm)  
5575 G13  
5575 G15  
5575 G14  
Conversion. Gain, IIP3, NF  
vs LO Input Power at 2500MHz  
Output Power and IM3  
vs RF Input Power at 2500MHz  
IIP2 vs LO Input Power  
at 2500MHz  
30  
25  
10  
–10  
70  
65  
60  
55  
50  
45  
40  
35  
30  
f
= 2501MHz  
f
LO  
= 2501MHz  
–40°C  
25°C  
85°C  
f
= 2501MHz  
LO  
LO  
IIP3  
OUTPUT POWER  
20  
15  
–30  
–50  
–70  
–90  
–110  
IM3 PRODUCT  
DSB NF  
–40°C  
25°C  
85°C  
10  
5
–40°C  
25°C  
85°C  
CONV. GAIN  
–5  
0
–15  
–10  
0
5
–15  
–5  
–10  
LO INPUT POWER (dBm)  
5
0
–16  
–8  
–4  
0
4
8
–12  
LO INPUT POWER (dBm)  
RF INPUT POWER (dBm)  
5575 G16  
5575 G17  
5575 G18  
5575f  
6
LT5575  
TYPICAL AC PERFORMANCE CHARACTERISTICS  
Test Circuit Shown in Figure 1 (Notes 6, 7).  
V
= 5V, EN = High, T = 25ºC, P = –10dBm  
CC  
A
RF  
(–10dBm/tone for 2-tone IIP2 and IIP3 tests), f = 1MHz (0.9MHz and 1.1MHz for 2-tone tests), P = 0dBm, unless otherwise noted.  
BB  
LO  
I/Q Gain Mismatch  
vs LO Input Power  
0.3  
I/Q Phase Mismatch  
vs LO Input Power  
Large-Signal DSB NF  
vs RF Input Power  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
3
2
f
= 1MHz  
f
= 1MHz  
BB  
900MHz  
1900MHz  
2500MHz  
NOTE 7  
BB  
0.2  
0.1  
0.0  
1
0
2500MHz  
1900MHz  
900MHz  
900MHz  
–0.1  
–0.2  
–0.3  
–1  
–2  
–3  
2500MHz  
1900MHz  
–15  
–10  
–5  
0
5
–15  
–10  
–5  
0
5
–30 –25 –20 –15 –10 –5  
0
5
10  
RF INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5575 G19  
5575 G20  
5575 G21  
Conversion Gain, IIP3, NF  
vs Supply Voltage  
RF Port Return Loss  
LO Port Return Loss  
0
–5  
0
35  
30  
25  
20  
15  
10  
5
4.75V  
5V  
–5  
5.25V  
IIP3  
–10  
–15  
–10  
–15  
–20  
–25  
LOW BAND;  
C10 = 4.7pF  
MID BAND;  
C10 = 2pF  
HIGH BAND;  
NO EXTERNAL  
COMPONENT  
DSB NF  
–20  
LOW BAND; C12 = 3.9pF  
MID BAND; C12 = 2.2pF  
HIGH BAND;  
CONV. GAIN  
–25  
–30  
NO EXTERNAL COMPONENT  
0
800  
1400 1700 2000 2300 2600  
FREQUENCY (MHz)  
5575 G23  
800  
1400 1700 2000 2300 2600  
FREQUENCY (MHz)  
5575 G22  
1100  
1100  
800  
1400 1700 2000 2300 2600  
RF FREQUENCY (MHz)  
1100  
5575 G24  
I/Q Gain Mismatch  
vs Supply Voltage  
I/Q Phase Mismatch  
vs Supply Voltage  
IIP2 vs Supply Voltage  
70  
65  
60  
55  
50  
45  
40  
0.3  
0.2  
3
2
4.75V  
5V  
4.75V  
5V  
4.75V  
5V  
5.25V  
5.25V  
5.25V  
0.1  
1
0.0  
0
–0.1  
–0.2  
–0.3  
–1  
–2  
–3  
800  
1400 1700 2000 2300 2600  
RF FREQUENCY (MHz)  
800 1100 1400 1700 2000 2300 2600  
RF FREQUENCY (MHz)  
800  
1400 1700 2000 2300 2600  
RF FREQUENCY (MHz)  
1100  
1100  
5575 G27  
5575 G25  
5575 G26  
5575f  
7
LT5575  
TYPICAL AC PERFORMANCE CHARACTERISTICS  
Test Circuit Shown in Figure 1 (Note 6).  
V
= 5V, EN = High, T = 25ºC, P = –10dBm  
CC A RF  
(–10dBm/tone for 2-tone IIP2 and IIP3 tests), f = 1MHz (0.9MHz and 1.1MHz for 2-tone tests), P = 0dBm, unless otherwise noted.  
BB  
LO  
Conversion Gain Distribution  
at 1900MHz  
IIP3 Distribution at 1900MHz  
vs Temperature  
Noise Figure Distribution  
at 1900MHz  
50  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
40°C  
25°C  
85°C  
T
= 25°C  
A
A
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0
3.8 3.9  
4
4.1 4.2 4.3 4.4  
21.4 21.8 22.2 22.6 23 23.4 23.8 24.2 24.6 25  
IIP3 (dBm)  
12.112.212.312.412.512.612.712.812.9 13  
DSB NOISE FIGURE (dB)  
CONVERSION GAIN (dB)  
5575 G28  
5575 G29  
5575 G30  
I/Q Amplitude Mismatch Distribution  
at 1900MHz vs Temperature  
I/Q Phase Mismatch Distribution  
at 1900MHz vs Temperature  
25  
20  
15  
60  
50  
40  
30  
20  
10  
0
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
10  
5
0
–1.2 –0.8 –0.4  
0
0.4 0.8 1.2 1.6 2.0 2.2  
–20  
0
20  
40  
60  
80  
PHASE MISMATCH (°)  
AMPLITUDE MISMATCH (mdB)  
5575 G32  
5575 G31  
I-Output DC Offset Voltage  
Distribution vs Temperature  
Q-Output DC Offset Voltage  
Distribution vs Temperature  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
–40°C  
25°C  
85°C  
40°C  
25°C  
85°C  
0
0
2
4
6
8
10 12 14 16 18  
–10 –8 –6 –4 –2  
0
2
4
6
DC OFFSET (mV)  
DC OFFSET (mV)  
5575 G33  
5575 G34  
5575f  
8
LT5575  
PIN FUNCTIONS  
GND (Pins 1, 3, 4, 9, 11): Ground pin.  
LO (Pin 10): Local Oscillator Input Pin. This is a single-  
ended 50Ω terminated input. No external matching net-  
work is required in the high frequency band. An external  
shunt capacitor (and/or series capacitor) may be required  
forimpedancetransformationto50Ωforthelowfrequency  
band from 800MHz to 1.5GHz (see Figure 6). If the LO  
sourceisnotDCblocked, aseriesblockingcapacitormust  
be used. Otherwise, damage to the IC may result.  
RF (Pin 2): RF Input Pin. This is a single-ended 50Ω ter-  
minated input. No external matching network is required  
for the high frequency band. An external series capacitor  
(and/or shunt capacitor) may be required for impedance  
transformation to 50Ω in the low frequency band from  
800MHz to 1.5GHz (see Figure 4). If the RF source is not  
DC blocked, a series blocking capacitor should be used.  
Otherwise, damage to the IC may result.  
+
Q
, Q  
(Pins 13, 14): Differential Baseband  
Output Pins of the Q Channel. The internal DC bias voltage  
is V – 1.1V for each pin.  
OUT  
OUT  
V
(Pins 6, 7, 8, 12): Power Supply Pins. These pins  
CC  
CC  
should be decoupled using 1000pF and 0.1µF capacitors.  
+
I
, I  
(Pins 15, 16): Differential Baseband  
OUT  
OUT  
EN (Pin 5): Enable Pin. When the input voltage is higher  
than 2.0V, the circuit is completely turned on. When the  
enable pin voltage is less than 1.0V, the circuit is turned  
off. Under no conditions should the voltage at the EN  
Output Pins of the I Channel. The internal DC bias voltage  
is V – 1.1V for each pin.  
CC  
Exposed Pad (Pin 17): Ground Return for the Entire IC.  
This pin must be soldered to the printed circuit board  
ground plane.  
pin exceed V + 0.3V. Otherwise, damage to the IC may  
CC  
result. If the Enable function is not needed, then the EN  
pin should be tied to V .  
CC  
BLOCK DIAGRAM  
V
V
V
V
CC  
CC  
CC  
CC  
6
7
8
12  
RF AMP  
I-MIXER  
+
LPF  
16  
I
I
OUT  
OUT  
15  
11  
RF  
2
3
GND  
LO BUFFERS  
0°/90°  
GND  
10  
14  
LO  
RF AMP  
+
LPF  
Q
Q
OUT  
OUT  
13  
Q-MIXER  
9
BIAS  
EXPOSED  
PAD  
1
4
5
17  
5575 BD  
GND  
EN  
5575f  
9
LT5575  
TEST CIRCUIT  
J3  
J4  
J5  
J6  
+
+
I
I
Q
Q
OUT  
OUT  
OUT  
OUT  
C2  
C4  
(OPT)  
(OPT)  
C3  
(OPT)  
C1  
(OPT)  
GND  
RF  
V
J1  
CC  
RF  
GND  
LO  
J2  
LT5575  
LO  
C10  
(OPT)  
GND  
GND  
C5  
1nF  
C12  
(OPT)  
GND  
V
EN  
CC  
RF  
= 4.4  
0.018"  
0.018"  
r
GND  
R1  
100K  
C7  
1nF  
C8  
0.1µF  
C9  
2.2µF  
0.062"  
DC  
GND  
5575 F01  
SIZE  
0402  
0402  
3216  
0402  
PART NUMBER  
LO MATCH  
C12  
BASEBAND  
C1-C4  
REF DES  
C5, C7  
C8  
VALUE  
RF MATCH  
C10  
FREQUENCY  
RANGE  
1000pF  
0.1µF  
AVX 04025C102JAT  
AVX 0402ZD104KAT  
LOW BAND:  
800 TO 1000MHz  
4.7pF  
3.9pF  
10pF  
C9  
2.2µF  
AVX TPSA225MO10R1800  
MID BAND:  
1000 TO 1500MHz  
2pF  
-
2pF  
-
2.2pF  
-
R1  
100kΩ  
HIGH BAND:  
1500 TO 2700MHz  
Figure 1. Evaluation Circuit Schematic  
5575 F02  
5575 F03  
Figure 2. Top Side of Evaluation Board  
Figure 3. Bottom Side of Evaluation Board  
5575f  
10  
LT5575  
APPLICATIONS INFORMATION  
The LT5575 is a direct I/Q demodulator targeting high  
linearity receiver applications, such as RFID readers and  
wirelessinfrastructure.ItconsistsofRFtransconductance  
amplifiers, I/Q mixers, a quadrature LO phase shifter, and  
bias circuitry.  
desired frequency as illustrated in Figure 5. For lower fre-  
quency band operation, the external matching component  
C11 can serve as a series DC blocking capacitor.  
EXTERNAL  
MATCHING  
The RF signal is applied to the inputs of the RF  
transconductance amplifiers and is then demodulated  
into I/Q baseband signals using quadrature LO signals  
which are internally generated from an external LO source  
by precision 90° phase-shifters. The demodulated I/Q  
signals are single-pole low-pass filtered on-chip with a  
–3dBbandwidthof490MHz.Thedifferentialoutputsofthe  
I-channel and Q-channel are well matched in amplitude;  
their phases are 90° apart.  
NETWORK FOR  
LOW BAND AND  
MID BAND  
RF  
INPUT  
TO I-MIXER  
C11  
RF  
2
3
C10  
TO Q-MIXER  
5575 F04  
Broadband transformers are integrated on-chip at both  
the RF and LO inputs to enable single-ended RF and LO  
interfaces.Inthehighfrequencyband(1.5GHzto2.7GHz),  
both RF and LO ports are internally matched to 50Ω. No  
external matching components are needed. For the lower  
frequency bands (800MHz to 1.5GHz), a simple network  
with series and/or shunt capacitors can be used as the  
impedance matching network.  
Figure 4. RF Input Interface  
0
C11 = 5.6pF;  
C10 = 4.7pF  
–5  
C11 = 3.9pF;  
NO SHUNT CAP  
–10  
–15  
RF Input Port  
Figure 4 shows the demodulator’s RF input which con-  
sists of an integrated transformer and high linearity  
transconductance amplifiers. The primary side of the  
transformer is connected to the RF input pin. The second-  
ary side of the transformer is connected to the differential  
inputs of the transconductance amplifiers. Under no cir-  
cumstances should an external DC voltage be applied to  
the RF input pin. DC current flowing into the primary side  
of the transformer may cause damage to the integrated  
transformer. A series blocking capacitor should be used  
to AC-couple the RF input port to the RF signal source.  
–20  
–25  
–30  
NO EXTERNAL  
MATCHING  
0.5  
1.5  
2.0  
2.5  
3.0  
1.0  
FREQUENCY (GHz)  
5575 F05  
Figure 5. RF Input Return Loss with External Matching  
The RF input port is internally matched over a wide fre-  
quencyrangefrom1.5GHzto2.7GHzwithinputreturnloss  
typicallybetterthan10dB.Noexternalmatchingnetworkis  
neededforthisfrequencyrange.Whenthepartisoperated  
at lower frequencies, however, the input return loss can  
be improved with the matching network shown in Figure  
4. Shunt capacitor C10 and series capacitor C11 can be  
selected for optimum input impedance matching at the  
5575f  
11  
LT5575  
APPLICATIONS INFORMATION  
The RF input impedance and S11 parameters (without  
external matching components) are listed in Table 1.  
The LO input port is internally matched over a wide fre-  
quency range from 1.5GHz to 2.7GHz with input return  
loss typically better than 10dB. No external matching  
network is needed for this frequency range. When the part  
is operated at a lower frequency, the input return loss can  
be improved with the matching network shown in Figure  
6. Shunt capacitor C12 and series capacitor C13 can be  
selected for optimum input impedance matching at the  
desired frequency as illustrated in Figure 7. For lower  
frequency operation, external matching component C13  
can serve as the series DC blocking capacitor.  
Table 1. RF Input Impedance  
S11  
FREQUENCY  
(GHz)  
INPUT  
IMPEDANCE (  
Ω)  
MAG  
0.760  
0.715  
0.660  
0.595  
0.521  
0.441  
0.355  
0.270  
0.188  
0.110  
0.042  
0.032  
0.084  
0.131  
0.172  
0.207  
0.235  
0.258  
0.274  
0.287  
ANGLE (°)  
133.0  
125.4  
117.2  
108.6  
99.6  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
8.1 +j 21.3  
10.5 +j 24.9  
13.8 +j 28.8  
18.6 +j 32.5  
25.2 +j 35.5  
33.6 +j 36.8  
43.1 +j 34.6  
51.4 +j 28.4  
55.8 +j 19.3  
55.4 +j 10.4  
51.8 +j 3.9  
46.9 +j 0.4  
42.3 +j –0.8  
38.4 +j –0.3  
35.4 +j 1  
90.3  
80.8  
EXTERNAL  
MATCHING  
71.6  
NETWORK FOR  
11  
LOW BAND AND  
LO QUADRATURE  
63  
MID BAND  
LO  
INPUT  
GENERATOR AND  
C13  
BUFFER AMPLIFIERS  
56.9  
10  
LO  
63  
C12  
172.7  
–173.9  
–178.2  
175.3  
168.4  
161.9  
155.4  
149.2  
143.4  
5575 F06  
Figure 6. LO Input Interface  
33 +j 2.9  
31.5 +j 4.9  
30.4 +j 7  
0
C13 = 5.6pF;  
C12 = 3.9pF  
–5  
29.9 +j 9.1  
29.7 +j 11.1  
NO EXTERNAL  
MATCHING  
–10  
–15  
LO Input Port  
C13 = 5.6pF;  
NO SHUNT CAP  
–20  
The demodulator’s LO input interface is shown in Fig-  
ure6.Theinputconsistsofanintegratedtransformeranda  
precisionquadraturephaseshifterwhichgenerates0°and  
90° phase-shifted LO signals for the LO buffer amplifiers  
drivingtheI/Qmixers. Theprimarysideofthetransformer  
is connected to the LO input pin. The secondary side of  
the transformer is connected to the differential inputs of  
the LO quadrature generator. Under no circumstances  
should an external DC voltage be applied to the input pin.  
DCcurrentowingintotheprimarysideofthetransformer  
may damage the transformer. A series blocking capacitor  
should be used to AC-couple the LO input port to the LO  
signal source.  
–25  
–30  
0.5  
1.5  
2.0  
2.5  
3.0  
1.0  
FREQUENCY (GHz)  
5575 F07  
Figure 7. LO Input Return Loss with External Matching  
5575f  
12  
LT5575  
APPLICATIONS INFORMATION  
The LO input impedance and S11 parameters (without  
external matching components) are listed in Table 2.  
I-Channel and Q-Channel Outputs  
Each of the I-channel and Q-channel outputs is internally  
connected to V through a 65Ω resistor. The output DC  
CC  
Table 2. LO Input Impedance  
biasvoltageisV – 1.1V. TheoutputscanbeDC-coupled  
CC  
S11  
FREQUENCY  
(GHz)  
INPUT  
or AC-coupled to the external loads. Each single-ended  
output has an impedance of 65Ω in parallel with a 5pF  
internal capacitor, forming a low-pass filter with a –3dB  
corner frequency at 490MHz. The loading resistance  
IMPEDANCE (  
Ω)  
MAG  
0.731  
0.669  
0.592  
0.508  
0.421  
0.341  
0.272  
0.221  
0.189  
0.18  
ANGLE (°)  
127.9  
120.4  
113.2  
106.1  
99.8  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
9.6 +j 23.7  
13 +j 27.1  
17.9 +j 30  
on each output, R  
(single-ended), should be larger  
LOAD  
24.1 +j 31.7  
31.2 +j 31.4  
37.5 +j 28.9  
41.9 +j 24.6  
43.4 +j 20  
than 300Ω to assure full gain. The gain is reduced by  
20 • log (1 + 65Ω/R ) in dB when the output port is  
10  
LOAD  
95.1  
terminated by R  
. For instance, the gain is reduced  
LOAD  
by 7.23dB when each output pin is connected to a  
50Ω load (or 100Ω differentially). The output should be  
taken differentially (or by using differential-to-single-  
ended conversion) for best RF performance, including  
NF and IM2.  
93.4  
96.2  
42.9 +j 16.4  
41.2 +j 14.1  
39.5 +j 13.1  
37.8 +j 13.1  
36.6 +j 13.6  
35.6 +j 14.6  
35.1 +j 15.7  
34.9 +j 17.1  
35.1 +j 18.5  
35.5 +j 19.9  
36.3 +j 21.2  
37.2 +j 22.5  
103.5  
113.1  
120.3  
124.5  
125.6  
125  
0.186  
0.201  
0.217  
0.236  
0.25  
ThephaserelationshipbetweentheI-channeloutputsignal  
and the Q-channel output signal is fixed. When the LO  
input frequency is larger (or smaller) than the RF input  
+
frequency, the Q-channel outputs (Q  
, Q  
) lead (or  
OUT  
OUT  
123.1  
120.1  
116.6  
113  
+
lag) the I-channel outputs (I  
, I  
) by 90°.  
OUT OUT  
0.264  
0.272  
0.281  
0.284  
0.287  
When AC output coupling is used, the resulting high-  
pass filter’s –3dB roll-off frequency is defined by the RC  
constant of the blocking capacitor and R  
LOAD  
, assuming  
LOAD  
109  
R
>> 65Ω.  
105.1  
V
CC  
5pF 65Ω  
65Ω  
5pF  
5pF 65Ω  
65Ω  
5pF  
+
I
I
OUT  
OUT  
16  
15  
+
Q
Q
OUT  
OUT  
14  
13  
5575 F08  
Figure 8. I/Q Output Equivalent Circuit  
5575f  
13  
LT5575  
APPLICATIONS INFORMATION  
Care should be taken when the demodulator’s outputs are  
DC-coupled to the external load to make sure that the I/Q  
mixers are biased properly. If the current drain from the  
outputs exceeds 6mA, there can be significant degrada-  
tion of the linearity performance. Each output can sink no  
more than 16.8mA when the outputs are connected to an  
Enable Interface  
A simplified schematic of the EN pin is shown in Fig-  
ure 9. The enable voltage necessary to turn on the LT5575  
is 2V. To disable or turn off the chip, this voltage should  
be below 1V. If the EN pin is not connected, the chip is  
disabled. However, it is not recommended that the pin be  
left floating for normal operation.  
external load with a DC voltage higher than V – 1.1V.  
CC  
The I/Q output equivalent circuit is shown in Figure 8.  
It is important that the voltage applied to the EN pin  
should never exceed V by more than 0.3V. Otherwise,  
the supply current may be sourced through the upper  
ESD protection diode connected at the EN pin. Under no  
circumstances should voltage be applied to the EN pin  
before the supply voltage is applied to the V pin. If this  
occurs, damage to the IC may result.  
In order to achieve best IIP2 performance, it is important  
to minimize high frequency coupling among the baseband  
outputs, RF port and LO port. For a multilayer PCB layout  
design, the metal lines of the baseband outputs should be  
placed on the backside of the PCB as shown in Figures 2  
and 3. Typically, output shunt capacitors C1-C4 are not  
required for the application near 1900MHz. However, for  
other frequency bands, these capacitors can be optimized  
for best IIP2 performance. For example, when the oper-  
ating frequency is 900MHz, the IIP2 can be improved to  
54dBm or better when 10pF shunt capacitors are placed  
at each output.  
CC  
CC  
LT5575  
V
CC  
EN  
5
60k  
60k  
5575 F09  
Figure 9. Enable Pin Simplified Circuit  
5575f  
14  
LT5575  
PACKAGE DESCRIPTION  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 0.05  
4.35 0.05  
2.90 0.05  
2.15 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 0.05  
R = 0.115  
TYP  
4.00 0.10  
(4 SIDES)  
15  
16  
0.55 0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 0.10  
(4-SIDES)  
(UF16) QFN 10-04  
0.200 REF  
0.30 0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5575f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT5575  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT5514  
DESCRIPTION  
COMMENTS  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
LT5515  
LT5516  
1.5GHz to 2.5GHz Direct Conversion Quadrature 20dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature 21.5dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
LT5517  
LT5518  
40MHz to 900MHz Quadrature Demodulator  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21dBm IIP3, Integrated LO Quadrature Generator  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended RF and LO  
Ports, 4-Channel W-CDMA ACPR = 64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5524  
LT5525  
LT5526  
LT5527  
LT5528  
LT5558  
0.7GHz to 1.4GHz High Linearity Upconverting 17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer Single-Ended LO and RF Ports Operation  
1.3GHz to 2.3GHz High Linearity Upconverting 15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer  
Single-Ended LO and RF Ports Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Port Operation  
600MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
Low Power, Low Distortion ADC Driver with  
Digitally Programmable Gain  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
High Linearity, Low Power Downconverting  
Mixer  
Single-Ended 50Ω RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
High Linearity, Low Power Downconverting  
Mixer  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
IIP3 = 23.5dBm and NF = 12.5dBm at 1900MHz, 4.5V to 5.25V Supply, I = 78mA,  
CC  
Conversion Gain = 2dB  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 4-Channel W-CDMA ACPR = 66dBc at 2.14GHz  
600MHz to 1100MHz High Linearity Direct  
Quadrature Modulator  
22.4dBm OIP3 at 900MHz, –158dBm/Hz Noise Floor, 3kΩ, 2.1V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –70.4dBc at 900MHz  
LT5560  
LT5568  
Ultra-Low Power Active Mixer  
700MHz to 1050MHz High Linearity Direct  
Quadrature Modulator  
10mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter.  
22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –71.4dBc at 850MHz  
LT5572  
1.5GHz to 2.5GHz High Linearity Direct  
Quadrature Modulator  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, High-Ohmic 0.5V Baseband  
DC  
Interface, 4-Ch W-CDMA ACPR = –67.7dBc at 2.14GHz  
RF Power Detectors  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
RF Power Detectors with >40dB Dynamic Range 300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
LTC5530  
LTC5531  
LTC5532  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
LT5534  
50MHz to 3GHz Log RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time, Log Linear  
Response  
LTC5536  
LT5537  
Precision 600MHz to 7GHz RF Power Detector 25ns Response Time, Comparator Reference Input, Latch Enable Input,  
with Fast Comparator Output  
–26dBm to +12dBm Input Range  
Wide Dynamic Range Log RF/IF Detector  
Low Frequency to 1GHz, 83dB Log Linear Dynamic Range  
5575f  
LT 0107 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5578

Dual 600MHz to 1.7GHz High Dynamic Range Downconverting Mixer
Linear

LT5578IUH#PBF

LT5578 - 0.4GHz to 2.7GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5578IUH#TRPBF

LT5578 - 0.4GHz to 2.7GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5579

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
Linear

LT5579IUH#PBF

LT5579 - 1.5GHz to 3.8GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5579IUH#TRPBF

LT5579 - 1.5GHz to 3.8GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5579IUH-PBF

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
Linear

LT5579IUH-TRPBF

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
Linear

LT5581

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT5581IDDB#PBF

LT5581 - 6GHz RMS Power Detector with 40dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5581IDDB-PBF

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT5581IDDB-TRPBF

6GHz RMS Power Detector with 40dB Dynamic Range
Linear