LTC1657LIGN#TR [Linear]

LTC1657 - Parallel 16-Bit Rail-to-Rail Micropower DAC; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C;
LTC1657LIGN#TR
型号: LTC1657LIGN#TR
厂家: Linear    Linear
描述:

LTC1657 - Parallel 16-Bit Rail-to-Rail Micropower DAC; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C

文件: 总16页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1655/LTC1655L  
16-Bit Rail-to-Rail  
Micropower DACs in  
SO-8 Package  
U
DESCRIPTIO  
FEATURES  
The LTC®1655/LTC1655L are rail-to-rail voltage output,  
16-bit digital-to-analog converters in an SO-8 package.  
They include an output buffer and a reference. The 3-wire  
serial interface is compatible with SPI/QSPI and  
MICROWIRETM protocols. The CLK input has a Schmitt  
trigger that allows direct optocoupler interface.  
16-Bit Monotonicity Over Temperature  
Deglitched Rail-to-Rail Voltage Output  
SO-8 Package  
ICC(TYP): 600µA  
Internal Reference: 2.048V (LTC1655)  
1.25V (LTC1655L)  
Maximum DNL Error: ±1LSB  
TheLTC1655hasanonboard2.048Vreferencethatcanbe  
overdriven to a higher voltage. The output swings from 0V  
to 4.096V when using the internal reference. The typical  
power dissipation is 3.0mW on a single 5V supply.  
Settling Time: 20µS to ±1LSB  
750kHz Max Update Rate  
Power-On Reset to Zero Volts  
3-Wire Cascadable Serial Interface  
Low Cost  
Pin Compatible Upgrade for LTC1451 12-Bit DAC  
Family  
TheLTC1655Lhasanonboard1.25Vreferencethatcanbe  
overdriven to a higher voltage. The output swings from 0V  
to 2.5V when using the internal reference. The typical  
power dissipation is 1.8mW on a single 3V supply.  
U
The LTC1655/LTC1655L are pin compatible with Linear  
Technology’s 12-bit VOUT DAC family, allowing an easy  
upgrade path. They are the only buffered 16-bit DACs in  
an SO-8 package and they include an onboard reference  
for standalone performance.  
APPLICATIO S  
Digital Calibration  
Industrial Process Control  
Automatic Test Equipment  
Cellular Telephones  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
MICROWIRE is a trademark of National Semiconductor Corporation.  
U
U
W
FU CTIO AL BLOCK DIAGRA  
Functional Block Diagram: 16-Bit Rail-to-Rail DAC  
Differential Nonlinearity  
vs Input Code  
LTC1655: 4.5V TO 5.5V  
LTC1655L: 2.7V TO 5.5V  
LTC1655: 2.048V  
LTC1655L: 1.25V  
1.0  
0.8  
8
6
V
CC  
REF  
0.6  
REF  
2
1
D
IN  
0.4  
CLK  
16-BIT  
SHIFT  
REG  
0.2  
16  
µP  
16-BIT  
DAC  
0
+
3
CS/LD  
V
OUT  
7
AND  
0.2  
0.4  
0.6  
0.8  
1.0  
DAC  
LATCH  
4
D
OUT  
POWER-ON  
RESET  
TO  
OTHER  
DACS  
0
16384  
32768  
CODE  
49152  
65535  
GND  
5
1655/55L TA01  
1655/55L TA02  
1
LTC1655/LTC1655L  
W W  
U W  
W
U
/O  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE RDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
VCC to GND .............................................. 0.5V to 7.5V  
TTL Input Voltage .................................... 0.5V to 7.5V  
VOUT, REF ....................................... 0.5V to VCC + 0.5V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range  
LTC1655C/LTC1655LC ........................... 0°C to 70°C  
