LT5578IUH#TRPBF [Linear]

LT5578 - 0.4GHz to 2.7GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C;
LT5578IUH#TRPBF
型号: LT5578IUH#TRPBF
厂家: Linear    Linear
描述:

LT5578 - 0.4GHz to 2.7GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C

电信 电信集成电路
文件: 总16页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5578  
0.4GHz to 2.7GHz  
High Linearity  
Upconverting Mixer  
FEATURES  
DESCRIPTION  
The LT®5578 mixer is a high performance upconverting  
mixer optimized for frequencies in the 0.4GHz to 2.7GHz  
range. The single-ended LO input and RF output ports  
simplify board layout and reduce system cost. The mixer  
needs only –1dBm of LO power and the balanced design  
results in low LO signal leakage to the RF output. At  
1.95GHz operation, the LT5578 provides conversion gain  
of –0.7dB, high OIP3 of 24.3dBm and a low noise floor of  
–158dBm/Hz at a –5dBm RF output signal level.  
n
High Output IP3: 27dBm at 0.9GHz  
24.3dBm at 1.95GHz  
n
Low Noise Floor: –158dBm/Hz (P  
= –5dBm)  
OUT  
n
n
n
n
n
n
n
High Conversion Gain: 1.4dB at 0.9GHz  
Noise Figure: 8.6dB  
Low LO-RF Leakage: –43dBm  
Single-Ended RF and LO Ports  
Low LO Drive Level: –1dBm  
Single 3.3V Supply  
5mm × 5mm QFN24 Package  
(Pin Compatible with LT5579)  
The LT5578 offers a high performance alternative to pas-  
sivemixers.Unlikepassivemixers,whichhaveconversion  
loss and require high LO drive levels, the LT5578 delivers  
conversion gain at significantly lower LO input levels and  
is less sensitive to LO power level variations. The lower  
LO drive level requirements, combined with the excellent  
LO leakage performance, translate into lower LO signal  
contamination of the output signal.  
APPLICATIONS  
n
GSM 900PCS/1800PCS and W-CDMA Infrastructure  
n
LTE and WiMAX Basestations  
n
Wireless Repeaters  
Public Safety Radios  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Frequency Upconversion in LTE Transmitter  
LO INPUT  
–1dBm  
Gain, NF and OIP3 vs  
RF Output Frequency  
2.7pF  
6.8pF  
30  
OIP3  
LO  
LT5578  
25  
GND  
RF  
13.7Ω  
100nH  
20  
15  
T
= 25°C  
A
BIAS  
f
f
= 140MHz  
IF  
RF  
= f – f  
LO RF IF  
IF  
700MHz  
TO 950MHz  
TC4-1W+  
4:1  
220pF  
220pF  
140MHz  
22nH  
2pF  
13nH  
2.7pF  
+
IF  
SSB NF  
GAIN  
10  
5
39pF  
IF  
100nH  
13.7Ω  
0
V
CC  
5579 TA01a  
850  
950 1000  
650 700 750 800  
900  
V
CC  
3.3V  
RF OUTPUT FREQUENCY (MHz)  
10μF  
100μF  
1nF  
5578 TA01b  
5578f  
1
LT5578  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
TOP VIEW  
(Note 1)  
Supply Voltage............................................................4V  
LO Input Power....................................................10dBm  
LO Input DC Current ..............................................30mA  
RF Output DC Current ............................................45mA  
IF Input Power (Differential).................................18dBm  
24 23 22 21 20 19  
GND  
GND  
1
2
3
4
5
6
18 GND  
GND  
GND  
17  
16  
+
IF  
+
IF , IF DC Currents ...............................................45mA  
.................................................................... 150°C  
25  
IF  
15 RF  
T
JMAX  
GND  
GND  
14 GND  
13 GND  
Operating Temperature Range.................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
7
8
9 10 11 12  
UH PACKAGE  
24-LEAD (5mm s 5mm) PLASTIC QFN  
T
= 150°C, θ = 34°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 25) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
24-Lead (5mm × 5mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LT5578IUH#PBF  
LT5578IUH#TRPBF  
5578  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
VCC = 3.3V, TA = 25°C (Note 3), unless otherwise noted.  
DC ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Requirements (V  
Supply Voltage  
)
CC  
3.1  
3.3  
3.5  
V
DC  
Supply Current  
V
CC  
V
CC  
= 3.3V, P = 1dBm  
152  
159  
170  
mA  
mA  
LO  
= 3.5V, P = 1dBm  
LO  
Input Common Mode Voltage (V  
)
CM  
Internally Regulated  
565  
mV  
(Notes 2, 3)  
AC ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
IF Input Frequency Range (Note 4)  
LO Input Frequency Range (Note 4)  
RF Output Frequency Range (Note 4)  
Requires Matching  
LF to 600  
Requires Matching Below 1.5GHz  
Requires Matching  
400 to 3000  
400 to 2700  
MHz  
MHz  
5578f  
2
LT5578  
V
CC = 3.3V, TA = 25°C, Test circuits are shown in Figure 1. (Notes 2, 3)  
AC ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
Z = 50Ω, External Match  
MIN  
TYP  
15  
MAX  
UNITS  
dB  
IF Input Return Loss  
LO Input Return Loss  
RF Output Return Loss  
LO Input Power  
O
Z = 50Ω, External Match  
>9  
dB  
O
Z = 50Ω, External Match  
>10  
dB  
O
–5 to 2  
dBm  
VCC = 3.3V, TA = 25°C, PIF = –5dBm (–5dBm/tone for 2-tone tests, Δf = 1MHz), PLO = –1dBm, unless otherwise noted.  
Low side LO for 900MHz. High side LO for 740MHz and 1950MHz. (Notes 2, 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
f
f
f
= 740MHz, f = 140MHz  
0.8  
1.4  
–0.7  
dB  
dB  
dB  
RF  
RF  
RF  
IF  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
IF  
Conversion Gain vs Temperature  
A
f
f
f
= 740MHz, f = 140MHz  
–0.020  
–0.018  
–0.021  
dB/°C  
dB/°C  
dB/°C  
RF  
RF  
RF  
IF  
(T = –40°C to 85°C)  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
IF  
Output 3rd Order Intercept  
f
RF  
f
RF  
f
RF  
= 740MHz, f = 140MHz  
26.5  
27.0  
24.3  
dBm  
dBm  
dBm  
IF  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
IF  
Output 2nd Order Intercept (LO 2IF)  
Single Sideband Noise Figure  
f
f
f
= 740MHz, f = 140MHz  
62  
52  
58  
8.6  
8.6  
10.5  
dBm  
dBm  
dBm  
dB  
dB  
dB  
RF  
RF  
RF  
IF  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
IF  
f
RF  
f
RF  
f
RF  
= 740MHz, f = 140MHz  
IF  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
IF  
Output Noise: P  
Output Noise: P  
Output Noise: P  
= –5dBm  
= 0dBm  
= 5dBm  
f
f
f
f
f
f
f
f
f
= 740MHz, f = 140MHz  
–161  
–160.5  
–158  
–158  
–157.5  
–154  
–154  
–153  
–149.5  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
OUT  
OUT  
OUT  
RF  
RF  
RF  
IF  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
IF  
= 740MHz, f = 140MHz  
RF  
RF  
RF  
IF  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
IF  
= 740MHz, f = 140MHz  
RF  
RF  
RF  
IF  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
IF  
Output 1dB Compression  
IF to LO Isolation  
f
f
f
= 740MHz, f = 140MHz  
11.6  
12  
dBm  
dBm  
dBm  
dB  
dB  
dB  
RF  
RF  
RF  
IF  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
10  
IF  
f
f
f
= 740MHz, f = 140MHz  
80  
75  
60  
RF  
RF  
RF  
IF  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
IF  
LO to IF Leakage  
f
f
f
= 740MHz, f = 140MHz  
–31  
–40  
–22  
dBm  
dBm  
dBm  
RF  
RF  
RF  
IF  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
IF  
LO to RF Leakage  
f
f
f
= 740MHz, f = 140MHz  
–43  
–43  
–46  
dBm  
dBm  
dBm  
RF  
RF  
RF  
IF  
= 900MHz, f = 140MHz  
IF  
= 1950MHz, f = 240MHz  
IF  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The LT5578 is guaranteed functional over the operating  
temperature range from –40°C to 85°C.  
Note 4: SSB noise figure measurements performed with a small-signal  
noise source and bandpass filter on LO signal generator. No other IF signal  
applied.  
Note 2: Each set of frequency conditions requires appropriate matching  
(see Figure 1).  
5578f  
3
LT5578  
(Test Circuit Shown in Figure 1)  
TYPICAL DC PERFORMANCE CHARACTERISTICS  
Supply Current vs Supply Voltage  
180  
170  
160  
150  
140  
85°C  
25°C  
–40°C  
130  
120  
3.0  
3.2  
3.3  
3.4  
3.5  
3.6  
3.1  
SUPPLY VOLTAGE (V)  
5578 G01  
TYPICAL AC PERFORMANCE CHARACTERISTICS 900MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 140MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, Δf = 1MHz), low side LO, PLO = –1dBm,  
output measured at 900MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
SSB Noise Figure Distribution at  
900MHz  
Gain Distribution at 900MHz  
OIP3 Distribution at 900MHz  
45  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
60  
50  
T
T
T
= 90°C  
T
A
T
A
T
A
= 90°C  
= 25°C  
= –45°C  
T
T
T
= 90°C  
A
A
A
A
A
A
= 25°C  
= 25°C  
= –45°C  
= –45°C  
40  
30  
20  
10  
0
5
0
0
–0.5  
1.5  
0.5 1.0  
GAIN (dB)  
0
2.0 2.5 3.0 3.5  
23  
25  
26  
27  
28  
29  
6
7
8
9
10  
11  
24  
OIP3 (dBm)  
NOISE FIGURE (dB)  
5578 G02  
5578 G03  
5578 G04  
5578f  
4
LT5578  
TYPICAL AC PERFORMANCE CHARACTERISTICS  
output measured at 740MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
740MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 140MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, Δf = 1MHz), high side LO, PLO = –1dBm,  
Conversion Gain and OIP3  
vs RF Output Frequency  
SSB Noise Figure  
LO-RF Leakage  
vs RF Output Frequency  
vs RF Output Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
16  
12  
8
30  
26  
22  
18  
14  
10  
18  
16  
OIP3  
14  
12  
10  
8
85°C  
25°C  
–40°C  
4
GAIN  
6
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
4
2
–4  
680 700  
740 760 780 800  
660 680 700  
720 740 760 780 800  
660 680 700 720 740 760 780 800  
RF FREQUENCY (MHz)  
660  
720  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5578 G07  
5578 G05  
5578 G06  
Conversion Gain and OIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
Conversion Gain and OIP3  
vs Supply Voltage  
30  
30  
26  
22  
18  
14  
16  
16  
12  
8
18  
16  
14  
12  
10  
8
OIP3  
OIP3  
GAIN  
26  
22  
18  
14  
10  
12  
8
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
4
4
GAIN  
6
0
0
85°C  
4
2
25°C  
–40°C  
10  
–4  
–4  
–17  
–13  
–9  
–5  
–1  
3
–9  
–13  
LO INPUT POWER (dBm)  
3.0  
3.2  
3.3  
3.4  
3.5  
–17  
–5  
–1  
3
3.1  
SUPPLY VOLTAGE (V)  
LO INPUT POWER (dBm)  
5578 G08  
5578 G10  
5578 G09  
IM3 Level  
vs RF Output Power (2-Tone)  
IM2 Level  
vs RF Output Power (1-Tone)  
SSB Noise Figure  
vs Supply Voltage  
18  
0
0
16  
14  
12  
10  
8
–20  
–20  
–40  
–40  
–60  
–80  
–60  
–80  
6
85°C  
85°C  
25°C  
–40°C  
85°C  
4
25°C  
25°C  
–40°C  
–40°C  
2
3.0  
–100  
–100  
3.1  
3.2  
SUPPLY VOLTAGE (V)  
3.4  
2
4
6
–12 –10 –8 –6 –4 –2  
2
4
6
3.3  
3.5  
–12 –10 –8 –6 –4 –2  
0
0
RF OUTPUT POWER (dBm/TONE)  
RF OUTPUT POWER (dBm)  
5578 G13  
5578 G11  
5578 G12  
5578f  
5
LT5578  
TYPICAL AC PERFORMANCE CHARACTERISTICS 900MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 140MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, Δf = 1MHz), low side LO, PLO = –1dBm,  
output measured at 900MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
Conversion Gain and OIP3  
vs RF Output Frequency  
SSB Noise Figure  
LO-RF Leakage  
vs RF Output Frequency  
vs RF Output Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
16  
12  
8
30  
26  
22  
18  
14  
10  
18  
16  
14  
12  
OIP3  
85°C  
25°C  
–40°C  
10  
8
4
GAIN  
6
4
2
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
–4  
830  
870 890 910 930 950 970  
RF FREQUENCY (MHz)  
850 870  
910  
970  
850  
830  
930 950 970  
830 850 870 890  
910  
RF FREQUENCY (MHz)  
930 950  
890  
RF FREQUENCY (MHz)  
5578 G14  
5578 G15  
5578 G16  
Conversion Gain and OIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
Conversion Gain and OIP3  
vs Supply Voltage  
16  
12  
8
30  
26  
22  
18  
14  
10  
16  
30  
26  
22  
18  
14  
10  
18  
16  
14  
12  
10  
8
OIP3  
OIP3  
GAIN  
12  
8
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
4
4
GAIN  
6
0
0
85°C  
4
25°C  
–40°C  
–4  
–4  
2
3.0  
3.2  
3.3  
3.4  
3.5  
–17  
–13  
–9  
–5  
–1  
3
3.1  
–9  
–13  
LO INPUT POWER (dBm)  
–17  
–5  
–1  
3
SUPPLY VOLTAGE (V)  
LO INPUT POWER (dBm)  
5578 G19  
5578 G17  
5578 G18  
IM3 Level  
vs RF Output Power (2-Tone)  
IM2 Level  
vs RF Output Power (1-Tone)  
SSB Noise Figure  
vs Supply Voltage  
0
–20  
0
18  
16  
14  
12  
–20  
–40  
–40  
10  
8
–60  
–60  
–80  
6
4
2
–80  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
–100  
–100  
3.1  
3.2  
SUPPLY VOLTAGE (V)  
3.4  
–12 –10 –8 –6 –4 –2  
0
2
4
6
–12 –10 –8 –6 –4 –2  
0
2
4
6
3.0  
3.3  
3.5  
RF OUTPUT POWER (dBm/TONE)  
RF OUTPUT POWER (dBm)  
5578 G22  
5578 G20  
5578 G21  
5578f  
6
LT5578  
TYPICAL PERFORMANCE CHARACTERISTICS 1950MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 240MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, Δf = 1MHz), high side LO, PLO = –1dBm,  
output measured at 1950MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
Conversion Gain and OIP3  
vs RF Output Frequency  
SSB Noise Figure  
LO-RF Leakage  
vs RF Output Frequency  
vs RF Output Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
16  
12  
8
28  
24  
20  
16  
12  
8
18  
16  
14  
12  
10  
8
OIP3  
85°C  
25°C  
–40°C  
4
GAIN  
6
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
4
–4  
2
1900 2000 2100  
1600 1700 1800  
RF FREQUENCY (MHz)  
1900  
1600 1700 1800  
1900 2000 2100 2200 2300  
1600 1700 1800  
2000 2100 2200  
2200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5578 G25  
5578 G23  
5578 G24  
Conversion Gain and OIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
Conversion Gain and OIP3  
vs Supply Voltage  
16  
12  
8
28  
24  
20  
16  
12  
16  
12  
8
28  
24  
20  
16  
12  
8
18  
16  
14  
12  
10  
8
OIP3  
OIP3  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
4
4
GAIN  
GAIN  
6
0
0
85°C  
4
25°C  
–40°C  
–4  
8
–4  
2
–13  
–9  
–5  
–1  
3
–17  
–13  
–9  
LO INPUT POWER (dBm)  
–5  
–1  
3
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
–17  
SUPPLY VOLTAGE (V)  
LO INPUT POWER (dBm)  
5578 G28  
5578 G26  
5578 G27  
IM3 Level  
vs RF Output Power (2-Tone)  
IM2 Level  
vs RF Output Power (1-Tone)  
SSB Noise Figure  
vs Supply Voltage  
0
18  
0
16  
14  
12  
10  
8
–20  
–40  
–20  
–40  
–60  
–80  
–60  
–80  
6
85°C  
85°C  
85°C  
25°C  
–40°C  
4
25°C  
25°C  
–40°C  
–40°C  
–100  
–100  
2
3.2  
SUPPLY VOLTAGE (V)  
3.0  
3.1  
3.3  
3.4  
3.5  
–6  
RF OUTPUT POWER (dBm/TONE)  
–14 –12 –10 –8  
–4 –2  
0
2
4
–6  
RF OUTPUT POWER (dBm)  
–14 –12 –10 –8  
–4 –2  
0
2
4
5578 G31  
5578 G29  
5578 G30  
5578f  
7
LT5578  
PIN FUNCTIONS  
GND (Pins 1, 2, 5-7, 12-14, 16-21, 23, 24): Ground  
Connections. These pins are internally connected to the  
exposed pad and should be soldered to a low impedance  
RF ground on the printed circuit board.  
RF (Pin 15): Single-Ended RF Output. This pin is con-  
nected to an internal transformer winding. The opposite  
end of the winding is grounded internally. An impedance  
transformation may be required to match the output and a  
DC decoupling capacitor is required if the following stage  
has a DC bias voltage present.  
+
IF , IF (Pins 3, 4): Differential IF Input. The common  
mode voltage on these pins is set internally to 565mV. The  
DC current from each pin is determined by the value of  
an external resistor to ground. The maximum DC current  
through each pin is 45mA.  
LO(Pin22):Single-EndedLocalOscillatorInput.Aninternal  
series capacitor acts as a DC block to this pin.  
Exposed Pad (Pin 25): PGND. Electrical and thermal  
ground connection for the entire IC. This pad must be  
soldered to a low impedance RF ground on the printed  
circuit board. This ground must also provide a path for  
thermal dissipation.  
V
(Pins 8-11): Power Supply Pins for the IC. These  
CC  
pins are connected together internally. Typical current  
consumption is 152mA. These pins should be connected  
together on the circuit board with external bypass capaci-  
tors of 1000pF, 100pF and 10pF located as close to the  
pins as possible.  
BLOCK DIAGRAM  
25  
15  
RF  
EXPOSED  
PAD  
V
CC  
V
CC  
V
CC  
V
CC  
11  
10  
9
LO  
22  
DOUBLE  
BALANCED  
MIXER  
LO BUFFER  
V
CC2  
BIAS  
8
V
CC2  
V
CM  
CTRL  
+
IF  
IF  
3
4
5578 BD  
GND PINS ARE NOT SHOWN  
5578f  
8
LT5578  
TEST CIRCUIT  
LO INPUT  
C13  
Z1  
C12  
R1  
L1  
24 23 22 21 20 19  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
T1  
4:1  
GND  
GND  
GND  
C1  
C2  
TL1  
TL2  
GND  
GND  
RF  
RF  
OUTPUT  
+
IF  
INPUT  
IF  
L3  
TL3  
C14  
C9  
C3  
GND  
IF  
C8  
GND  
GND  
GND  
GND  
L2  
R2  
7
8
9
10 11 12  
V
CC  
C4  
C5  
C6  
C7  
5578 F01  
f
= 740MHz  
= 140MHz  
= 880MHz  
f
= 900MHz  
= 140MHz  
= 760MHz  
220pF  
f
f
= 1950MHz  
= 240MHz  
= 2190MHz  
RF  
IF  
LO  
RF  
IF  
RF  
IF  
LO  
f
f
f
REF DES  
C1, C2  
C3  
f
f
SIZE  
COMMENTS  
AVX  
LO  
220pF  
82pF  
4.7pF  
100pF  
10pF  
1nF  
0402  
0402  
0402  
0402  
0402  
0603  
0402  
0402  
0402  
0402  
0402  
0603  
0402  
0603  
AVX  
C4  
100pF  
10pF  
1nF  
1μF  
100pF  
10pF  
1nF  
AVX  
C5  
AVX  
C6  
AVX  
C7  
1μF  
1μF  
Taiyo Yuden LMK107BJ105MA  
C8  
3.3pF  
39pF  
1.8pF  
39pF  
AVX ACCU-P  
AVX  
C9  
33pF  
C12  
C13  
C14  
L1, L2  
L3  
2.7pF  
1.2pF  
100nH  
1.8nH  
100nH  
18nH  
100nH  
12nH  
Coilcraft 0603CS  
Toko LL1005-FHL  
R1, R2  
T1  
13.7, 0.1%  
4:1  
13.7, 0.1%  
4:1  
13.7, 0.1%  
4:1  
IRC PFC-W0603LF-02-13R7-B  
Mini-Circuits TC4-1W+  
AT224-1  
TL1, TL2*  
TL3  
1.9mm  
1.3mm  
0Ω  
Z = 70Ω  
O
2.3mm  
2.6pF  
2.3mm  
6.8pF  
Z = 70Ω  
O
Z1  
0402  
AVX/0Ω Jumper  
*Center-to-center spacing between C9 and C3. Center of C9 is 3.0mm from the edge of the package.  
Figure 1. Test Circuit Schematic and Component Values  
5578f  
9
LT5578  
APPLICATIONS INFORMATION  
