LTC1069-6CS8#TR [Linear]

LTC1069-6 - Single Supply, Very Low Power, Elliptic Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1069-6CS8#TR
型号: LTC1069-6CS8#TR
厂家: Linear    Linear
描述:

LTC1069-6 - Single Supply, Very Low Power, Elliptic Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

LTE 光电二极管 有源滤波器
文件: 总10页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1069-1  
Low Power, 8th Order  
Progressive Elliptic,  
Lowpass Filter  
FEATURES  
DESCRIPTION  
The LTC®1069-1 is a monolithic 8th order lowpass filter  
featuringclock-tunablecutofffrequencyand2.5mApower  
supplycurrentwithasingle5Vsupply.Anadditionalfeature  
of the LTC1069-1 is operation with a single 3.3V supply.  
n
8th Order Elliptic Filter in SO-8 Package  
n
Operates from Single 3.3V to 5V Power Supplies  
n
–20dB at 1.2f  
CUTOFF  
–52dB at 1.4f  
n
CUTOFF  
n
–70dB at 2f  
CUTOFF  
The cutoff frequency (f  
) of the LTC1069-1 is equal  
CUTOFF  
n
n
n
n
n
Wide Dynamic Range  
110μV Wideband Noise  
3.8mA Supply Current with 5V Supplies  
2.5mA Supply Current with Single 5V Supply  
2mA Supply Current with Single 3.3V Supply  
to the clock frequency divided by 100. The gain at f  
CUTOFF  
RMS  
is –0.7dB and the typical passband ripple is 0.15dB up  
to 0.9f . The stopband attenuation of the LTC1069-1  
CUTOFF  
features a progressive elliptic response reaching 20dB  
attenuation at 1.2f , 52dB attenuation at 1.4f  
CUTOFF  
CUTOFF  
and 70dB attenuation at 2f  
.
CUTOFF  
APPLICATIONS  
With 5V supplies, the LTC1069-1 cutoff frequency can  
be clock-tuned up to 12kHz; with a single 5V supply, the  
maximum cutoff frequency is 8kHz.  
n
Telecommunication Filters  
Antialiasing Filters  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
The low power feature of the LTC1069-1 does not penal-  
ize the device’s dynamic range. With 5V supplies and an  
input range of 0.3V  
to 2.5V  
, the signal-to-(noise +  
RMS  
RMS  
THD)ratiois70dB.ThewidebandnoiseoftheLTC1069-1  
is 110μV  
. Other filter responses with lower power or  
RMS  
higher speed can be obtained. Please contact LTC market-  
ing for details.  
The LTC1069-1 is available in 8-pin PDIP and 8-pin SO  
packages.  
TYPICAL APPLICATION  
Frequency Response  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
Single 3.3V Supply 3kHz Elliptic Lowpass Filter  
+
AGND  
V
V
OUT  
OUT  
0.47μF  
3.3V  
0.1μF  
+
V
V
LTC1069-1  
NC  
NC  
f
CLK  
V
IN  
V
CLK  
IN  
300kHz  
1069-1 TA01  
–80  
1.5  
3
6
7.5  
4.5  
FREQUENCY (kHz)  
10691 TA02  
10691fa  
1
LTC1069-1  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
+
Total Supply Voltage (V to V ).................................12V  
Maximum Voltage at  
Operating Temperature Range  
LTC1069C-1............................................. 0°C to 70°C  
LTC1069I-1 ..........................................–40°C to 85°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
Any Pin .............................(V – 0.3V) ≤ V ≤ (V+ + 0.3V)  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
AGND  
1
2
3
4
V
V
AGND  
1
2
3
4
8
7
6
5
V
V
8
7
6
5
OUT  
OUT  
+
+
V
V
NC  
NC  
NC  
NC  
V
CLK  
V
CLK  
IN  
IN  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
= 110°C, θ = 100°C/W  
S8 PACKAGE  
8-LEAD PLASTIC SO  
= 125°C, θ = 130°C/W  
T
T
JMAX  
JA  
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC1069-1CN8#PBF  
LTC1069-1IN8#PBF  
LTC1069-1CS8#PBF  
LTC1069-1IS8#PBF  
TAPE AND REEL  
PART MARKING*  
LTC1069-1  
LTC1069-1  
10691  
PACKAGE DESCRIPTION  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead Plastic SO  
8-Lead Plastic SO  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
LTC1069-1CS8#TRPBF  
LTC1069-1IS8#TRPBF  
10691I  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. fCUTOFF is the filters cutoff frequency and is equal to fCLK/100. The  
fCLK signal level is TTL or CMOS (clock rise or fall time ≤ 1μs), VS = 3.3V to 5V, RL = 10k, unless otherwise noted. All AC gains are  
measured relative to the passband gain.  
PARAMETER  
CONDITIONS  
V = 5V, f = 500kHz  
CLK  
MIN  
TYP  
MAX  
UNITS  
Passband Gain (f ≤ 0.25f  
)
–0.30  
–0.35  
0.2  
0.70  
0.75  
dB  
dB  
IN  
CUTOFF  
S
l
l
f
= 1.25kHz, V = 1V  
IN RMS  
TEST  
V = 3.3V, f  
TEST  
= 200kHz  
CLK  
–0.30  
–0.35  
0.2  
0.70  
0.75  
dB  
dB  
S
f
= 0.5kHz, V = 0.5V  
IN RMS  
10691fa  
2
LTC1069-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. fCUTOFF is the filters cutoff frequency and is equal to fCLK/100. The  
fCLK signal level is TTL or CMOS (clock rise or fall time ≤ 1μs), VS = 3.3V to 5V, RL = 10k, unless otherwise noted. All AC gains are  
measured relative to the passband gain.  
PARAMETER  
CONDITIONS  
V = 5V, f = 500kHz  
CLK  
MIN  
TYP  
MAX  
UNITS  
Gain at 0.50f  
–0.10  
–0.11  
–0.03  
0.10  
0.11  
dB  
dB  
CUTOFF  
CUTOFF  
CUTOFF  
CUTOFF  
S
l
l
l
l
l
l
l
l
l
l
l
l
l
l
f
= 2.5kHz, V = 1V  
IN RMS  
TEST  
V = 3.3V, f  
TEST  
= 200kHz  
CLK  
–0.10  
–0.11  
–0.03  
0.04  
0.10  
0.11  
dB  
dB  
S
f
= 1kHz, V = 0.5V  
IN RMS  
Gain at 0.75f  
Gain at 0.90f  
Gain at 0.95f  
V = 5V, f  
TEST  
= 500kHz  
CLK  
–0.20  
–0.25  
0.20  
0.25  
dB  
dB  
S
f
= 3.75kHz, V = 1V  
IN RMS  
V = 3.3V, f  
TEST  
= 200kHz  
CLK  
–0.20  
–0.25  
0.04  
0.20  
0.25  
dB  
dB  
S
f
= 1.5kHz, V = 0.5V  
IN RMS  
V = 5V, f  
TEST  
= 500kHz  
CLK  
–0.20  
–0.25  
–0.01  
–0.01  
–0.05  
–0.04  
–0.70  
–0.61  
–27  
0.20  
0.25  
dB  
dB  
S
f
= 4.5kHz, V = 1V  
IN RMS  
V = 3.3V, f  
TEST  
= 200kHz  
CLK  
–0.20  
–0.25  
0.20  
0.25  
dB  
dB  
S
f
= 1.8kHz, V = 0.5V  
IN  
RMS  
RMS  
V = 5V, f  
TEST  
= 500kHz  
CLK  
–0.30  
–0.35  
0.30  
0.35  
dB  
dB  
S
f
= 4.75kHz, V = 1V  
IN  
V = 3.3V, f  
TEST  
= 200kHz  
CLK  
–0.30  
–0.35  
0.30  
0.35  
dB  
dB  
S
f
= 1.9kHz, V = 0.5V  
IN RMS  
Gain at f  
V = 5V, f = 500kHz  
CLK  
–1.25  
–1.35  
–0.25  
–0.15  
dB  
dB  
CUTOFF  
S
TEST  
f
= 5.0kHz, V = 1V  
IN RMS  
V = 3.3V, f  
TEST  
= 200kHz  
CLK  
–1.25  
–1.35  
–0.25  
–0.15  
dB  
dB  
S
f
= 2.0kHz, V = 0.5V  
IN  
RMS  
RMS  
Gain at 1.25f  
V = 5V, f = 500kHz  
CLK  
–30  
–31  
–25  
–24  
dB  
dB  
CUTOFF  
CUTOFF  
S
TEST  
f
= 6.25kHz, V = 1V  
IN  
V = 3.3V, f  
TEST  
= 200kHz  
CLK  
–30  
–31  
–27  
–25  
–24  
dB  
dB  
S
f
= 2.5kHz, V = 0.5V  
IN RMS  
Gain at 1.50f  
V = 5V, f  
TEST  
= 500kHz  
CLK  
–58  
–59  
–53  
–50  
–49  
dB  
dB  
S
f
= 7.5kHz, V = 1V  
IN RMS  
V = 3.3V, f  
TEST  
= 200kHz  
CLK  
–58  
–59  
–53  
–50  
–49  
dB  
dB  
S
f
= 3kHz, V = 0.5V  
IN RMS  
Output DC Offset (Input at AGND)  
Output Voltage Swing  
V = 5V, f  
= 500kHz  
CLK  
30  
20  
15  
150  
mV  
mV  
mV  
S
V = 4.75V, f  
= 400kHz  
S
CLK  
V = 3.3V, f  
= 200kHz  
100  
S
CLK  
l
l
l
V = 5V  
–3.25  
–1.50  
–0.70  
4.0  
1.7  
0.9  
3.25  
1.25  
0.60  
V
V
V
S
V = 4.75V  
S
V = 3.3V  
S
l
l
l
Power Supply Current  
V = 5V, f  
= 500kHz  
3.8  
2.5  
2.0  
5.5  
4.5  
3.5  
mA  
mA  
mA  
S
CLK  
V = 4.75V, f  
= 400kHz  
CLK  
S
V = 3.3V, f  
= 200kHz  
CLK  
S
Maximum Clock Frequency  
V = 5V  
1.2  
0.8  
0.5  
MHz  
MHz  
MHz  
S
V = 4.75V  
S
V = 3.3V  
S
Input Frequency Range  
Input Resistance  
0
f
/2  
MHz  
kΩ  
V
CLK  
30  
43  
70  
Operating Power Supply Voltage  
1.57  
5.5  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
10691fa  
3
LTC1069-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
Transition Band Gain vs  
Passband Gain vs Frequency  
Frequency  
Stopband Gain vs Frequency  
1.0  
0.8  
10  
0
–70  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
V
f
C
V
=
CLK  
5V  
V
f
C
V
=
CLK  
5V  
S
S
V
=
5V  
S
= 500kHz  
= 500kHz  
f
f
= 500kHz  
CLK  
C
f
= 5kHz  
f
= 5kHz  
= 5kHz  
= 2V  
0.6  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
= 2V  
= 2V  
IN  
RMS  
IN  
RMS  
V
IN  
RMS  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
5
6
7
8
9
10  
11  
11 12 13 14 15 16 17 18 19 20 21  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
10691 G02  
10691 G03  
10691 G01  
Passband Gain vs Clock  
Passband Gain vs Clock  
Frequency, VS = Single 5V  
Passband Gain vs Clock  
Frequency, VS = 5V  
Frequency, VS = Single 3.3V  
2.0  
1.5  
2.0  
1.5  
2.0  
1.5  
V
V
= SINGLE 3.3V  
V
V
= SINGLE 5V  
V
V
=
IN  
5V  
RMS  
S
S
S
= 0.5V  
= 1.2V  
= 2V  
IN  
RMS  
IN  
RMS  
1.0  
1.0  
1.0  
f
= 1.5MHz  
= 15kHz  
f
= 1MHz  
f
= 750kHz  
CLK  
C
f
= 750kHz  
= 7.5kHz  
CLK  
C
CLK  
C
CLK  
C
f
f
= 10kHz  
f
= 7.5kHz  
f
0.5  
0.5  
0.5  
0
0
0
f
= 1MHz  
f
C
= 500kHz  
CLK  
C
CLK  
f
= 10kHz  
f
= 5kHz  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
f
= 500kHz  
C
CLK  
f
= 500kHz  
C
CLK  
f
= 5kHz  
f
= 5kHz  
1.5  
2.5 3.5 4.5 5.5  
FREQUENCY (kHz)  
7.5  
1.5 2.5 3.5 4.5 5.5  
7.5 8.5 9.5 10.5  
3
5
7
9
11  
15  
0.5  
6.5  
0.5  
6.5  
1
13  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
10691 G04  
10691 G05  
10691 G06  
Phase and Group Delay vs  
Frequency  
Gain vs Supply Voltage  
Transient Response  
10  
0
0
–90  
f
= 500kHz  
V
f
C
= SINGLE 5V  
CLK  
= 5kHz  
CLK  
S
V
= 0.5V  
RMS  
= 500kHz  
IN  
f
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
PHASE  
–180  
–270  
–360  
–450  
–540  
–630  
–720  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1V/DIV  
GROUP DELAY  
V
= 3.3V  
S
10691 G09  
0.2ms/DIV  
V
= 5V  
S
V
=
5V  
S
V
7
= 5V  
S
f
f
= 1MHz  
CLK  
IN  
= 500Hz  
1
2
3
4
5
7
1
3
5
9
11 13 15 17 19 21  
0
6
4V SQUARE WAVE  
P-P  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
10691 G07  
10691 G08  
10691fa  
4
LTC1069-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
Dynamic Range  
THD + Noise vs VIN (VRMS  
)
THD + Noise vs Frequency  
THD + Noise vs Frequency  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–60  
–62  
–64  
–66  
–68  
–70  
–72  
–74  
–76  
–78  
–80  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
f
= 500kHz  
= 300mV  
f
= 500kHz  
CLK  
f
f
= 500kHz  
CLK  
IN  
CLK  
IN  
V
= 1kHz  
RMS  
V
=
V =  
S
S
5V  
5V  
V = 3.3V  
S
IN  
V
= 3.3V  
V
= 5V  
S
S
V
= 0.5V  
RMS  
V
= 3.3V  
S
V
= 5V  
S
V
= 5V  
RMS  
S
V
= 1V  
IN  
V
IN  
= 5V  
S
V
= 2V  
RMS  
1.0  
0.65 1.22  
INPUT VOLTAGE (V  
0.1  
0.3  
2.0  
2.67  
)
5.0  
1
2
3
4
5
1
2
3
4
5
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
10691 G11  
10691 G12  
RMS  
10691 G10  
Supply Current vs Clock  
Frequency  
Output Voltage Swing vs  
Temperature  
Supply Current vs Supply Voltage  
5
4
3
2
1
0
5
4
f
= 10Hz  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
CLK  
V
= 5V  
S
3
V
S
=
2.5V  
V
= 5V  
S
2
25°C  
1
V
S
=
1.57V  
1.57V  
0
85°C  
–40°C  
V
S
=
V
= 5V  
S
–1  
–2  
–3  
–4  
–5  
V
S
=
2.5V  
5V  
V
= 3.3V  
S
V
=
S
–40 –20  
0
20  
40  
60  
80  
0.1  
0.4  
0
1
3
4
5
6
0.2 0.3  
0.5  
0.6 0.7 0.8 0.9 1.0 1.2  
2
CLOCK FREQUENCY (MHz)  
TOTAL SUPPLY VOLTAGE ( V)  
AMBIENT TEMPERATURE (°C)  
10691 G15  
10691 G14  
10691 G13  
10691fa  
5
LTC1069-1  
PIN FUNCTIONS  
AGND (Pin 1): Analog Ground. The quality of the analog  
signal ground can affect the filter performance. For either  
single or dual supply operation, an analog ground plane  
surrounding the package is recommended. The analog  
ground plane should be connected to any digital ground  
at a single point. For dual supply operation Pin 1 should  
be connected to the analog ground plane.  
CLK(Pin5):ClockInputPin.AnyTTLorCMOSclocksource  
with a square wave output and 50% duty cycle ( 10%) is  
an adequate clock source for the device. The power supply  
for the clock source should not necessarily be the filter’s  
power supply. The analog ground of the filter should be  
connected to clock’s ground at a single point only. Table 1  
shows the clock’s low and high level threshold value for a  
dual or a single supply operation. A pulse generator can be  
used as a clock source provided the high level ON time is  
For single supply operation Pin 1 should be bypassed to  
the analog ground plane with a 0.47μF or larger capaci-  
tor. An internal resistive divider biases Pin 1 to 1/2 the  
total power supply. Pin 1 should be buffered if used to  
bias other ICs. Figure 1 shows the connections for single  
supply operation.  
greaterthan0.42μs(V = 5V).Sinewaveslessthan100kHz  
S
are not recommended for clock signal because excessive  
slow clock rise or fall times generate internal clock jitter.  
The maximum clock rise or fall is 1μs. The clock signal  
should be routed from the right side of the IC package to  
avoid coupling into any input or output analog signal path.  
A 1k resistor between the clock source and the clock input  
pin (5) will slow down the rise and fall times of the clock  
to further reduce charge coupling, Figure 1.  
+
+
V , V (Pins 2, 7): Power Supply Pins. The V (Pin 2) and  
the V (Pin 7) should be bypassed with a 0.1μF capacitor  
to an adequate analog ground. The filter’s power supplies  
shouldbeisolatedfromotherdigitalorhighvoltageanalog  
supplies.Alownoiselinearsupplyisrecommended.Using  
switching power supplies will lower the signal-to-noise  
ratio of the filter. Unlike previous monolithic filters, the  
power supplies can be applied at any order, that is, the  
positive supply can be applied before the negative supply  
and vice versa. Figure 2 shows the connection for dual  
supply operation.  
Table 1. Clock Source High and Low Thresholds  
POWER SUPPLY  
HIGH LEVEL  
1.5V  
LOW LEVEL  
0.5V  
Dual Supply = 5V  
Single Supply = 10V  
Single Supply = 5V  
Single Supply = 3.3V  
6.5V  
5.5V  
1.5V  
0.5V  
1.2V  
0.5V  
NC (Pins 3, 6): No Connection. Pins 3 and 6 are not con-  
nected to any internal circuity; they should be preferably  
tied to ground.  
V
(Pin 8): Filter Output Pin. Pin 8 is the output of the  
OUT  
filter and it can source or sink 1mA. Driving coaxial cables  
or resistive loads less than 20k will degrade the total har-  
monic distortion of the filter. When evaluating the device’s  
dynamic range, a buffer is required to isolate the filter’s  
output from coax cables and instruments.  
V (Pin 4): Filter Input Pin. The filter input pin is internally  
IN  
connected to the inverting input of an op amp through a  
43k resistor.  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
AGND  
V
V
AGND  
V
V
OUT  
OUT  
OUT  
OUT  
0.47μF  
V
0.1μF  
+
+
+
+
V
V
V
V
V
V
LTC1069-1  
LTC1069-1  
0.1μF  
0.1μF  
NC  
NC  
NC  
NC  
V
IN  
V
IN  
V
CLK  
V
IN  
CLK  
IN  
ANALOG GROUND PLANE  
ANALOG GROUND PLANE  
STAR  
SYSTEM  
GROUND  
DIGITAL  
GROUND  
PLANE  
STAR  
SYSTEM  
GROUND  
DIGITAL  
GROUND  
PLANE  
1k  
1k  
CLOCK  
SOURCE  
CLOCK  
SOURCE  
10691 F01  
10691 F02  
Figure 1. Connections for Single Supply Operation  
Figure 2. Connections for Dual Supply Operation  
10691fa  
6
LTC1069-1  
APPLICATIONS INFORMATION  
Temperature Behavior  
Any parasitic switching transients during the rise and  
fall edges of the incoming clock are not part of the clock  
feedthrough specifications. Switching transients have  
frequency contents much higher than the applied clock;  
their amplitude strongly depends on scope probing tech-  
niques as well as grounding and power supply bypassing.  
The clock feedthrough can be reduced, if bothersome, by  
adding a single RC lowpass filter at the output pin (8) of  
the LTC1069-1.  
The power supply current of the LTC1069-1 has a positive  
temperature coefficient. The GBW product of its internal  
op amps is nearly constant and the speed of the device  
doesnotdegradeathightemperatures. Figures3a, 3band  
3c show the behavior of the maximum passband of the  
device for various supplies and temperatures. The filter,  
especially at 5V supply, has a passband behavior which  
is nearly temperature independent.  
Wideband Noise  
Clock Feedthrough  
The wideband noise of the filter is the total RMS value  
of the device’s noise spectral density and determines the  
operating signal-to-noise ratio. Most of the wideband  
noise frequency contents lie within the filter passband.  
The wideband noise cannot be reduced by adding post  
filtering. The total wideband noise is nearly independent  
of the clock frequency and depends slightly on the power  
supply voltage (see Table 3). The clock feedthrough speci  
fications are not part of the wideband noise.  
The clock feedthrough is defined as the RMS value of the  
clock frequency and its harmonics that are present at the  
filter’s output pin (8). The clock feedthrough is tested with  
the input pin (4) shorted to the AGND pin and depends on  
PC board layout and on the value of the power supplies.  
With proper layout techniques the values of the clock  
feedthrough are shown on Table 2.  
Table 2. Clock Feedthrough  
V
CLOCK FEEDTHROUGH  
S
Table 3. Wideband Noise  
3.3V  
5V  
10μV  
40μV  
RMS  
RMS  
V
S
WIDEBAND NOISE  
3.3V  
5V  
100μV  
108μV  
112μV  
RMS  
RMS  
RMS  
5V  
160μVRMS  
5V  
2.0  
1.5  
2.0  
1.5  
2.0  
1.5  
V
CLK  
V
= 3.3V  
V
CLK  
V
= 5V  
V =  
S
5V  
= 1.5MHz  
S
S
f
= 750kHz  
f
= 1MHz  
f
CLK  
= 0.5V  
= 1.2V  
V = 2V  
IN RMS  
IN  
RMS  
IN  
RMS  
T
= 25°C  
A
1.0  
1.0  
1.0  
T
= 85°C  
A
T
= 25°C  
A
T
= 85°C  
T
= 85°C  
A
A
0.5  
0.5  
0.5  
T
= –40°C  
A
0
0
0
T = 25°C  
A
T
= –40°C  
A
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
T
= –40°C  
A
1.5  
2.5 3.5 4.5 5.5  
FREQUENCY (kHz)  
7.5  
1.5 2.5 3.5 4.5 5.5  
7.5 8.5 9.5 10.5  
3
5
7
9
11  
15  
0.5  
6.5  
0.5  
6.5  
1
13  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
10691 F03a  
10691 F03b  
10691 F03c  
Figure 3a  
Figure 3b  
Figure 3c  
10691fa  
7
LTC1069-1  
APPLICATIONS INFORMATION  
Aliasing  
Table 4. Aliasing (fCLK = 100kHz)  
INPUT FREQUENCY  
OUTPUT LEVEL  
OUTPUT FREQUENCY  
(Aliased Frequency)  
(kHz)  
Aliasing is an inherent phenomenon of sampled data  
systems and it occurs for input frequencies approaching  
the sampling frequency. The internal sampling frequency  
of the LTC1069-1 is 100 times its cutoff frequency. For  
(V = 1V  
)
(Relative to Input)  
(dB)  
IN  
RMS  
(kHz)  
f
/f = 100:1, f  
= 1kHz  
CLK  
C
CUTOFF  
96  
97  
98  
(or 104)  
–90.0  
–86.0  
–71.0  
–56.0  
–1.1  
4.0  
3.0  
2.0  
1.5  
1.0  
0.5  
instance, if a 98kHz, 100mV  
signal is applied at the  
(or 103)  
(or 102)  
RMS  
input of an LTC1069-1 operating with a 100kHz clock, a  
98.5 (or 101.5)  
2kHz, 28μV  
alias signal will appear at the filter output.  
99  
(or 101)  
RMS  
99.5 (or 100.5)  
–0.21  
Table 4 shows details.  
TYPICAL APPLICATIONS  
Single 5V Operation with Power Shutdown  
5V  
SHUTDOWN  
ON  
CMOS LOGIC  
1
2
3
4
8
7
6
5
AGND  
V
V
OUT  
OUT  
+
0.47μF  
V
V
LTC1069-1  
NC  
0.1μF  
NC  
f
CLK  
5V  
V
V
CLK  
IN  
IN  
750kHz  
0V  
1069-1 TA04  
Single 3.3V Supply Operation with Output Buffer  
3.3V  
0.1μF  
1
8
AGND  
V
OUT  
+
0.47μF  
0.1μF  
2
3
4
7
6
5
1/2 LT1366  
+
V
OUT  
V
V
LTC1069-1  
NC  
NC  
f
CLK  
3.3V  
0V  
10691 TA05  
V
V
CLK  
IN  
IN  
500kHz  
10691fa  
8
LTC1069-1  
PACKAGE DESCRIPTION  
N Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 .015*  
(6.477 0.381)  
1
2
3
.130 .005  
.300 – .325  
.045 – .065  
(3.302 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
10691fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
9
LTC1069-1  
TYPICAL APPLICATION  
Dual Supply Operation  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
f
= 1kHz  
IN  
1
8
7
6
5
AGND  
V
V
OUT  
OUT  
2
3
4
+
5V  
0.1μF  
V
V
–5V  
LTC1069-1  
NC  
0.1μF  
NC  
f
CLK  
5V  
0V  
V
V
CLK  
IN  
IN  
500kHz  
f
= 5kHz  
C
0.1  
1
3
INPUT VOLTAGE (V  
)
RMS  
10691 TA03  
RELATED PARTS  
PART NUMBER  
LTC1068  
DESCRIPTION  
COMMENTS  
User-Configurable, SSOP Package  
50:1 f /f Ratio, 8-Pin SO Package  
Very Low Noise, High Accuracy, Quad Universal Filter Building Block  
Single Supply, Very Low Power, Elliptic LPF  
Low Power 8th Order Butterworth LPF  
LTC1069-6  
LTC1164-5  
LTC1164-6  
LTC1164-7  
CLK  
C
100:1 and 50:1 f /f Ratio  
CLK  
C
Low Power 8th Order Elliptic LPF  
100:1 and 50:1 f /f Ratio  
CLK C  
Low Power 8th Order Linear Phase LPF  
100:1 and 50:1 f /f Ratio  
CLK C  
10691fa  
LT 0309 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
10  
© LINEAR TECHNOLOGY CORPORATION 1996  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1069-6CS8#TRPBF

LTC1069-6 - Single Supply, Very Low Power, Elliptic Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1069-6I

Single Supply, Very Low Power, Elliptic Lowpass Filter
Linear

LTC1069-6IS8

Single Supply, Very Low Power, Elliptic Lowpass Filter
Linear

LTC1069-6IS8#PBF

暂无描述
Linear

LTC1069-6IS8#TR

暂无描述
Linear

LTC1069-7

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7C

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7CS8

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7CS8#PBF

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1069-7CS8#TRPBF

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1069-7I

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7IS8

Linear Phase 8th Order Lowpass Filter
Linear