LTC1655I/LTC1655LI ........................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
TOP VIEW  
LTC1655CN8  
CLK  
1
2
3
4
8
7
6
5
V
V
CC  
LTC1655IN8  
LTC1655CS8  
LTC1655IS8  
LTC1655LCN8  
LTC1655LIN8  
LTC1655LCS8  
LTC1655LIS8  
D
IN  
OUT  
CS/LD  
REF  
D
GND  
OUT  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 100°C/W (N8)  
JMAX = 125°C, θJA = 150°C/W (S8)  
T
S8 PART MARKING  
1655  
1655I  
1655L  
1655LI  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VCC = 4.5V to 5.5V (LTC1655), VCC = 2.7V to 5.5V (LTC1655L); VOUT unloaded, REF unloaded, unless otherwise noted.  
SYMBOL PARAMETER  
DAC  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
16  
16  
Bits  
Bits  
Monotonicity  
DNL  
Differential Nonlinearity  
Guaranteed Monotonic (Note 2)  
LTC1655, REF = 2.2V, V = 5V (Note 8) (External)  
±0.3  
±0.5  
±1.0  
±1.0  
LSB  
LSB  
CC  
LTC1655L, REF = 2.2V, V = 5V (Note 8) (External)  
CC  
INL  
Integral Nonlinearity  
Zero Scale Error  
Offset Error  
LTC1655, REF = 2.2V, V = 5V (Note 8) (External)  
±8  
±8  
±20  
±20  
LSB  
LSB  
CC  
LTC1655L, REF = 2.2V, V = 5V (Note 8) (External)  
CC  
ZSE  
LTC1655  
LTC1655L  
0
0
3.0  
3.5  
mV  
mV  
V
V
Measured at Code 200  
OS  
LTC1655, REF = 2.2V, V = 5V (Note 8) (External)  
±0.5  
±0.5  
±3.0  
±3.5  
mV  
mV  
CC  
LTC1655L, REF = 1.3V, V = 2.7V (Note 8) (External)  
CC  
TC  
Offset Error Tempco  
Gain Error  
±5  
±5  
0.5  
µV/°C  
LSB  
OS  
REF = 2.2V (External), V = 5V (Note 8)  
±16  
CC  
Gain Error Drift  
ppm/°C  
Power Supply  
V
Positive Supply Voltage  
For Specified Performance  
LTC1655  
LTC1655L  
CC  
4.5  
2.7  
5.5  
5.5  
V
V
I
Supply Current  
(Note 3)  
600  
1200  
µA  
CC  
2
LTC1655/LTC1655L  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
CC = 4.5V to 5.5V (LTC1655), VCC = 2.7V to 5.5V (LTC1655L); VOUT unloaded, REF unloaded, unless otherwise noted.  
V
SYMBOL PARAMETER  
Op Amp DC Performance  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Short-Circuit Current Low  
V
Shorted to GND  
OUT  
LTC1655  
LTC1655L  
70  
70  
120  
140  
mA  
mA  
Short-Circuit Current High  
Output Impedance to GND  
Output Line Regulation  
V
Shorted to V  
OUT CC  
LTC1655  
LTC1655L  
80  
70  
140  
150  
mA  
mA  
Input Code = 0  
LTC1655  
LTC1655L  
40  
70  
120  
160  
Input Code = 65535, with Internal Reference  
±3  
mV/V  
AC Performance  
Voltage Output Slew Rate  
(Note 4)  
±0.3  
±0.7  
V/µs  
Voltage Output Settling Time  
(Note 4) to 0.0015% (16-Bit Settling Time), V = 5V  
20  
10  
µs  
µs  
CC  
(Note 4) to 0.012% (13-Bit Settling Time), V = 5V  
CC  
Digital Feedthrough  
(Note 5)  
0.3  
12  
nV-s  
nV-s  
Midscale Glitch Impulse  
DAC Switched Between 8000 and 7FFF  
H
H
Output Voltage Noise  
Spectral Density  
LTC1655, At 1kHz  
LTC1655L, At 1kHz  
280  
220  
nVHz  
nVHz  
Reference Output  
Reference Output Voltage  
LTC1655  
LTC1655L  
2.036  
1.240  
2.048  
1.250  
2.060  
1.260  
V
V
Reference Input Range  
(Notes 6, 7) LTC1655  
LTC1655L  
2.2  
1.3  
V
CC  
V
CC  
/2  
/2  
V
V
Reference Output Tempco  
Reference Input Resistance  
LTC1655  
LTC1655L  
5
10  
ppm/°C  
ppm/°C  
LTC1655, REF Overdriven to 2.2V  
LTC1655L, REF Overdriven to 1.3V  
8.5  
7.0  
13  
13  
kΩ  
kΩ  
Reference Short-Circuit Current  
Reference Output Line Regulation  
Reference Load Regulation  
40  
100  
±1.5  
5
mA  
mV/V  
mV/A  
I
= 100µA  
OUT  
Reference Output Voltage Noise  
Spectral Density  
LTC1655, At 1kHz  
LTC1655L, At 1kHz  
150  
115  
nVHz  
nVHz  
Digital I/O  
V
V
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Output High Voltage  
Digital Output Low Voltage  
LTC1655  
LTC1655L  
2.4  
2.0  
V
V
IH  
LTC1655  
LTC1655L  
0.8  
0.6  
V
V
IL  
LTC1655, I  
LTC1655L, I  
= 1mA  
V
V
– 1.0  
V
V
OH  
OL  
OUT  
CC  
CC  
= 1mA  
– 0.7  
OUT  
LTC1655, I  
LTC1655L, I  
= 1mA  
0.4  
0.4  
V
V
OUT  
= 1mA  
OUT  
3
LTC1655/LTC1655L  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VCC = 4.5V to 5.5V (LTC1655), VCC = 2.7V to 5.5V (LTC1655L); VOUT unloaded, REF unloaded, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
= GND to V  
CC  
MIN  
TYP  
MAX  
±10  
10  
UNITS  
µA  
I
Digital Input Leakage  
V
LEAK  
IN  
C
Digital Input Capacitance  
(Note 7)  
pF  
IN  
Switching  
t
t
t
t
t
t
t
t
t
D
D
Valid to CLK Setup  
Valid to CLK Hold  
LTC1655  
LTC1655L  
40  
60  
ns  
ns  
1
2
3
4
5
6
7
8
9
IN  
LTC1655  
LTC1655L  
0
0
ns  
ns  
IN  
CLK High Time  
LTC1655  
LTC1655L  
40  
60  
ns  
ns  
CLK Low Time  
LTC1655  
LTC1655L  
40  
60  
ns  
ns  
CS/LD Pulse Width  
LSB CLK to CS/LD  
CS/LD Low to CLK  
LTC1655  
LTC1655L  
50  
80  
ns  
ns  
LTC1655  
LTC1655L  
40  
60  
ns  
ns  
LTC1655  
LTC1655L  
20  
30  
ns  
ns  
D
OUT  
Output Delay  
LTC1655, C  
LTC1655L, C  
= 15pF  
LOAD  
20  
20  
120  
300  
ns  
ns  
= 15pF  
LOAD  
CLK Low to CS/LD Low  
LTC1655  
LTC1655L  
20  
30  
ns  
ns  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: Nonlinearity is defined from code 128 to code 65535 (full scale).  
See Applications Information.  
Note 5: Part is clocked with pin toggling between 1s and 0s, CS/LD is low.  
Note 6: Reference can be overdriven (see Applications Information).  
Note 7: Guaranteed by design. Not subject to test.  
Note 8: Guaranteed by correlation for other reference and supply  
conditions.  
Note 3: DAC switched between all 1s and all 0s. V = 4.096V.  
FS  
Note 4: Digital inputs at 0V or V  
.
CC  
4
LTC1655/LTC1655L  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 5V (LTC1655), VCC = 3V (LTC1655L) unless otherwise noted.  
TC1655 Differential Nonlinearity  
LTC1655L Differential Nonlinearity  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
16,384  
32,768  
49,152  
65,535  
65,535  
15  
0
16,384  
32,768  
49,152  
65,535  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
1655/55L G01  
1655/55L G01a  
LTC1655 Integral Nonlinearity  
LTC1655L Integral Nonlinearity  
10  
8
10  
8
6
6
4
4
2
2
0
0
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
128  
16,480  
32,832  
49,184  
65,535  
0
16,384  
32,768  
49,152  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
1655/55L G02a  
1655/55L G02  
LTC1655 Minimum Supply  
Headroom for Full Output Swing  
vs Load Current  
LTC1655L Minimum Supply  
Headroom for Full Output Swing  
vs Load Current  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V  
OUT  
< 1LSB  
V  
OUT  
< 1LSB  
OUT  
OUT  
V
= 4.096V  
V
= 2.5V  
CODE: ALL 1’s  
CODE: ALL 1’s  
125°C  
25°C  
125°C  
25°C  
–55°C  
–55°C  
10  
5
LOAD CURRENT (mA)  
15  
10  
5
LOAD CURRENT (mA)  
0
0
1655/55L G03a  
1655/55L G03  
5
LTC1655/LTC1655L  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 5V (LTC1655), VCC = 3V (LTC1655L) unless otherwise noted.  
LTC1655 Minimum Output Voltage  
vs Output Sink Current  
LTC1655L Minimum Output  
Voltage vs Output Sink Current  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CODE: ALL 0s  
CODE: ALL 0s  
0.8  
125°C  
25°C  
–55°C  
0.6  
125°C  
0.4  
25°C  
–55°C  
0.2  
0
10  
OUTPUT SINK CURRENT (mA)  
15  
10  
15  
0
0
5
5
OUTPUT SINK CURRENT (mA)  
1655/55L G04  
1655/55L G04a  
LTC1655L Full-Scale Voltage vs  
Temperature  
LTC1655 Full-Scale Voltage vs  
Temperature  
4.10  
4.09  
4.08  
4.07  
2.510  
2.505  
2.500  
2.495  
2.490  
–55  
5
35  
65  
95  
125  
–55  
5
35  
65  
95  
125  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1655/55L G05  
1655/55L G05a  
LTC1655 Offset vs Temperature  
LTC1655L Offset vs Temperature  
1.0  
0.8  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–55  
–10  
35  
80  
125  
–55  
–10  
35  
80  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1655/55L G06  
1655/55L G06a  
6
LTC1655/LTC1655L  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 5V (LTC1655), VCC = 3V (LTC1655L) unless otherwise noted.  
LTC1655 Supply Current vs  
Logic Input Voltage  
LTC1655L Supply Current vs  
Logic Input Voltage  
1.0  
0.8  
0.6  
0.4  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
0.6  
0
1
2
3
0
1
2
3
4
5
LOGIC INPUT VOLTAGE (V)  
LOGIC INPUT VOLTAGE (V)  
1655/55L G07a  
1655/55L G07  
LTC1655 Supply Current vs  
Temperature  
LTC1655L Supply Current vs  
Temperature  
700  
680  
660  
640  
620  
600  
580  
580  
560  
540  
520  
500  
480  
460  
V
CC  
= 5.5V  
V
CC  
= 3.3V  
V
CC  
= 5V  
V
V
= 3V  
CC  
V
CC  
= 4.5V  
= 2.7V  
CC  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1655/55L G08  
1655/55L G08a  
LTC1655 Large-Signal Transient  
Response  
LTC1655L Large-Signal Transient  
Response  
5
4
3
2
1
0
3
2
1
0
V
A
UNLOADED  
V
UNLOADED  
OUT  
OUT  
T
= 25°C  
T = 25°C  
A
TIME (5µs/DIV)  
TIME (5µs/DIV)  
1655/55L G09  
1655/55L G10  
7
LTC1655/LTC1655L  
U
U
U
PIN FUNCTIONS  
CLK (Pin 1): The TTL Level Input for the Serial Interface  
Clock.  
GND (Pin 5): Ground.  
REF (Pin 6): Reference. Output of the internal reference is  
2.048V (LTC1655), 1.25V (LTC1655L). There is a gain of  
two from this pin to the output. The reference can be  
overdriven from 2.2V to VCC/2 (LTC1655) and 1.3V to  
VCC/2 (LTC1655L). When tied to VCC/2, the output will  
swing from GND to VCC. The output can only swing to  
within its offset specification of VCC (see Applications  
Information).  
DIN (Pin 2): The TTL Level Input for the Serial Interface  
Data. Data on the DIN pin is latched into the shift register  
on the rising edge of the serial clock and is loaded MSB  
first. The LTC1655/LTC1655L requires a 16-bit word.  
CS/LD (Pin 3): The TTL Level Input for the Serial Inter-  
face Enable and Load Control. When CS/LD is low, the  
CLK signal is enabled, so the data can be clocked in.  
When CS/LD is pulled high, data is loaded from the shift  
register into the DAC register, updating the DAC output.  
VOUT (Pin7):DeglitchedRail-to-RailVoltageOutput. VOUT  
clears to 0V on power-up.  
DOUT (Pin 4): Output of the Shift Register. Becomes valid  
on the rising edge of the serial clock and swings from GND  
to VCC.  
VCC (Pin 8): Positive Supply Input. 4.5V VCC 5.5V  
(LTC1655), 2.7V VCC 5.5V (LTC1655L). Requires a  
0.1µF bypass capacitor to ground.  
W U  
W
TI I G DIAGRA  
t
t
1
9
t
t
6
t
t
3
t
2
4
7
CLK  
1
2
3
15  
16  
D15  
MSB  
D0  
LSB  
D
D14  
D13  
D1  
IN  
t
5
CS/LD  
t
8
D15  
PREVIOUS WORD  
D14  
D13  
D0  
PREVIOUS WORD  
D15  
D
OUT  
PREVIOUS WORD PREVIOUS WORD  
CURRENT WORD  
1655/55L TD  
8
LTC1655/LTC1655L  
U U  
DEFI ITIO S  
Differential Nonlinearity (DNL): The difference between  
the measured change and the ideal 1LSB change for any  
twoadjacentcodes. TheDNLerrorbetweenanytwocodes  
is calculated as follows:  
lowestcodethatguaranteestheoutputwillbegreaterthan  
zero. The INL error at a given input code is calculated as  
follows:  
INL = [VOUT – VOS – (VFS – VOS)(code/65535)]/LSB  
DNL = (VOUT – LSB)/LSB  
Where VOUT is the output voltage of the DAC measured at  
the given input code.  
Where VOUT is the measured voltage difference between  
two adjacent codes.  
Least Significant Bit (LSB): The ideal voltage difference  
between two successive codes.  
DigitalFeedthrough: Theglitchthatappearsattheanalog  
outputcausedbyACcouplingfromthedigitalinputswhen  
they change state. The area of the glitch is specified in  
(nV)(sec).  
LSB = 2VREF/65536  
Resolution (n): Defines the number of DAC output states  
(2n) that divide the full-scale range. Resolution does not  
imply linearity.  
Full-Scale Error (FSE): The deviation of the actual full-  
scale voltage from ideal. FSE includes the effects of offset  
and gain errors (see Applications Information).  
Voltage Offset Error (VOS): Nominally, the voltage at the  
output when the DAC is loaded with all zeros. A single  
supply DAC can have a true negative offset, but the output  
cannot go below zero (see Applications Information).  
Gain Error (GE): The difference between the full-scale  
output of a DAC from its ideal full-scale value after offset  
error has been adjusted.  
For this reason, single supply DAC offset is measured at  
the lowest code that guarantees the output will be greater  
than zero.  
Integral Nonlinearity (INL): The deviation from a straight  
line passing through the endpoints of the DAC transfer  
curve(EndpointINL).Becausetheoutputcannotgobelow  
zero, the linearity is measured between full scale and the  
U
OPERATIO  
Serial Interface  
of the chips, then the CS/LD signal is pulled high to update  
all of them simultaneously. The shift register and DAC  
register are cleared to all 0s on power-up.  
The data on the DIN input is loaded into the shift register  
ontherisingedgeoftheclock.TheMSBisloadedfirst.The  
DAC register loads the data from the shift register when  
CS/LD is pulled high. The clock is disabled internally when  
CS/LD is high. Note: CLK must be low before CS/LD is  
pulled low to avoid an extra internal clock pulse. The input  
word must be 16 bits wide.  
Voltage Output  
The LTC1655/LTC1655L rail-to-rail buffered output can  
source or sink 5mA over the entire operating temperature  
range while pulling to within 600mV of the positive supply  
voltage or ground. The output stage is equipped with a  
deglitcherthatgivesamidscaleglitchof12nV-s.Atpower-  
up, the output clears to 0V.  
The buffered output of the 16-bit shift register is available  
on the DOUT pin which swings from GND to VCC.  
Multiple LTC1655s/LTC1655Ls may be daisy-chained to-  
getherbyconnectingtheDOUT pintotheDIN pinofthenext  
chip while the clock and CS/LD signals remain common to  
all chips in the daisy chain. The serial data is clocked to all  
The output swings to within a few millivolts of either sup-  
ply rail when unloaded and has an equivalent output resis-  
tance of 40(70for the LTC1655L) when driving a load  
totherails.Theoutputcandrive1000pFwithoutgoinginto  
oscillation.  
9
LTC1655/LTC1655L  
U
W U U  
APPLICATIONS INFORMATION  
Rail-to-Rail Output Considerations  
error (FSE) is positive, the output for the highest codes  
limits at VCC as shown in Figure 1c. No full-scale limiting  
can occur if VREF is less than (VCC – FSE)/2.  
In any rail-to-rail DAC, the output swing is limited to  
voltages within the supply range.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
If the DAC offset is negative, the output for the lowest  
codes limits at 0V as shown in Figure 1b.  
Similarly, limiting can occur near full-scale when the REF  
pin is tied to VCC/2. If VREF = VCC/2 and the DAC full-scale  
POSITIVE  
FSE  
V
CC  
V
= V /2  
CC  
OUTPUT  
VOLTAGE  
REF  
INPUT CODE  
(1c)  
V
CC  
V
= V /2  
CC  
OUTPUT  
VOLTAGE  
REF  
0
32768  
65535  
INPUT CODE  
(1a)  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
1655/55L F01  
(1b)  
Figure 1. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative  
Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When VREF = VCC/2  
10  
LTC1655/LTC1655L  
U
TYPICAL APPLICATIONS  
This circuit shows how to use an LTC1655 to make an is used for the digitally controlled 0mA to 16mA current.  
optoisolated digitally controlled 4mA to 20mA process RS is a sense resistor and the op amp modulates the  
controller. The controller circuitry, including the transistor Q1 to provide the 4mA to 20mA current through  
optoisolation, ispoweredbytheloopvoltagethatcanhave this resistor. The potentiometers allow for offset and full-  
a wide range of 6V to 30V. The 2.048V reference output of scale adjustment. The control circuitry dissipates well  
the LTC1655 is used for the 4mA offset current and VOUT under the 4mA budget at zero scale.  
An Isolated 4mA to 20mA Process Controller  
V
LOOP  
6V TO 30V  
150k  
1%  
LT®1121-5  
IN OUT  
20k  
5k  
8
6
1µF  
V
V
REF  
CC  
1
2
3
75k  
1%  
CLK  
FROM  
7
3
2
7
V
OUT  
LTC1655  
D
IN  
+
OPTOISOLATED  
INPUTS  
1k  
6
Q1  
2N3440  
LT®1077  
CS/LD  
GND  
3k  
4
5
R
S
5V  
10Ω  
OPTOISOLATORS  
I
OUT  
10k  
CLK  
IN  
1655/55L TA03  
D
CS/LD  
CLK  
IN  
CS/LD  
500Ω  
4N28  
D
11  
LTC1655/LTC1655L  
U
TYPICAL APPLICATIONS  
the onboard reference is always sourcing current and  
never has to sink any current even when VOUT is at full  
scale. The LT1077 output will have a wide bipolar output  
swing of 4.096V to 4.096V as shown in the figure below.  
With this output swing 1LSB = 125µV.  
This circuit shows how to make a bipolar output 16-bit  
DAC with a wide output swing using an LTC1655 and an  
LT1077. R1 and R2 resistively divide down the LTC1655  
output and an offset is summed in using the LTC1655  
onboard2.048VreferenceandR3andR4. R5ensuresthat  
A Wide Swing, Bipolar Output 16-Bit DAC  
5V  
0.1µF  
8
V
CC  
1
2
3
CLK  
7
µP  
V
OUT  
LTC1655  
D
IN  
R1  
5V  
CS/LD  
100k  
GND  
5
V
REF  
6
1%  
3
2
7
LT1077  
4
+
6
(2)(D )(4.096)  
IN  
R2  
200k  
1%  
V
OUT  
:
– 4.096V  
TRANSFER CURVE  
32768  
65536  
4.096  
R3  
100k  
1%  
R4  
200k  
1%  
5V  
65535  
0
1655/55L TA05  
V
OUT  
D
IN  
R5  
100k  
1%  
4.096  
12  
LTC1655/LTC1655L  
U
TYPICAL APPLICATIONS  
Thiscircuitshowsadigitallyprogrammablecurrentsource  
fromanexternalvoltagesourceusinganexternalopamp,  
an LT1218 and an NPN transistor (2N3440). Any digital  
word from 0 to 65535 is loaded into the LTC1655 and its  
output correspondingly swings from 0V to 4.096V. This  
voltage will be forced across the resistor RA. If RA is  
chosen to be 412, the output current will range from  
0mA at zero scale to 10mA at full scale. The minimum  
voltage for VS is determined by the load resistor RL and  
Q1’s VCESAT voltage. With a load resistor of 50, the  
voltage source can be 5V.  
Digitally Programmable Current Source  
5V  
5V < V < 100V  
S
FOR R 50  
8
L
0.1µF  
V
CC  
1
2
3
(D )(4.096)  
IN  
CLK  
R
L
I
=
OUT  
(65536)(R )  
7
3
2
7
A
V
LTC1655  
µP  
+
D
OUT  
IN  
0mA TO 10mA  
6
Q1  
2N3440  
LT1218  
CS/LD  
GND  
5
4
R
A
412Ω  
1%  
1655/55L TA04  
13  
LTC1655/LTC1655L  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
14  
LTC1655/LTC1655L  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1655/LTC1655L  
U
TYPICAL APPLICATION  
This circuit shows how to measure negative offset. Since  
LTC1655/LTC1655L operate on a single supply, if its  
offset is negative, the output for code 0 limits to 0V. To  
measure this negative offset, a negative supply is needed.  
Connect resistor R1 as shown in the figure below. The  
output voltage is the offset when code 0 is loaded in.  
Negative Offset Measurement  
5V  
0.1µF  
8
V
CC  
1
2
3
CLK  
LTC1655/  
LTC1655L  
7
µP  
V
OUT  
D
IN  
R1  
100k  
CS/LD  
GND  
5
–5V  
1655/55L TA06  
RELATED PARTS  
PART  
NUMBER  
DESCRIPTION  
COMMENTS  
5V to 15V Single Supply, Complete V  
LTC1257  
Single 12-Bit V  
DAC, Full Scale: 2.048V, V : 4.75V to 15.75V,  
DAC SO-8 Package  
OUT  
OUT  
CC  
in Reference Can Be Overdriven Up to 12V, i.e., FS  
= 12V  
MAX  
LTC1446/ Dual 12-Bit V  
LTC1446L  
DACs in SO-8 Package  
LTC1446: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
LTC1446L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1448  
Dual 12-Bit V  
DAC, V : 2.7V to 5.5V  
Output Swings from GND to REF. REF Input Can Be Tied to V  
CC  
OUT  
CC  
LTC1450/ Single 12-Bit V  
LTC1450L  
DACs with Parallel Interface  
LTC1450: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
LTC1450L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1451  
LTC1452  
LTC1453  
Single Rail-to-Rail 12-Bit DAC, Full Scale: 4.095V, V : 4.5V to 5.5V,  
Internal 2.048V Reference Brought Out to Pin  
5V, Low Power Complete V  
DAC in SO-8 Package  
CC  
OUT  
Single Rail-to-Rail 12-Bit V  
Multiplying DAC, V : 2.7V to 5.5V  
Low Power, Multiplying V  
DAC with Rail-to-Rail  
OUT  
CC  
OUT  
Buffer Amplifier in SO-8 Package  
Single Rail-to-Rail 12-Bit V  
DAC, Full Scale: 2.5V, V : 2.7V to 5.5V 3V, Low Power, Complete V DAC in SO-8 Package  
OUT  
CC  
OUT  
LTC1454/ Dual 12-Bit V  
LTC1454L  
DACs in SO-16 Package with Added Functionality  
LTC1454: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
LTC1454L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1456  
Single Rail-to-Rail Output 12-Bit DAC with Clear Pin,  
Full Scale: 4.095V, V : 4.5V to 5.5V  
Low Power, Complete V  
Package with Clear Pin  
DAC in SO-8  
OUT  
CC  
LTC1458/ Quad 12 Bit Rail-to-Rail Output DACs with Added Functionality  
LTC1458L  
LTC1458: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
CC  
OUT  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1650  
Single 16-Bit V  
Industrial DAC in 16-Pin SO, V = ±5V  
Low Power, Deglitched, 4-Quadrant Mulitplying V  
Output Swing ±4.5V  
DAC,  
OUT  
CC  
OUT  
LTC1654  
Dual 14-Bit DAC  
1LSB DNL, 2 DACs in SO-8 Footprint  
LTC1657/ Single 16-Bit V  
LTC1657L  
DAC with Parallel Interface  
LTC1657: V = 5V, Low Power, Deglitched, V  
= 0V to 4.096V  
OUT  
CC  
OUT  
LTC1657L: V = 3V, Low Power, Deglitched, V  
= 0V to 2.5V  
CC  
OUT  
LTC1658  
Single Rail-to-Rail 14-Bit V  
DAC in 8-Pin MSOP,  
DAC in 8-Pin MSOP,  
Low Power, Multiplying V  
Swings from GND to REF. REF Input Can Be Tied to V  
DAC in MS8 Package. Output  
OUT  
OUT  
OUT  
V
= 2.7V to 5.5V  
CC  
CC  
LTC1659  
Single Rail-to-Rail 12-Bit V  
= 2.7V to 5.5V  
Low Power, Multiplying V  
DAC in MS8 Package. Output  
OUT  
V
Swings from GND to REF. REF Input Can Be Tied to V  
CC  
CC  
16555lf LT/TP 0800 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1998  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1657LIN

Parallel 16-Bit Rail-to-Rail Micropower DAC
Linear

LTC1657LIN#PBF

LTC1657 - Parallel 16-Bit Rail-to-Rail Micropower DAC; Package: PDIP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1657L_15

Parallel 16-Bit Rail-to-Rail Micropower DAC
Linear

LTC1657_15

Parallel 16-Bit Rail-to-Rail Micropower DAC
Linear

LTC1658

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CMS8

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CMS8#PBF

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CMS8#TR

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CMS8#TRPBF

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CN8

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CN8#PBF

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CS8

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear