LTC2308CUFXTRPBF [Linear]

Low Noise, 500ksps, 8-Channel, 12-Bit ADC; 低噪声, 500KSPS , 8通道, 12位ADC
LTC2308CUFXTRPBF
型号: LTC2308CUFXTRPBF
厂家: Linear    Linear
描述:

Low Noise, 500ksps, 8-Channel, 12-Bit ADC
低噪声, 500KSPS , 8通道, 12位ADC

文件: 总20页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2308  
Low Noise, 500ksps,  
8-Channel, 12-Bit ADC  
FEATURES  
DESCRIPTION  
The LTC®2308 is a low noise, 500ksps, 8-channel, 12-bit  
ADC with an SPI/MICROWIRE compatible serial interface.  
This ADC includes an internal reference and a fully differ-  
ential sample-and-hold circuit to reduce common-mode  
noise. The internal conversion clock allows the external  
serial output data clock (SCK) to operate at any frequency  
up to 40MHz.  
12-Bit Resolution  
500ksps Sampling Rate  
Low Noise: SINAD = 73.3dB  
Guaranteed No Missing Codes  
Single 5V Supply  
Auto-Shutdown Scales Supply Current with Sample  
Rate  
Low Power: 17.5mW at 500ksps  
The LTC2308 operates from a single 5V supply and draws  
just3.5mAatasamplerateof500ksps.Theauto-shutdown  
feature reduces the supply current to 200μA at a sample  
rate of 1ksps.  
0.9mW Nap Mode  
35μW Sleep Mode  
Internal Reference  
Internal 8-Channel Multiplexer  
The LTC2308 is packaged in a small 24-pin 4mm × 4mm  
QFN.Theinternal2.5Vreferenceand8-channelmultiplexer  
further reduce PCB board space requirements.  
Internal Conversion Clock  
SPI/MICROWIRETM Compatible Serial Interface  
Unipolar or Bipolar Input Ranges (Software Selectable)  
Separate Output Supply OV (2.7V to 5.25V)  
DD  
The low power consumption and small size make the  
LTC2308 ideal for battery operated and portable appli-  
cations, while the 4-wire SPI compatible serial interface  
makes this ADC a good match for isolated or remote data  
acquisition systems.  
24-Pin 4mm × 4mm QFN Package  
APPLICATIONS  
High Speed Data Acquisition  
Industrial Process Control  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Motor Control  
Accelerometer Measurements  
Battery Operated Instruments  
Isolated and/or Remote Data Acquisition  
TYPICAL APPLICATION  
5V  
8192 Point FFT, f = 1kHz  
IN  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0.1μF  
10μF  
10μF  
0.1μF  
f
= 500kHz  
SMPL  
SINAD = 73.6dB  
THD = –89.5dB  
OV  
2.7V TO 5.25 V  
AV  
DV  
DD  
DD  
DD  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
0.1μF  
LTC2308  
SDI  
ANALOG  
INPUT  
MUX  
12-BIT  
500ksps  
ADC  
+
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTER  
SDO  
SERIAL  
PORT  
CH0-CH7  
ANALOG INPUTS  
0V TO 4.096V UNIPOLAR  
p2.048V BIPOLAR  
–90  
SCK  
–100  
–110  
–120  
–130  
–140  
CONVST  
V
REF  
INTERNAL  
2.5V REF  
2.2μF  
0
50  
100  
150  
200  
250  
FREQUENCY (kHz)  
2308 G03  
REFCOMP  
10μF  
GND  
0.1μF  
2308 TA01  
2308f  
1
LTC2308  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage (AV , DV , OV )...........................6V  
DD  
DD  
DD  
Analog Input Voltage (Note 3)  
CH0 - CH7, COM, REF,  
24 23 22 21 20 19  
REFCOMP....................(GND –0.3V) to (AV + 0.3V)  
DD  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
1
2
3
4
5
6
18 GND  
Digital Input Voltage  
SD0  
SCK  
17  
16  
(Note 3) ...................... (GND –0.3V) to (DV + 0.3V)  
DD  
25  
Digital Output Voltage ..... (GND –0.3V) to (OV + 0.3V)  
15 SDI  
DD  
14  
CONVST  
Power Dissipation...............................................500mW  
13 AV  
DD  
Operating Temperature Range  
7
8
9 10 11 12  
LTC2308C ................................................ 0°C to 70°C  
LTC2308I ............................................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
UF PACKAGE  
24-LEAD (4mm × 4mm) PLASTIC QFN  
= 150°C, θ = 37°C/W  
T
JMAX  
JA  
EXPOSED PAD (PIN 25) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
24-Lead (4mm × 4mm) Plastic QFN  
24-Lead (4mm × 4mm) Plastic QFN  
TEMPERATURE RANGE  
0°C to 70°C  
–40°C to 85°C  
LTC2308CUF#PBF  
LTC2308IUF#PBF  
LTC2308CUF#TRPBF  
LTC2308IUF#TRPBF  
2308  
2308  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
CONVERTER AND MULTIPLEXER CHARACTERISTICS The  
denotes the specifications  
which apply over the full operating temperature range, otherwise specifications are at T = 25°C. (Notes 4, 5)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Bipolar Zero Error  
12  
(Note 6)  
0.3  
0.25  
1
1
1
6
LSB  
LSB  
(Note 7)  
LSB  
Bipolar Zero Error Drift  
Bipolar Zero Error Match  
Unipolar Zero Error  
0.002  
0.3  
LSB/°C  
LSB  
3
3
(Note 7)  
0.5  
LSB  
Unipolar Zero Error Drift  
Unipolar Zero Error Match  
0.002  
0.3  
LSB/°C  
LSB  
2
2308f  
2
LTC2308  
CONVERTER AND MULTIPLEXER CHARACTERISTICS The  
denotes the specifications  
which apply over the full operating temperature range, otherwise specifications are at T = 25°C. (Notes 4, 5)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
1
MAX  
UNITS  
LSB  
Bipolar Full-Scale Error  
External Reference (Note 8)  
External Reference  
9
Bipolar Full-Scale Error Drift  
Bipolar Full-Scale Error Match  
Unipolar Full-Scale Error  
Unipolar Full-Scale Error Drift  
Unipolar Full-Scale Error Match  
0.05  
0.5  
1.5  
0.05  
0.4  
LSB/°C  
LSB  
3
8
External Reference (Note 8)  
External Reference  
LSB  
LSB/°C  
LSB  
3
ANALOG INPUT The  
denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
AV  
UNITS  
+
V
Absolute Input Range (CH0 to CH7)  
(Note 9)  
–0.05  
V
IN  
IN  
DD  
+
V
Absolute Input Range (CH0 to CH7,  
COM)  
Unipolar (Note 9)  
Bipolar (Note 9)  
–0.05  
–0.05  
AV /2  
V
V
DD  
AV  
DD  
+
+
V
– V  
Input Differential Voltage Range  
V
IN  
V
IN  
= V – V (Unipolar)  
0 to REFCOMP  
REFCOMP/2  
V
V
IN  
IN  
IN  
IN  
IN  
= V – V (Bipolar)  
IN  
I
Analog Input Leakage Current  
Analog Input Capacitance  
1
μA  
IN  
C
Sample Mode  
Hold Mode  
55  
5
pF  
pF  
IN  
CMRR  
Input Common Mode Rejection Ratio  
70  
dB  
DYNAMIC ACCURACY The  
denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at T = 25°C and A = –1dBFS. (Notes 4, 10)  
A
IN  
SYMBOL  
SINAD  
SNR  
PARAMETER  
CONDITIONS  
MIN  
71  
TYP  
73.3  
73.4  
–90  
–90  
–109  
700  
25  
MAX  
UNITS  
dB  
Signal-to-(Noise + Distortion) Ratio  
Signal-to-Noise Ratio  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 1kHz  
= 1kHz  
71  
dB  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Channel-to-Channel Isolation  
Full Linear Bandwidth  
= 1kHz, First 5 Harmonics  
–78  
–80  
dB  
SFDR  
= 1kHz  
= 1kHz  
dB  
dB  
(Note 11)  
kHz  
MHz  
ns  
–3dB Input Linear Bandwidth  
Aperture Delay  
13  
Transient Reponse  
Full-Scale Step  
240  
ns  
2308f  
3
LTC2308  
INTERNAL REFERENCE CHARACTERISTICS The  
denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at T = 25°C. (Note 4)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.50  
25  
MAX  
UNITS  
V
V
V
V
V
V
Output Voltage  
Output Tempco  
Output Impedance  
I
= 0  
= 0  
2.47  
2.53  
REF  
OUT  
OUT  
I
ppm/°C  
kΩ  
REF  
–0.1mA ≤ I  
≤ 0.1mA  
8
REF  
OUT  
Output Voltage  
I
= 0  
4.096  
0.8  
V
REFCOMP  
OUT  
Line Regulation  
AV = 4.75V to 5.25V  
DD  
mV/V  
REF  
DIGITAL INPUTS AND DIGITAL OUTPUTS The  
denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
DV = 5.25V  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Digital Input Capacitance  
High Level Output Voltage  
2.4  
IH  
IL  
DD  
V
DV = 4.75V  
DD  
0.8  
10  
V
I
IN  
V
IN  
= V  
DD  
μA  
pF  
C
V
5
IN  
OV = 4.75V, I  
= –10μA  
= –200μA  
4.74  
V
V
OH  
DD  
OUT  
OUT  
OV = 4.75V, I  
4
DD  
V
Low Level Input Voltage  
OV = 4.75V, I  
DD  
= 160μA  
= 1.6mA  
0.05  
V
V
OL  
DD  
OUT  
OUT  
OV = 4.75V, I  
0.4  
10  
I
OZ  
Hi-Z Output Leakage  
Hi-Z Output Capacitance  
Output Source Current  
Output Sink Current  
V
OUT  
= 0V to OV , CONVST High  
μA  
pF  
DD  
C
CONVST High  
15  
–10  
10  
OZ  
I
I
V
OUT  
V
OUT  
= 0V  
= OV  
mA  
mA  
SOURCE  
SINK  
DD  
POWER REQUIREMENTS The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
AV  
PARAMETER  
CONDITIONS  
MIN  
4.75  
4.75  
2.7  
TYP  
5
MAX  
5.25  
5.25  
5.25  
UNITS  
Analog Supply Voltage  
Digital Supply Voltage  
Output Driver Supply Voltage  
V
V
V
DD  
DV  
OV  
5
DD  
DD  
I
DD  
Supply Current  
Nap Mode  
Sleep Mode  
C = 25pF  
3.5  
180  
7
4.2  
400  
20  
mA  
μA  
μA  
L
CONVST = 5V, Conversion Done  
CONVST = 5V, Conversion Done  
P
Power Dissipation  
Nap Mode  
Sleep Mode  
17.5  
0.9  
35  
mW  
mW  
μW  
D
2308f  
4
LTC2308  
TIMING CHARACTERISTICS The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
500  
40  
UNITS  
kHz  
MHz  
ns  
f
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Shift Clock Frequency  
CONVST High Time  
SMPL(MAX)  
SCK  
(Note 9)  
20  
2.5  
0
WHCONV  
HD  
Hold Time SDI After SCK↑  
Setup Time SDI Valid Before SCK↑  
SCK High Time  
ns  
ns  
SUDI  
f
f
= f  
= f  
10  
10  
410  
20  
ns  
WHCLK  
WLCLK  
WLCONVST  
HCONVST  
CONV  
ACQ  
SCK  
SCK  
SCK(MAX)  
SCK(MAX)  
SCK Low Time  
ns  
CONVST Low Time During Data Transfer  
Hold Time CONVST Low After Last SCK↓  
Conversion Time  
(Note 9)  
(Note 9)  
ns  
ns  
1.3  
1.6  
μs  
Acquisition Time  
240  
4
ns  
7th SCKto CONVST(Note 9)  
REFCOMP Wakeup Time (Note 12)  
SDO Data Valid After SCK↓  
SDO Hold Time After SCK↓  
SDO Valid After CONVST↓  
Bus Relinquish Time  
C
= 10μF, C = 2.2μF  
200  
ms  
ns  
REFWAKE  
dDO  
REFCOMP  
REF  
C = 25pF (Note 9)  
L
10.8  
12.5  
C = 25pF  
L
ns  
hDO  
C = 25pF  
L
11  
11  
4
15  
15  
ns  
en  
C = 25pF  
L
ns  
dis  
SDO Rise Time  
C = 25pF  
L
ns  
r
SDO Fall Time  
C = 25pF  
L
4
ns  
f
Total Cycle Time  
2
μs  
CYC  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: Bipolar zero error is the offset voltage measured from –0.5LSB  
when the output code flickers between 0000 0000 0000 and 1111 1111  
1111. Unipolar zero error is the offset voltage measured from +0.5LSB  
when the output code flickers between 0000 0000 0000 and  
0000 0000 0001.  
Note 2: All voltage values are with respect to ground with AV , DV and  
DD  
DD  
OV wired together (unless otherwise noted).  
Note 3: When these pin voltages are taken below ground or above V  
they will be clamped by internal diodes. These products can handle input  
currents greater than 100mA below ground or above V without latchup.  
Note 8: Full-scale bipolar error is the worst-case of –FS or +FS untrimmed  
deviation from ideal first and last code transitions and includes the effect  
of offset error. Unipolar full-scale error is the deviation of the last code  
transition from ideal and includes the effect of offset error.  
DD  
,
DD  
DD  
Note 9: Guaranteed by design, not subject to test.  
Note 4: AV = 5V, DV = 5V, OV = 5V, f = 500kHz, internal  
DD  
DD  
DD  
SMPL  
reference unless otherwise specified.  
Note 5: Linearity, offset and full-scale specifications apply for a single-  
Note 10: All specifications in dB are referred to a full-scale 2.048V input  
with a 2.5V reference voltage.  
ended analog input with respect to COM.  
Note 11: Full linear bandwidth is defined as the full-scale input frequency  
at which the SINAD degrades to 60dB or 10 bits of accuracy.  
Note 12: REFCOMP wakeup time is the time required for the REFCOMP pin  
to settle within 0.5LSB at 12-bit resolution of its final value after waking up  
from SLEEP mode.  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
2308f  
5
LTC2308  
T = 25°C, AV = DV = OV = 5V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
A
DD  
DD  
DD  
f
= 500ksps, Internal Reference, unless otherwise noted.  
SMPL  
Integral Nonlinearity vs  
Output Code  
Differential Nonlinearity vs  
Output Code  
1kHz Sine Wave  
8192 Point FFt Plot  
1.00  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
1.00  
0.75  
0.50  
0.25  
0
SNR = 73.7dB  
SINAD = 73.6dB  
THD = –89.5dB  
0.75  
0.50  
0.25  
0
–80  
–90  
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
–100  
–110  
–120  
–130  
–140  
2048  
0
1024  
3072  
4096  
2048  
0
50  
100  
150  
200  
250  
0
1024  
3072  
4096  
OUTPUT CODE  
FREQUENCY (kHz)  
OUTPUT CODE  
2308 G01  
2308 G03  
2308 G02  
Crosstalk vs Frequency for  
an Adjacent Pair  
SNR vs Input Frequency  
SINAD vs Input Frequency  
–60  
–70  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
3208 G04  
3208 G05  
3208 G06  
Supply Current vs  
Sampling Frequency  
THD vs Input Frequency  
Supply Current vs Temperature  
5
4
3
2
1
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
1
10  
100  
1000  
50  
TEMPERATURE (oC)  
125  
–50 –25  
0
25  
75 100  
1
10  
100  
1000  
SAMPLING FREQUENCY (ksps)  
FREQUENCY (kHz)  
3208 G08  
3208 G07  
3208 G09  
2308f  
6
LTC2308  
T = 25°C, AV = DV = OV = 5V,  
TYPICAL PERFORMANCE CHARACTERISTICS  
A
DD  
DD  
DD  
f
= 500ksps, Internal Reference, unless otherwise noted.  
SMPL  
Analog Input Leakage Current vs  
Temperature  
Sleep Current vs Temperature  
10  
1000  
800  
600  
400  
200  
0
f
= 0ksps  
SMPL  
8
6
4
2
0
CH (ON)  
CH (OFF)  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
3208 G10  
3208 G11  
Offset vs Temperature  
Full-Scale Error vs Temperature  
1.5  
1.0  
0.5  
0
4
2
BIPOLAR  
BIPOLAR  
0
UNIPOLAR  
UNIPOLAR  
–2  
–4  
–6  
EXTERNAL REFERENCE  
50 75 100 125  
TEMPERATURE (°C)  
EXTERNAL REFERENCE  
–50 –25  
0
25  
TEMPERATURE (oC)  
50  
75 100  
125  
–50 –25  
0
25  
2308 G12  
2308 G13  
2308f  
7
LTC2308  
PIN FUNCTIONS  
CH3-CH7 (Pins 1, 2, 3, 4, 5): Channel 3 to Channel 7  
Analog Inputs. CH3 – CH7 can be configured as single-  
ended or differential input channels. See the Analog Input  
Multiplexer section.  
SDI (Pin 15): Serial Data Input. The SDI serial bit stream  
configures the ADC and is latched on the rising edge of  
the first 6 SCK pulses.  
SCK (Pin 16): Serial Data Clock. SCK synchronizes the  
serial data transfer. The serial data input at SDI is latched  
on the rising edge of SCK. The serial data output at SDO  
transitions on the falling edge of SCK.  
COM (Pin 6): Common Input. This is the reference point  
for all single-ended inputs. It must be free of noise and  
connectedtogroundforunipolarconversionsandmidway  
between GND and REFCOMP for bipolar conversions.  
SDO (Pin 17): Serial Data Out. SDO outputs the data from  
the previous conversion. SDO is shifted out serially on the  
falling edge of each SCK pulse.  
V
REF  
(Pin 7): 2.5V Reference Output. Bypass to GND with  
a minimum 2.2μF tantalum capacitor or low ESR ceramic  
capacitor. The internal reference may be over driven by an  
external 2.5V reference at this pin.  
OV (Pin 19): Output Driver Supply. Bypass OV to  
DD  
DD  
GND with a 0.1μF ceramic capacitor close to the pin. The  
REFCOMP (Pin 8): Reference Buffer Output. Bypass to  
GND with a 10μF tantalum and 0.1μF ceramic capacitor  
in parallel. Nominal output voltage is 4.096V.  
range of OV is 2.7V to 5.25V.  
DD  
DV (Pin 21): 5V Digital Supply. The range of DV is  
DD  
DD  
4.75Vto5.25V. BypassDV toGNDwitha0.1μFceramic  
DD  
GND (Pins 9, 10, 11, 18, 20): Ground. All GND pins must  
be connected to a solid ground plane.  
and a 10μF tantalum capacitor in parallel.  
CH0-CH2 (Pins 22, 23, 24): Channel 0 to Channel 2  
Analog Inputs. CH0 – CH2 can be configured as single-  
ended or differential input channels. See the Analog Input  
Multiplexer section.  
AV (Pins12,13):5VAnalogSupply.TherangeofAV is  
DD  
DD  
4.75V to 5.25V. Bypass AV to GND with a 0.1μF ceramic  
DD  
and a 10μF tantalum capacitor in parallel.  
CONVST (Pin 14): Conversion Start. A rising edge at  
CONVSTbeginsaconversion.Forbestperformance,ensure  
that CONVST returns low within 40ns after the conversion  
starts or after the conversion ends.  
GND (Pin 25): Exposed Pad Ground. Must be soldered  
directly to ground plane.  
2308f  
8
LTC2308  
BLOCK DIAGRAM  
AV  
DD  
DV  
DD  
OV  
DD  
LTC2308  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
SDI  
ANALOG  
INPUT  
MUX  
12-BIT  
500ksps  
ADC  
+
SDO  
SERIAL  
PORT  
SCK  
CONVST  
V
REF  
8k  
INTERNAL  
2.5V REF  
GAIN = 1.6384x  
REFCOMP  
2308 BD  
GND  
TEST CIRCUIT  
Load Circuit for t WAVEFORM 1  
Load Circuit for t WAVEFORM 2, t  
dis en  
dis  
V
DD  
3k  
SDO  
TEST POINT  
SDO  
TEST POINT  
C
3k  
L
C
L
2308 TC02  
2308 TC01  
2308f  
9
LTC2308  
TIMING DIAGRAM  
Voltage Waveforms for SDO Delay Times, t  
and t  
t
WLCLK  
WHCLK  
(SCK Low Time)  
(SCK High Time)  
dDO  
hDO  
t
t
(Hold Time SDI After SCK)  
(Setup Time SDI Stable Before SCK)  
HD  
SCK  
t
SUDI  
V
IL  
t
dDO  
t
t
WHCLK  
WLCLK  
t
hDO  
V
V
OH  
OL  
SCK  
SDO  
t
HD  
2308 TD01  
SDI  
2308 TD03  
t
SUDI  
Voltage Waveforms for t  
dis  
Voltage Waveforms for t  
en  
V
CONVST  
IH  
CONVST  
SDO  
SDO  
WAVEFORM 1  
(SEE NOTE 1)  
90%  
2308 TD04  
t
dis  
SDO  
WAVEFORM 2  
(SEE NOTE 2)  
t
en  
10%  
NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL  
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL  
Voltage Waveforms for SDO Rise and Fall Times t , t  
r
f
2308 TD02  
V
OH  
SDO  
V
OL  
t
t
f
2308 TD05  
r
2308f  
10  
LTC2308  
APPLICATIONS INFORMATION  
Overview  
bit (LSB). The sampled input is successively compared  
with binary weighted charges supplied by the capacitive  
DACusingadifferentialcomparator.Attheendofaconver-  
sion, the DAC output balances the analog input. The SAR  
contents (a 12-bit data word) that represent the sampled  
analog input are loaded into 12 output latches that allow  
the data to be shifted out.  
The LTC2308 is a low noise, 500ksps, 8-channel, 12-bit  
successive approximation register (SAR) A/D converter.  
The LTC2308 includes a precision internal reference, a  
configurable 8-channel analog input multiplexer (MUX)  
and an SPI-compatible serial port for easy data transfers.  
The ADC may be configured to accept single-ended or  
differential signals and can operate in either unipolar or  
bipolar mode. A sleep mode option is also provided to  
save power during inactive periods.  
Programming the LTC2308  
The various modes of operation of the LTC2308 are  
programmed by a 6-bit D word. The SDI data bits are  
IN  
Conversions are initiated by a rising edge on the CONVST  
input. Once a conversion cycle has begun, it cannot be  
loaded on the rising edge of SCK, with the S/D bit loaded  
on the first rising edge and the SLP bit on the sixth rising  
edge (see Figure 8 in the Timing and Control section). The  
input data word is defined as follows:  
restarted. Between conversions, a 6-bit input word (D )  
IN  
at the SDI input configures the MUX and programs vari-  
ous modes of operation. As the D bits are shifted in,  
IN  
data from the previous conversion is shifted out on SDO.  
S/D  
O/S  
S1  
S0  
UNI  
SLP  
After the 6 bits of the D word have been shifted in, the  
IN  
ADC begins acquiring the analog input in preparation for  
the next conversion as the rest of the data is shifted out.  
The acquire phase requires a minimum time of 240ns  
for the sample-and-hold capacitors to acquire the analog  
input signal.  
S/D = SINGLE-ENDED/DIFFERENTIAL BIT  
O/S = ODD/SIGN BIT  
S1 = ADDRESS SELECT BIT 1  
S0 = ADDRESS SELECT BIT 0  
UNI = UNIPOLAR/BIPOLAR BIT  
SLP = SLEEP MODE BIT  
During the conversion, the internal 12-bit capacitive  
charge-redistribution DAC output is sequenced through a  
successive approximation algorithm by the SAR starting  
from the most significant bit (MSB) to the least significant  
2308f  
11  
LTC2308  
APPLICATIONS INFORMATION  
Analog Input Multiplexer  
4 Differential  
8 Single-Ended  
CH0  
CH1  
+ (  
)
)
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
+
+
+
+
+
+
+
+
The analog input MUX is programmed by the S/D, O/S,  
{
{
{
{
(
+
S1 and S0 bits of the D word. Table 1 lists the MUX  
IN  
+ (  
)
)
CH2  
CH3  
configurations for all combinations of the configuration  
bits.Figure1ashowsseveralpossibleMUXconfigurations  
and Figure 1b shows how the MUX can be reconfigured  
from one conversion to the next.  
(
+
+ (  
)
)
CH4  
CH5  
(
+
CH6  
CH7  
+ (  
)
)
(
+
COM (  
)
Driving the Analog Inputs  
Combinations of Differential  
and Single-Ended  
The analog inputs of the LTC2308 are easy to drive. Each  
of the analog inputs can be used as a single-ended input  
relative to the COM pin (CH0-COM, CH1-COM, etc.) or in  
differential input pairs (CH0 and CH1, CH2 and CH3, CH4  
andCH5,CH6andCH7).Figure2showshowtodriveCOM  
for single-ended inputs in unipolar and bipolar modes.  
Regardless of the MUX configuration, the “+” and “–“  
inputs are sampled at the same instant. Any unwanted  
signal that is common to both inputs will be reduced by  
thecommonmoderejectionofthesample-and-holdcircuit.  
The inputs draw only one small current spike while charg-  
ing the sample-and-hold capacitors during the acquire  
mode. In conversion mode, the analog inputs draw only  
a small leakage current. If the source impedance of the  
CH0  
+
{
CH1  
CH2  
CH3  
{
+
+
+
+
+
CH4  
CH5  
CH6  
CH7  
COM (  
)
2308 F01a  
Figure 1a. Example MUX Configurations  
1st Conversion  
2nd Conversion  
+
CH2  
CH3  
+
CH2  
CH3  
{
{
{
{
Table 1. Channel Configuration  
+
CH4  
CH5  
+
+
CH4  
CH5  
S/D O/S S1 S0  
0
1
2
3
4
5
6
+
+
7
+
COM  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
+
COM  
(UNUSED)  
COM (  
)
+
2308 F01b  
+
Figure 1b. Changing the MUX Assignment “On the Fly”  
+
+
Unipolar Mode  
Bipolar Mode  
+
+
+
+
COM  
COM  
+
REFCOMP/2  
2308 F02  
+
Figure 2. Driving COM in UNIPOLAR and BIPOLAR Modes  
+
+
+
2308f  
12  
LTC2308  
APPLICATIONS INFORMATION  
drivingcircuitislow, theADCinputscanbedrivendirectly.  
Otherwise, more acquisition time should be allowed for a  
source with higher impedance.  
equivalent resistance (R = 1/(f  
• C )) in series with  
SMPL IN  
EQ  
an ideal voltage source (V  
/2) as shown in Figure  
REFCOMP  
3b. ThemagnitudeoftheDCcurrentisthenapproximately  
= (V - V /2)/R , which is roughly propor-  
I
DC  
IN  
IN  
REFCOMP  
EQ  
Input Filtering  
tional to V . To prevent large DC drops across the resistor  
FILTER  
R
, a filter with a small resistor and large capacitor  
The noise and distortion of the input amplifier and other  
circuitry must be considered since they will add to the  
ADC noise and distortion. Therefore, noisy input circuitry  
should be filtered prior to the analog inputs to minimize  
noise. A simple 1-pole RC filter is sufficient for many  
applications.  
should be chosen. When running at the minimum cycle  
time of 2μs, the input current equals 106μA at V = 5V,  
IN  
whichamountstoafull-scaleerrorof0.5LSBswhenusing  
a filter resistor (R  
) of 4.7Ω. Applications requiring  
FILTER  
lower sample rates can tolerate a larger filter resistor for  
the same amount of full-scale error.  
The analog inputs of the LTC2308 can be modeled as  
Figures 4a and 4b show respective examples of input  
filtering for single-ended and differential inputs. For the  
single-ended case in Figure 4a, a 50Ω source resistor  
and a 2000pF capacitor to ground on the input will limit  
the input bandwidth to 1.6MHz. High quality capacitors  
and resistors should be used in the RC filter since these  
components can add distortion. NPO and silver mica type  
dielectriccapacitorshaveexcellentlinearity.Carbonsurface  
mount resistors can generate distortion from self heating  
and from damage that may occur during soldering. Metal  
film surface mount resistors are much less susceptible  
to both problems.  
a 55pF capacitor (C ) in series with a 100Ω resistor  
IN  
(R ) as shown in Figure 3a. C gets switched to the  
ON  
IN  
selected input once during each conversion. Large filter  
RC time constants will slow the settling of the inputs. It  
is important that the overall RC time constants be short  
enough to allow the analog inputs to completely settle to  
12-bit resolution within the acquisition time (t ) if DC  
ACQ  
accuracy is important.  
When using a filter with a large C  
value (e.g. 1μF),  
FILTER  
theinputsdonotcompletelysettleandthecapacitiveinput  
switching currents are averaged into a net DC current  
(I ). In this case, the analog input can be modeled by an  
DC  
50Ω  
ANALOG  
INPUT  
CH0  
LTC2308  
INPUT  
CH0-CH7  
2000pF  
COM  
LTC2308  
R
R
= 100Ω  
ON  
SOURCE  
V
IN  
C
C
= 55pF  
IN  
1
REFCOMP  
10μF  
0.1μF  
2308 F04a  
2308 F03a  
Figure 3a. Analog Input Equivalent Circuit  
Figure 4a. Optional RC Input Filtering for Single-Ended Input  
1000pF  
50Ω  
CH0  
INPUT  
I
DIFFERENTIAL  
LTC2308  
DC  
CH0-CH7  
FILTER  
R
ANALOG  
INPUTS  
1000pF  
LTC2308  
• C  
V
IN  
50Ω  
CH1  
R
EQ  
= 1/(f  
)
IN  
SMPL  
C
FILTER  
1000pF  
+
V
/2  
REFCOMP  
REFCOMP  
10μF  
0.1μF  
2308 F04b  
2308 F03b  
Figure 3b. Analog Input Equivalent Circuit  
for Large Filter Capacitances  
Figure 4b. Optional RC Input Filtering for Differential Inputs  
2308f  
13  
LTC2308  
APPLICATIONS INFORMATION  
Dynamic Performance  
where V is the RMS amplitude of the fundamental fre-  
1
quencyandV throughV aretheamplitudesofthesecond  
2
N
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise  
at the rated throughput. By applying a low distortion  
sine wave and analyzing the digital output using an FFT  
algorithm, the ADC’s spectral content can be examined  
for frequencies outside the fundamental.  
through Nth harmonics.  
Internal Reference  
The LTC2308 has an on-chip, temperature compensated  
bandgap reference that is factory trimmed to 2.5V (Refer  
to Figure 6a). It is internally connected to a reference  
Signal-to-Noise and Distortion Ratio (SINAD)  
amplifier and is available at V  
(Pin 7). V  
should  
REF  
REF  
be bypassed to GND with a 2.2μF tantalum capacitor for  
stability and to minimize noise. An 8k resistor is in series  
with the output so that it can be easily overdriven by an  
external reference if more accuracy and/or lower drift are  
required as shown in Figure 6b. The reference amplifier  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 5 shows a typical SINAD of 73.3dB with  
a500kHzsamplingrateanda1kHzinput. ASNRof73.4dB  
can be achieved with the LTC2308.  
gains the V  
voltage by 1.638 to 4.096V at REFCOMP  
REF  
(Pin 8). To compensate the reference amplifier, bypass  
REFCOMP with a 10μF ceramic or tantalum capacitor  
in parallel with a 0.1μF ceramic capacitor for best noise  
performance.  
Total Harmonic Distortion (THD)  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
Internal Conversion Clock  
The internal conversion clock is factory trimmed to  
achieve a typical conversion time (t  
maximum conversion time of 1.6μs over the full operat-  
ing temperature range. With a typical acquisition time of  
240ns, a throughput sampling rate of 500ksps is tested  
and guaranteed.  
) of 1.3μs and a  
CONV  
band between DC and half the sampling frequency(f  
/2). THD is expressed as:  
SMPL  
V 2 + V 2 + V42...+ V 2  
2
3
N
THD= 20log  
V
1
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
0
50  
100  
150  
200  
250  
FREQUENCY (kHz)  
2308 F05  
Figure 5. 1kHz Sine Wave 8192 Point FFT Plot  
2308f  
14  
LTC2308  
APPLICATIONS INFORMATION  
Digital Interface  
after the t  
period, the LTC2308 enters NAP or SLEEP  
CONV  
mode, depending on the setting of SLP bit from the D  
IN  
The LTC2308 communicates via a standard 4-wire SPI  
compatible digital interface. The rising edge of CONVST  
initiatesaconversion. Aftertheconversionisnished, pull  
CONVST low to enable the serial output (SDO). The ADC  
shifts out the digital data in 2’s complement format when  
operatinginbipolarmodeorinstraightbinaryformatwhen  
in unipolar mode, based on the setting of the UNI bit.  
word that was shifted in after the previous conversion.  
(see Nap Mode and Sleep Mode for more detail).  
When CONVST returns low, the ADC wakes up and the  
most significant bit (MSB) of the output data sequence  
at SDO becomes valid after the serial data bus is enabled.  
All other data bits from SDO transition on the falling edge  
of each SCK pulse. Configuration data (D ) is loaded into  
IN  
For best performance, ensure that CONVST returns low  
within40nsaftertheconversionstarts(i.e.,beforetherst  
bit decision) or after the conversion ends. If CONVST is  
low when the conversion ends, the MSB bit will appear at  
SDO at the end of the conversion and the ADC will remain  
powered up.  
the LTC2308 at SDI, starting with the first SCK rising edge  
after CONVST returns low. The S/D bit is loaded on the  
first SCK rising edge.  
Example 2 (Figure 9) shows CONVST returning low be-  
fore the conversion ends. In this mode, the ADC and all  
internal circuitry remain powered up. When the conver-  
sion is complete, the MSB of the output data sequence at  
SDO becomes valid after the data bus is enabled. At this  
Timing and Control  
The start of a conversion is triggered by a rising edge at  
CONVST. Once initiated, a new conversion cannot be re-  
started until the current conversion is complete. Figures 8  
and9showthetimingdiagramsfortwodifferentexamples  
of CONVST pulses. Example 1 (Figure 8) shows CONVST  
staying HIGH after the conversion ends. If CONVST is high  
point(t  
1.3μs after the rising edge of CONVST), puls-  
CONV  
ing SCK will shift data out at SDO and load configuration  
data (D ) into the LTC2308 at SDI. The first SCK rising  
IN  
edge loads the S/D bit into the LTC2308. SDO transitions  
on the falling edge of each SCK pulse.  
R1  
8k  
V
REF  
5V  
BANDGAP  
REFERENCE  
2.5V  
2.2μF  
0.1MF  
V
IN  
LT1790A-2.5  
V
REFCOMP  
4.096V  
10μF  
REFERENCE  
AMP  
V
OUT  
REF  
LTC2308  
2.2μF  
0.1μF  
R2  
REFCOMP  
GND  
0.1μF  
+
10μF  
R3  
GND  
LTC2308  
2308 F06b  
2308 F06a  
Figure 6a. LTC2308 Reference Circuit  
Figure 6b. Using the LT1790A-2.5 as an External Reference  
2308f  
15  
LTC2308  
APPLICATIONS INFORMATION  
Figures 8 and 9 are the transfer characteristics for the  
bipolar and unipolar modes. Data is output at SDO in 2’s  
complement format for bipolar readings and in straight  
binary for unipolar readings.  
Board Layout and Bypassing  
Toobtainthebestperformance,aprintedcircuitboardwith  
a solid ground plane is required. Layout for the printed  
circuit board should ensure digital and analog signal lines  
are separated as much as possible. Care should be taken  
not to run any digital signal alongside an analog signal. All  
Nap Mode  
The ADC enters nap mode when CONVST is held high  
analoginputsshouldbeshieldedbyGND. V , REFCOMP  
REF  
after the conversion is complete (t ) if the SLP bit is  
CONV  
and AV should be bypassed to the ground plane as  
DD  
set to a logic 0. The supply current decreases to 180μA  
in nap mode between conversions, thereby reducing the  
average power dissipation as the sample rate decreases.  
For example, the LTC2308 draws an average of 200μA  
with a 1ksps sampling rate. The LTC2308 keeps only the  
close to the pin as possible. Maintaining a low impedance  
path for the common return of these bypass capacitors  
is essential to the low noise operation of the ADC. These  
traces should be as wide as possible. See Figure 7 for a  
suggested layout.  
reference(V )andreferencebuffer(REFCOMP)circuitry  
REF  
DV , BYPASS  
DD  
10μF, 0603  
active when in nap mode.  
Sleep Mode  
0V , BYPASS  
DD  
10μF, 0603  
The ADC enters sleep mode when CONVST is held high  
after the conversion is complete (t  
) if the SLP bit is  
CONV  
set to a logic 1. The ADC draws only 7μA in sleep mode,  
providedthatnoneofthedigitalinputsareswitching.When  
CONVST returns low, the LTC2308 is released from the  
SLEEP mode and requires 200ms to wake up and charge  
the respective 2.2μF and 10μF bypass capacitors on the  
V
and REFCOMP pins.  
REF  
AV , BYPASS  
DD  
10μF || 0.1μF, 0603  
V
, BYPASS  
REF  
2.2μF, 1206  
REFCOMP, BYPASS  
10μF || 0.1μF, 0603  
NOTE: SECOND LAYER OF BOARD IS A SOLID GROUND PLANE.  
Figure 7. Suggested Layout  
2308f  
16  
LTC2308  
APPLICATIONS INFORMATION  
t
WLCONVST  
t
ACQ  
CONVST  
NAP OR  
SLEEP  
t
CONV  
t
CYC  
1
2
3
4
5
6
7
8
9
10 11 12  
SCK  
SDI  
S/D O/S S1 S0 UNI SLP  
MSB  
LSB  
Hi-Z  
Hi-Z  
SDO  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
2308 F08  
Figure 8. LTC2308 Timing with a Long CONVST Pulse  
t
t
HCONVST  
WHCONV  
t
ACQ  
CONVST  
t
CYC  
t
CONV  
1
2
3
4
5
6
7
8
9
10 11 12  
SCK  
SDI  
S/D O/S S1 S0 UNI SLP  
MSB  
LSB  
B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
Hi-Z  
Hi-Z  
SDO  
B11  
2308 F09  
Figure 9. LTC2308 Timing with a Short CONVST Pulse  
2308f  
17  
LTC2308  
APPLICATIONS INFORMATION  
011...111  
111...111  
111...110  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
100...001  
100...000  
011...111  
011...110  
UNIPOLAR  
ZERO  
FS = 4.096V  
1LSB = FS/2N  
1LSB = 1mV  
FS = 4.096V  
1LSB = FS/2  
100...001  
100...000  
000...001  
000...000  
N
1LSB = 1mV  
–1 0V  
1
–FS/2  
FS/2 – 1LSB  
0V  
FS – 1LSB  
LSB  
LSB  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
2308 F10  
2308 F11  
Figure 10. LTC2308 Bipolar Transfer  
Characteristics (2’s Complement)  
Figure 11. LTC2308 Unipolar Transfer  
Characteristics (Straight Binary)  
2308f  
18  
LTC2308  
PACKAGE DESCRIPTION  
UF Package  
24-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1697)  
0.70 0.05  
4.50 0.05  
3.10 0.05  
2.45 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
R = 0.115  
PIN 1 NOTCH  
R = 0.20 TYP OR  
0.35 × 45° CHAMFER  
0.75 0.05  
4.00 0.10  
(4 SIDES)  
TYP  
23 24  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 0.10  
1
2
2.45 0.10  
(4-SIDES)  
(UF24) QFN 0105  
0.200 REF  
0.25 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2308f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC2308  
TYPICAL APPLICATION  
Clock Squaring/Level Shifting Circuit Allows Testing with RF Sine Generator,  
Convert Re-Timing Flip-Flop Preserves Low Jitter Clock Timing  
5V  
2.7V TO 5V  
10MF  
0.1MF  
10MF  
0.1MF  
0.1MF  
LTC2308  
AV  
DV  
OV  
DD  
DD  
DD  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
SDI  
ANALOG  
INPUT  
MUX  
SDO  
12-BIT  
500ksps  
ADC  
+
SERIAL  
PORT  
SCK  
V
CONVST  
CC  
NL17SZ74  
CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
V
REF  
PRE  
INTERNAL  
2.5V REF  
2.2MF  
Q
Q
D
CLR  
CONVERT ENABLE  
REFCOMP  
GND  
0.1MF  
10MF  
V
CC  
RF SIGNAL GENERATOR OR  
OTHER LOW-JITTER SOURCE  
0.1MF  
1k  
MASTER  
CLOCK  
NC7SVU04P5X  
507  
1k  
MASTER CLOCK  
JITTER  
CONVERT ENABLE  
CONVST  
DATA TRANSFER  
2308 TA02  
RELATED PARTS  
PART NUMBER  
LTC1417  
DESCRIPTION  
COMMENTS  
14-Bit, 400ksps Serial ADC  
20mW, Unipolar or Bipolar, Internal Reference, SSOP-16 Package  
LTC1468/LT1469  
LTC1609  
Single/Dual 90MHz, 22V/μs, 16-Bit Accurate Op Amps Low Input Offset: 75μV/125μV  
16-Bit, 200ksps Serial ADC  
65mW, Configurable Bipolar and Unipolar Input Ranges, 5V Supply  
LTC1790  
Micropower Low Dropout Reference  
10-Bit/12-Bit, 8-Channel, 1.25Msps ADC  
10-Bit/12-Bit, 8-Channel, 400ksps ADC  
12-Bit, 1-/2-Channel, 250ksps ADC in MSOP  
60μA Supple Current, 10ppm/°C, SOT-23 Package  
LTC1850/LTC1851  
LTC1852/LTC1853  
LTC1860/LTC1861  
Parallel Output, Programmable MUX and Sequencer, 5V Supply  
Parallel Output, Programmable MUX and Sequencer, 3V or 5V Supply  
850μA at 250ksps, 2μA at 1ksps, SO-8 and MSOP Packages  
450μA at 150ksps, 10μA at 1ksps, SO-8 and MSOP Packages  
6.5mW, Unipolar or Bipolar, Internal Reference, SSOP-16 Package  
2mW, Unipolar or Bipolar, Internal Reference, SSOP-16 Package  
850μA at 250ksps, 2μA at 1ksps, SO-8 and MSOP Packages  
450μA at 150ksps, 10μA at 1ksps, SO-8 and MSOP Packages  
LTC1860L/LTC1861L 3V, 12-Bit, 1-/2-Channel, 150ksps ADC  
LTC1863/LTC1867 12-/16-Bit, 8-Channel, 200ksps ADC  
LTC1863L/LTC1867L 3V, 12-/16-Bit, 8-Channel, 175ksps ADC  
LTC1864/LTC1865 16-Bit, 1-/2-Channel, 250ksps ADC in MSOP  
LTC1864L/LTC1865L 3V, 16-Bit, 1-/2-Channel, 150ksps ADC in MSOP  
2308f  
LT 0807 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2308IUF#PBF

LTC2308 - Low Noise, 500ksps, 8-Channel, 12-Bit ADC; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C
Linear

LTC2308IUF#TRPBF

LTC2308 - Low Noise, 500ksps, 8-Channel, 12-Bit ADC; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C
Linear

LTC2308IUF-PBF

Low Noise, 500ksps, 8-Channel, 12-Bit ADC
Linear

LTC2308IUF-TRPBF

Low Noise, 500ksps, 8-Channel, 12-Bit ADC
Linear

LTC2308IUFXPBF

Low Noise, 500ksps, 8-Channel, 12-Bit ADC
Linear

LTC2308IUFXTRPBF

Low Noise, 500ksps, 8-Channel, 12-Bit ADC
Linear

LTC2309

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear

LTC2309CF#PBF

LTC2309 - 8-Channel, 12-Bit SAR ADC with I<sup>2</sup>C Interface; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2309CUF#PBF

LTC2309 - 8-Channel, 12-Bit SAR ADC with I<sup>2</sup>C Interface; Package: QFN; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2309CUF-PBF

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear

LTC2309CUF-TRPBF

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear

LTC2309CUFXPBF

8-Channel, 12-Bit SAR ADC with I2C Interface
Linear