The LT5578 uses a high performance LO buffer amplifier  
drivingadouble-balancedmixercoretoachievefrequency  
conversion with high linearity. Internal baluns are used to  
provide single-ended LO input and RF output ports. The  
IF input is differential. The LT5578 is intended for opera-  
tion in the 0.4GHz to 2.7GHz frequency range, though  
operation outside this range is possible with reduced  
performance.  
L1 and L2 should connect to the signal lines as close to  
the package as possible. This location will be at the lowest  
impedancepoint, whichwillminimizethesensitivityofthe  
performance to the loading of the shunt L-R branches.  
Capacitors C1 and C2 are used to cancel out the parasitic  
series inductance of the IF transformer. They also provide  
DCisolationbetweentheIFportstopreventunwantedinter-  
actions that can affect the LO to RF leakage performance.  
IF Input Interface  
The differential input resistance to the mixer is approxi-  
mately 10Ω, as indicated in Table 1. The package and  
external inductances (TL1 and TL2) are used along with  
C9 to step the impedance up to about 12.5Ω. At lower  
frequencies additional series inductance may be required  
between the IF ports and C9. The position of C9 may vary  
withtheIFfrequencyduetothedifferentseriesinductance  
requirements. The 4:1 impedance ratio of transformer T1  
completes the transformation to 50Ω. Table 1 lists the  
differentialIFinputimpedancesandreflectioncoefficients  
for several frequencies.  
TheIFinputsaretiedtotheemittersofthedouble-balanced  
mixer transistors, as shown in Figure 2. These pins are  
internally biased to a common mode voltage of 565mV.  
TheoptimumDCcurrentinthemixercoreisapproximately  
40mA per side, and is set by the external resistors, R1 and  
R2. The inductors and resistors must be able to handle  
the anticipated current and power dissipation. For best  
LO leakage performance the board layout must be sym-  
metrical and the input resistors should be well matched  
(0.1% tolerance is recommended).  
Table 1. IF Input Differential Impedance  
REFLECTION COEFFICIENT  
The purpose of the inductors (L1 and L2) is to reduce the  
loading effects of R1 and R2. The impedances of L1 and  
L2shouldbeatleastseveraltimesgreaterthantheIFinput  
impedance at the desired IF frequency. The self-resonant  
frequency of the inductors should also be at least several  
times the IF frequency. Note that the DC resistances of L1  
and L2 will affect the DC current and should be accounted  
for in the selection of R1 and R2.  
FREQUENCY  
(MHz)  
IF INPUT  
IMPEDANCE  
MAG  
0.666  
0.661  
0.705  
0.705  
0.705  
0.704  
0.705  
0.683  
0.685  
ANGLE  
177.4  
176.5  
175.7  
175.2  
174.0  
170.9  
169.3  
162.0  
155.9  
70  
140  
170  
190  
240  
380  
450  
750  
1000  
10.0 + j1.1  
10.2 + j1.5  
8.7 + j1.8  
8.7 + j2.0  
8.7 + j2.5  
8.7 + j3.9  
8.7 + j4.5  
9.6 + j7.6  
9.8 + j10.3  
R1  
LT5578  
IF  
L1  
40mA  
C1  
C2  
INPUT T1  
4:1  
TL1  
+
IF  
3
4
The purpose of capacitor C3 is to improve the LO-RF  
leakage in some applications. This relatively small-valued  
capacitor has little effect on the impedance match in most  
cases. This capacitor should typically be located close to  
the IC, however, there may be cases where re-positioning  
the capacitor will improve performance.  
565mV  
2k  
2k  
V
CC  
C9  
TL2  
C3  
IF  
565mV  
40mA  
L2  
The measured return loss of the IF input is shown in  
Figure 3 for application frequencies of 70MHz, 140MHz  
and 240MHz. Component values are listed in Table 2. All  
of the applications use L1 = L2 = 100nH, R1 = R2 =13.7Ω  
5578 F02  
R2  
Figure 2. IF Input with External Matching  
5578f  
10  
LT5578  
APPLICATIONS INFORMATION  
and T1 = TC4-1W+. The 70MHz match was not used for  
140MHz characterization because it requires the addition  
of two inductors.  
EXTERNAL  
MATCHING  
LO  
INPUT  
Z1  
LO  
22  
C13  
C12  
Table 2. IF Input Component Values  
V
BIAS  
FREQUENCY C1, C2  
C9  
C3  
TL1, TL2 MATCH BW  
(MHz)  
(pF)  
560  
220  
82  
(pF)  
(pF)  
(nH)  
3.3  
(at 12dB RL)  
5578 F04  
70  
82  
39  
33  
50-215  
Figure 4. LO Input Circuit  
140  
240  
98-187  
4.7  
175-295  
0
–5  
SEE FIGURES 1 AND 8 FOR  
COMPONENT VALUES  
0
–5  
–10  
–15  
–10  
–15  
–20  
–25  
–30  
d
–20  
–25  
b
c
b
a
a
c
0
1000 1500 2000 2500 3000  
FREQUENCY (MHz)  
500  
50  
150  
200  
250  
300  
350  
100  
5578 F05  
FREQUENCY (MHz)  
Figure 5. LO Input Return Loss with 520MHz (a),  
760MHz (b), 880MHz (c) and >1.5GHz (d) Matching  
5578 F03  
Figure 3. IF Input Return Loss with 70MHz (a),  
140MHz (b) and 240MHz (c) Matching  
Table 3 lists the input impedance and reflection coefficient  
vs frequency for the LO input for use in such cases.  
LO Input Interface  
Thesimplifiedschematicforthesingle-endedLOinputport  
is shown in Figure 4. An internal transformer provides a  
broadband impedance match and performs single-ended  
todifferentialconversion.Theprimarywindingisinternally  
grounded, thus an external DC block may be necessary  
in some applications. The transformer secondary feeds  
the differential limiting amplifier stages that drive the  
mixer core.  
Table 3. Single-Ended LO Input Impedance  
(at Pin 22, No External Match)  
REFLECTION COEFFICIENT  
FREQUENCY  
(MHz)  
LO INPUT  
IMPEDANCE  
MAG  
0.747  
0.657  
0.558  
0.456  
0.353  
0.247  
0.158  
0.097  
0.111  
0.159  
ANGLE  
142.8  
105.5  
67.6  
300  
600  
41.7||j20.3  
95.0||j42.7  
126||j84.2  
127||j239  
900  
1200  
1500  
1800  
2100  
2400  
2700  
3000  
27.6  
104||–j686  
74.0||–j188  
52.5||–j162  
42.3||–j459  
44.4||j249  
52.4||j161  
–10.8  
–48.3  
–90.0  
–152.0  
127.5  
90.6  
The measured return loss of the LO input port is shown in  
Figure 5 for different application frequencies. The imped-  
ance match is acceptable from about 1.5GHz to beyond  
3GHz, with a minimum return loss across this range of  
about 9dB. Below 1.5GHz, external components are used  
to tune the impedance match to the desired frequency.  
5578f  
11  
LT5578  
APPLICATIONS INFORMATION  
RF Output Interface  
the board. As many vias as possible should connect the  
topside ground to other ground layers to aid in thermal  
dissipation and reduce inductance.  
The RF output interface is shown in Figure 6. An internal  
RF transformer reduces the mixer core output impedance  
to simplify matching of the RF output pin. A center tap in  
the transformer provides the DC connection to the mixer  
core and the transformer provides DC isolation to the RF  
output. The RF pin is internally grounded through the  
secondary winding of the transformer, thus a DC voltage  
should not be applied to this pin.  
Table 4. Single-Ended RF Output Impedance  
(at Pin 15, No External Matching)  
REFLECTION COEFFICIENT  
FREQUENCY  
(MHz)  
RF OUTPUT  
IMPEDANCE  
MAG  
0.741  
0.614  
0.507  
0.330  
0.225  
0.273  
0.384  
ANGLE  
117.6  
32.6  
400  
800  
10.1 + j29.3  
90.8 + j96.6  
69.7 – j66.6  
32.8 – j22.5  
32.3 – j5.4  
28.6 + j0.3  
22.5 + j4.4  
1200  
1600  
2000  
2400  
2800  
–44.4  
–112.3  
–159.3  
179.0  
167.3  
While the LT5578 performs best at frequencies above  
700MHz, the part can be used down to 400MHz. The low  
inductance of the internal transformer limits the perfor-  
manceatlowerfrequencies.TheimpedancedatafortheRF  
output, listed in Table 4, can be used to develop matching  
networks for different frequencies or load impedances.  
Figure 7 illustrates the output return loss performance  
for several applications. The component values and ap-  
proximate matching bandwidths are listed in Table 5.  
Table 5. RF Output Component Values  
FREQUENCY  
MATCH BW  
(at 12dB RL)  
(MHz)  
C8 (pF) L3 (nH) C14 (pF)  
450  
9.0  
3.3  
1.8  
18  
18  
430-505  
740  
680-768  
DC and RF Grounding  
900  
12  
835-970  
The LT5578 relies on the back side ground for both RF  
and thermal performance. The Exposed Pad must be  
soldered to the low impedance topside ground plane of  
1950  
2600  
1.8  
0Ω  
1.2  
0.8  
1765-2305  
2150-2990  
0
–5  
LT5578  
RF  
50Ω  
L3  
15  
–10  
–15  
C8  
C14  
5578 F06  
8
9
10  
11  
–20  
–25  
d
b
a
V
CC  
c
e
0
1000 1500 2000 2500 3000  
FREQUENCY (MHz)  
500  
Figure 6. RF Output Circuit  
5578 F07  
Figure 7. RF Output Return Loss with 450MHz (a), 740MHz (b),  
900MHz (c), 1950MHz (d) and 2600MHz (e) Matching  
5578f  
12  
LT5578  
TYPICAL APPLICATIONS  
The following examples illustrate the implementation and Figure 9 shows measured conversion gain, noise figure  
performance of the LT5578 in some selected applications. andOIP3asafunctionofRFoutputfrequency.At450MHz,  
These circuits were evaluated using the board layout the gain is –2.1dB with a NF of 9.3dB and an OIP3 of  
shown in Figure 12.  
23.8dBm.  
12  
10  
8
32  
30  
28  
26  
24  
22  
20  
18  
16  
450MHz Application  
SSB NF  
In this case, the LT5578 was evaluated for an application  
with an IF input at 70MHz, an RF output of 450MHz and  
a high side LO. The LO port is tuned for high side LO in-  
jection at 520MHz. The matching networks for the three  
ports are shown in Figure 8.  
6
4
OIP3  
GAIN  
T
IF  
P
= 25°C  
2
A
f
= 70MHz  
= –5dBm/TONE  
0
IF  
At the IF input, the 560pF capacitors are used mainly as  
DC blocks, but also help tune out the parasitic inductance  
of the transformer. The 82pF differential capacitor and  
3.3nH chip inductors provide an impedance transforma-  
tion between the IF input pins and the transformer. The  
relatively low input frequency requires the use of chip  
inductors instead of the short transmission lines that are  
shown in Figure 2. The measured IF port return loss is  
included in Figure 3.  
–2  
–4  
460  
RF OUTPUT FREQUENCY (MHz)  
420  
440  
480  
500  
5578 F09  
Figure 9. Gain, Noise Figure and OIP3 vs RF Frequency  
in the 450MHz Application  
2600MHz Application  
TheRFportimpedancematchisrealizedwithashunt12pF  
capacitor and a series 18nH inductor. The return loss with  
this configuration is better than 12dB from about 430MHz  
to 505MHz and is plotted in Figure 7.  
For this application, the impedance match of the RF port is  
optimized at 2600MHz and has a good return loss over the  
rangeof2200MHzto2900MHz.Thecomponentvaluesare  
listed in Table 5 and typical output return loss is shown in  
Figure 7. The IF input is matched at 240MHz as described  
in Table 2. The LO port requires no external matching for  
this band as its return loss is good for frequencies above  
1.5GHz.  
To tune the LO port, a series 6.8pF and shunt 4.7pF ca-  
pacitor are used as shown. This combination provides a  
10dB, or better, return loss from 435MHz to 580MHz as  
shown in Figure 5. The series capacitor also provides DC  
decoupling for the internal transformer at the LO input.  
LO  
520MHz  
6.8pF  
4.7pF  
13.7Ω  
100nH  
TC4-1W+  
4:1  
560pF  
560pF  
3.3nH  
3.3nH  
RF  
450MHz  
18nH  
IF  
82pF  
70MHz  
12pF  
5578 F08  
100nH  
13.7Ω  
Figure 8. Schematic for 450MHz RF Application with 70MHz IF and 520MHz LO  
5578f  
13  
LT5578  
TYPICAL APPLICATIONS  
The measured room temperature performance is plotted  
in Figure 10 for both low side and high side LO drive. At  
2600MHz, the gain is approximately –2.8dB with a noise  
figure of 11.2dB and OIP3 of about 22.2dBm. Low side  
LO yields slightly better overall performance than high  
side LO.  
width to be extended to cover the range from 700MHz to  
950MHz. Figure 11 compares the broadband return loss  
to the typical 740MHz and 900MHz return loss perfor-  
mance.  
The swept gain, noise figure and OIP3 results are plotted  
on page 1 for an IF of 140MHz and a low side LO. The  
conversiongainisgreaterthan0.7dBacrossthebandwith  
OIP3 better than 25.5dBm. The single side-band noise  
figure is less than 8.8dB across the band.  
700 to 950 MHz Output Matching  
The application shown on page 1 has a wider bandwidth  
than the 740MHz and 900MHz configurations. Using two  
additional components at the RF output allows the band-  
0
12  
10  
8
32  
30  
28  
26  
24  
22  
20  
18  
16  
–5  
SSB NF  
OIP3  
–10  
c
LS LO  
HS LO  
6
–15  
4
2
–20  
a
b
0
GAIN  
–25  
600  
–2  
–4  
700  
800  
900  
1000  
1100  
FREQUENCY (MHz)  
5578 F11  
2400  
2300  
RF OUTPUT FREQUENCY (MHz)  
2200  
2500  
2600  
2700  
Figure 11. Return Loss Comparison: 740MHz (a),  
900MHz (b) and 700MHz to 950MHz (c)  
5578 F09  
Figure 10. Gain, Noise Figure and OIP3 vs RF Frequency  
for the 2600MHz Application  
Figure 12. LT5578 Evaluation Board (DC1545A)  
5578f  
14  
LT5578  
PACKAGE DESCRIPTION  
UH Package  
24-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1747 Rev A)  
0.75 p0.05  
5.40 p0.05  
3.90 p0.05  
3.20 p 0.05  
3.25 REF  
3.20 p 0.05  
PACKAGE OUTLINE  
0.30 p 0.05  
0.65 BSC  
PIN 1 NOTCH  
R = 0.30 TYP  
OR 0.35 s 45o  
CHAMFER  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
R = 0.150  
R = 0.05  
TYP  
0.75 p 0.05  
5.00 p 0.10  
TYP  
23 24  
0.00 – 0.05  
0.55 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
3.20 p 0.10  
5.00 p 0.10  
3.25 REF  
3.20 p 0.10  
(UH24) QFN 0708 REV A  
0.200 REF  
0.30 p 0.05  
0.65 BSC  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5578f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT5578  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT5514  
DESCRIPTION  
COMMENTS  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
40MHz to 900MHz Quadrature Demodulator  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
21dBm IIP3, Integrated LO Quadrature Generator  
LT5517  
LT5518  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended RF and LO  
Ports, 4-Channel W-CDMA ACPR = 64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5526  
LT5527  
LT5528  
LT5557  
LT5558  
0.7GHz to 1.4GHz High Linearity Upconverting  
Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
1.3GHz to 2.3GHz High Linearity Upconverting  
Mixer  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Port Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
400MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
High Linearity, Low Power Downconverting  
Mixer  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
IIP3 = 23.5dBm and NF = 12.5dBm at 1900MHz, 4.5V to 5.25V Supply, I = 78mA,  
CC  
Conversion Gain = 2dB  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 4-Channel W-CDMA ACPR = 66dBc at 2.14GHz  
400MHz to 3.8GHz 3.3V Downconverting Mixer IIP3 = 23.5dBm at 3.6GHz, NF = 15.4dB, Conversion Gain = 1.7dB, 3.3V Supply at  
82mA, Single-Ended RF and LO Inputs  
600MHz to 1100MHz High Linearity Direct  
Quadrature Modulator  
22.4dBm OIP3 at 900MHz, –158dBm/Hz Noise Floor, 3kΩ, 2.1V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –70.4dBc at 900MHz  
LT5560  
LT5568  
Ultra-Low Power Active Mixer  
700MHz to 1050MHz High Linearity Direct  
Quadrature Modulator  
10mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter.  
22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –71.4dBc at 850MHz  
LT5572  
LT5575  
LT5579  
1.5GHz to 2.5GHz High Linearity Direct  
Quadrature Modulator  
700MHz to 2.7GHz Direct Conversion I/Q  
Demodulator  
1.5GHz to 3.8GHz High Linearity Upconverting 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports  
Mixer  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, High-Ohmic 0.5V Baseband  
DC  
Interface, 4-Ch W-CDMA ACPR = –67.7dBc at 2.14GHz  
Integrated Baluns, 28dBm IIP3, 13dBm P1dB, 0.03dB I/Q Amplitude Match,  
0.4° Phase Match  
RF Power Detectors  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
RF Power Detectors with >40dB Dynamic Range 300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
LTC5530  
LTC5531  
LTC5532  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
LT5534  
50MHz to 3GHz Log RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time, Log Linear  
Response  
LTC5536  
Precision 600MHz to 7GHz RF Power Detector 25ns Response Time, Comparator Reference Input, Latch Enable Input,  
with Fast Comparator Output  
–26dBm to +12dBm Input Range  
LT5537  
LT5570  
Wide Dynamic Range Log RF/IF Detector  
2.7GHz Mean-Squared Detector  
Low Frequency to 1GHz, 83dB Log Linear Dynamic Range  
0.5dB Accuracy Over Temperature and >50dB Dynamic Range, Fast 500ns  
Rise Time  
LT5581  
6GHz Low Power RMS Detector  
40dB Dynamic Range, 1dB Accuracy Over Temperature, 1.5mA Supply Current  
5578f  
LT 0709 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5579

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
Linear

LT5579IUH#PBF

LT5579 - 1.5GHz to 3.8GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C
Linear

LT5579IUH#TRPBF

LT5579 - 1.5GHz to 3.8GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C
Linear

LT5579IUH-PBF

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
Linear

LT5579IUH-TRPBF

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
Linear

LT5581

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT5581IDDB#PBF

LT5581 - 6GHz RMS Power Detector with 40dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT5581IDDB-PBF

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT5581IDDB-TRPBF

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT560Z

GREEN OVAL LAMP LED
SEOUL

LT561

INFRARED LAMP LED
SEOUL

LT569S-BC

Single Color LED, Blue, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON