LTC2321HUFD-12#PBF [Linear]

LTC2321-12 - Dual, 12-Bit + Sign, 2Msps Differential Input ADC with Wide Input Common Mode Range; Package: QFN; Pins: 28; Temperature Range: -40°C to 125°C;
LTC2321HUFD-12#PBF
型号: LTC2321HUFD-12#PBF
厂家: Linear    Linear
描述:

LTC2321-12 - Dual, 12-Bit + Sign, 2Msps Differential Input ADC with Wide Input Common Mode Range; Package: QFN; Pins: 28; Temperature Range: -40°C to 125°C

转换器
文件: 总24页 (文件大小:1109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2321-12  
Dual, 12-Bit + Sign, 2Msps  
Differential Input ADC with Wide  
Input Common Mode Range  
DescripTion  
FeaTures  
The LTC®2321-12 is a low noise, high speed dual 12-bit +  
sign successive approximation register (SAR) ADC with  
differential inputs and wide input common mode range.  
n
2Msps Throughput Rate  
n
0ꢀ5ꢁSꢂ INꢁ ꢃTꢄpꢅ  
n
Guaranteed 12-ꢂit, No Missing Codes  
n
8V Differential Inputs with Wide Input Common  
Operatingfromasingle3.3Vor5Vsupply,theLTC2321-12  
P-P  
Mode Range  
has an 8V differential input range, making it ideal for  
P-P  
n
n
n
n
n
73dꢂ SNR ꢃTꢄpꢅ at f = 500kHz  
applications which require a wide dynamic range with  
high common mode rejection. The LTC2321-12 achieves  
±±.5LSꢀ INL typical, no missing codes at 12 bits and  
73dꢀ SNR.  
IN  
IN  
–85dꢂ THD ꢃTꢄpꢅ at f = 500kHz  
Guaranteed Operation to 125°C  
Single 3.3V or 5V Supply  
Low Drift (2±ppm/°C Max) 2.±48V or 4.±96V Internal  
Reference  
TheLTC2321-12hasanonboardlowdrift(2±ppm/°Cmax)  
2.±48V or 4.±96V temperature-compensated reference.  
The LTC2321-12 also has a high speed SPI-compatible  
serial interface that supports CMOS or LVDS. The fast  
2Msps per channel throughput with zero cycle latency  
makes the LTC2321-12 ideally suited for a wide variety of  
high speed applications. The LTC2321-12 dissipates only  
3±mW per channel and offers nap and sleep modes to  
reduce the power consumption to 5μW for further power  
savings during inactive periods.  
n
n
n
n
1.8V to 2.5V I/O Voltages  
CMOS or LVDS SPI-Compatible Serial I/O  
Power Dissipation 3±mW/Ch (Typ)  
Small 28-Lead (4mm × 5mm) QFN Package  
applicaTions  
n
High Speed Data Acquisition Systems  
n
Communications  
n
Remote Data Acquisition  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Imaging  
n
Optical Networking  
n
Automotive  
n
Multiphase Motor Control  
Typical applicaTion  
32k Point FFT fS = 2Msps, fIN = 500klHz  
DIFFERENTIAL INPUTS  
3.3V OR 5V  
10µF  
NO CONFIGURATION REQUIRED  
0
+
SNR = 72.9dB  
IN , IN  
THD = –86.1dB  
SINAD = 72.8dB  
–20  
INSTRUMENTATION  
DIFFERENTIAL  
V
REFOUT1  
VBYP1  
DD  
SFDR = 89.5dB  
25Ω  
10µF  
1µF  
A
+
–40  
IN1  
LTC2321-12  
REFOUT2  
–60  
–80  
0V  
0V  
0V  
220pF  
10µF  
1µF  
VBYP2  
BIPOLAR  
UNIPOLAR  
25Ω  
–100  
SDO1  
SDO2  
CLKOUT  
SCK  
A
A
A
IN1  
IN2  
IN2  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
+
–120  
–140  
0V  
CMOS/LVDS  
REFINT  
GND  
V
DD  
CNV  
OGND OV  
1.8V TO 2.5V  
DD  
0.2  
0.4  
0.6  
0.8  
0
1
1µF  
FREQUENCY (MHz)  
232112 TA01a  
232112 TA01b  
232112f  
1
For more information www.linear.com/LTC2321-12  
LTC2321-12  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
ꢃNotes 1, 2ꢅ  
Supply Voltage (V )..................................................6V  
TOP VIEW  
DD  
Supply Voltage (OV )................................................3V  
DD  
Supply ꢀypass Voltage (V  
Analog Input Voltage  
, V  
) .......................3V  
ꢀYP1 ꢀYP2  
28 27 26 25 24 23  
A
, A (Note 3) ................... –±.3V to (V + ±.3V)  
IN DD  
+
IN  
+
V
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
SCK  
SCK  
DD  
REFOUT1,2 ............................. .–±.3V to (V + ±.3V)  
DD  
DD  
A
A
+
IN2  
+
CNV (Note 15).......................... –±.3V to (V + ±.3V)  
SDO2  
SDO2  
IN2  
29  
GND  
Digital Input Voltage  
GND  
GND  
+
CLKOUT  
(Note 3).......................... (GND – ±.3V) to (OV + ±.3V)  
DD  
A
+
CLKOUT  
IN1  
Digital Output Voltage  
A
SDO1  
IN1  
V
(Note 3).......................... (GND – ±.3V) to (OV + ±.3V)  
DD  
+
SDO1  
DD  
Power Dissipation...............................................2±±mW  
9
10 11 12 13 14  
UFD PACKAGE  
Operating Temperature Range  
LTC2321C ................................................ ±°C to 7±°C  
LTC2321I..............................................–4±°C to 85°C  
LTC2321H .......................................... –4±°C to 125°C  
Storage Temperature Range .................. –65°C to 15±°C  
28-LEAD (4mm × 5mm) PLASTIC QFN  
T
= 125°C, θ = 43°C/W  
JMAX  
JA  
EXPOSED PAD (PIN 29) IS GND, MUST ꢀE SOLDERED TO PCꢀ  
orDer inForMaTion  
ꢁEAD FREE FINISH  
TAPE AND REEꢁ  
PART MARKING*  
23212  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2321CUFD-12#PꢀF  
LTC2321IUFD-12#PꢀF  
LTC2321HUFD-12#PꢀF  
LTC2321CUFD-12#TRPꢀF  
LTC2321IUFD-12#TRPꢀF  
LTC2321HUFD-12#TRPꢀF  
±°C to 7±°C  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
23212  
–4±°C to 85°C  
–4±°C to 125°C  
23212  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics The l denotes the specifications which applꢄ over the full operating  
temperature range, otherwise specifications are at TA = 25°C ꢃNote 4ꢅꢀ  
SYMꢂOꢁ  
PARAMETER  
CONDITIONS  
(Note 5)  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
l
l
+
+
+
+
V
V
V
V
Absolute Input Range (A  
Absolute Input Range (A  
, A  
)
±
V
V
IN  
IN  
IN  
IN1  
IN2  
IN2  
DD  
DD  
, A  
)
(Note 5)  
±
V
IN1  
+
= V – V  
IN  
– V  
Input Differential Voltage Range  
Common Mode Input Range  
Analog Input DC Leakage Current  
Analog Input Capacitance  
V
V
–REFOUT1,2  
REFOUT1,2  
V
IN  
IN  
IN  
IN  
+
= (V + V )/2  
±
V
DD  
V
CM  
IN  
IN  
I
–1  
1
µA  
pF  
dꢀ  
IN  
C
1±  
85  
IN  
CMRR  
Input Common Mode Rejection Ratio  
External Reference Current  
f
= 2.2MHz  
IN  
I
REFINT = ±V, REFOUT = 4.±96V  
31±  
µA  
REFOUT  
232112f  
2
For more information www.linear.com/LTC2321-12  
LTC2321-12  
converTer characTerisTics The l denotes the specifications which applꢄ over the full operating  
temperature range, otherwise specifications are at TA = 25°C ꢃNotes 4, 16ꢅꢀ  
SYMꢂOꢁ PARAMETER  
CONDITIONS  
MIN  
12  
TYP  
MAX  
UNITS  
ꢀits  
l
l
Resolution  
No Missing Codes  
12  
ꢀits  
Transition Noise  
±.4  
±±.5  
±±.4  
±
LSꢀ  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
ꢀipolar Zero-Scale Error  
ꢀipolar Zero-Scale Error Drift  
ꢀipolar Full-Scale Error  
ꢀipolar Full-Scale Error Drift  
(Note 6)  
(Note 7)  
–1  
1
LSꢀ  
DNL  
ꢀZE  
–±.99  
–1.5  
±.99  
1.5  
LSꢀ  
LSꢀ  
±.±±15  
±2  
LSꢀ/°C  
LSꢀ  
l
FSE  
V
V
= 4.±96V (REFINT Grounded) (Note 7)  
= 4.±96V (REFINT Grounded)  
–23  
23  
REFOUT1,2  
15  
ppm/°C  
REFOUT1,2  
DynaMic accuracy The l denotes the specifications which applꢄ over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dꢂFS ꢃNotes 4, 8ꢅꢀ  
SYMꢂOꢁ PARAMETER  
CONDITIONS  
MIN  
TYP  
72.8  
73  
MAX  
UNITS  
dꢀ  
l
l
l
l
SINAD  
Signal-to-(Noise + Distortion) Ratio f = 5±±kHz, V  
= 4.±96V, Internal Reference  
= 5V, External Reference  
= 4.±96V, Internal Reference  
= 5V, External Reference  
= 4.±96V, Internal Reference  
= 5V, External Reference  
= 4.±96V, Internal Reference  
= 5V, External Reference  
69.5  
IN  
REFOUT1,2  
REFOUT1,2  
REFOUT1,2  
REFOUT1,2  
REFOUT1,2  
REFOUT1,2  
REFOUT1,2  
REFOUT1,2  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 5±±kHz, V  
= 5±±kHz, V  
= 5±±kHz, V  
= 5±±kHz, V  
= 5±±kHz, V  
= 5±±kHz, V  
= 5±±kHz, V  
dꢀ  
SNR  
Signal-to-Noise Ratio  
7±  
78  
73  
dꢀ  
73.5  
–85  
–84  
88  
dꢀ  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
–8±  
dꢀ  
dꢀ  
SFDR  
dꢀ  
88  
dꢀ  
–3dꢀ Input Linear ꢀandwidth  
Aperture Delay  
1±  
MHz  
ps  
5±±  
5±±  
1
Aperture Delay Matching  
Aperture Jitter  
ps  
ps  
RMS  
Transient Response  
Full-Scale Step  
3
ns  
inTernal reFerence characTerisTics The l denotes the specifications which applꢄ over the  
full operating temperature range, otherwise specifications are at TA = 25°C ꢃNote 4ꢅꢀ  
SYMꢂOꢁ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Internal Reference Output Voltage  
4.75V < V < 5.25V  
4.±88  
2.±44  
4.±96  
2.±48  
4.1±6  
2.±53  
V
REOUT1,2  
DD  
3.13V < V < 3.47V  
DD  
l
V
Temperature Coefficient  
(Note 14)  
3
2±  
ppm/°C  
Ω
REFIN  
REFOUT1,2 Output Impedance  
Line Regulation  
±.25  
±.3  
V
V
DD  
= 4.75V to 5.25V  
mV/V  
REFOUT1,2  
232112f  
3
For more information www.linear.com/LTC2321-12  
LTC2321-12  
DigiTal inpuTs anD DigiTal ouTpuTs The l denotes the specifications which applꢄ over the  
full operating temperature range, otherwise specifications are at TA = 25°C ꢃNote 4ꢅꢀ  
SYMꢂOꢁ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
IH  
V
IL  
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
±.8 • OV  
DD  
±.2 • OV  
1±  
V
DD  
I
V
IN  
= ±V to OV  
DD  
–1±  
μA  
pF  
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
5
IN  
l
l
l
I = -5±±µA  
O
OV – ±.2  
DD  
V
OH  
OL  
I = 5±±µA  
O
±.2  
1±  
V
I
I
I
V
OUT  
V
OUT  
V
OUT  
= ±V to OV  
DD  
–1±  
µA  
mA  
mA  
mV  
V
OZ  
= ±V  
= OV  
–1±  
1±  
SOURCE  
SINK  
Output Sink Current  
DD  
l
l
l
V
V
V
LVDS Differential Input Voltage  
LVDS Common Mode Input Voltage  
LVDS Differential Output Voltage  
1±±Ω Differential Termination, OV = 2.5V  
24±  
1
6±±  
1.45  
3±±  
ID  
DD  
1±±Ω Differential Termination, OV = 2.5V  
IS  
DD  
1±±Ω Differential Load, LVDS Mode,  
OV = 2.5V  
DD  
1±±  
15±  
1.2  
1±±  
1.2  
mV  
OD  
l
l
l
V
V
V
LVDS Common Mode Output Voltage 1±±Ω Differential Load, LVDS Mode,  
±.85  
75  
1.4  
25±  
1.4  
V
mV  
V
OS  
OV = 2.5V  
DD  
Low Power LVDS Differential Output  
Voltage  
1±±Ω Differential Load, Low Power,  
LVDS Mode ,OV = 2.5V  
OD_LP  
OS_LP  
DD  
Low Power LVDS Common Mode  
Output Voltage  
1±±Ω Differential Load, Low Power,  
LVDS Mode ,OV = 2.5V  
±.9  
DD  
power requireMenTs The l denotes the specifications which applꢄ over the full operating temperature  
range, otherwise specifications are at TA = 25°C ꢃNote 4ꢅꢀ  
SYMꢂOꢁ PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
DD  
Supply Voltage  
5V Operation  
3.3V Operation  
4.75  
3.13  
5.25  
3.47  
V
V
l
l
OV  
Supply Voltage  
Supply Current  
Supply Current  
1.71  
2.63  
15  
V
DD  
+
I
I
2Msps Sample Rate (IN = IN = ±V)  
2Msps Sample Rate (C = 5pF)  
11.8  
mA  
VDD  
l
l
CMOS Mode  
LVDS Mode  
1.8  
7.1  
2
11  
mA  
mA  
OVDD  
L
2Msps Sample Rate (R = 1±±Ω)  
L
l
I
I
Nap Mode Current  
Sleep Mode Current  
Conversion Done (I  
)
2.55  
5
mA  
NAP  
VDD  
l
l
Sleep Mode (I  
Sleep Mode (I  
+ I  
+ I  
)
)
CMOS Mode  
LVDS Mode  
1
1
5
5
μA  
μA  
SLEEP  
VDD  
VDD  
OVDD  
OVDD  
+
+
P
Power Dissipation  
Nap Mode  
V
V
= 3.3V 2Msps Sample Rate (IN = IN = ±V) CMOS Mode  
37  
52  
58  
86  
mW  
mW  
D_3.3V  
DD  
DD  
= 3.3V 2Msps Sample Rate (IN = IN = ±V) LVDS Mode  
V
DD  
V
DD  
= 3.3V Conversion Done (I  
= 3.3V Conversion Done (I  
+ I  
+ I  
)
)
CMOS Mode  
LVDS Mode  
7.8  
26  
13  
41  
mW  
mW  
VDD  
VDD  
OVDD  
OVDD  
Sleep Mode  
V
V
= 3.3V Sleep Mode (I  
= 3.3V Sleep Mode (I  
+ I  
+ I  
)
CMOS Mode  
LVDS Mode  
5
5
16.5  
16.5  
μW  
μW  
DD  
DD  
VDD  
VDD  
OVDD  
OVDD  
+
)
P
Power Dissipation  
Nap Mode  
V
DD  
V
DD  
= 5V 2Msps Sample Rate (IN = IN = ±V) CMOS Mode  
= 5V 2Msps Sample Rate (IN = IN = ±V) LVDS Mode  
6±  
77  
8±  
1±2.5  
mW  
mW  
D_5V  
+
V
DD  
V
DD  
= 5V Conversion Done (I  
= 5V Conversion Done (I  
+ I  
+ I  
)
)
CMOS Mode  
LVDS Mode  
13  
31  
25  
4±  
mW  
mW  
VDD  
VDD  
OVDD  
OVDD  
Sleep Mode  
V
DD  
V
DD  
= 5V Sleep Mode (I  
= 5V Sleep Mode (I  
+ I  
OVDD  
+ I  
OVDD  
)
CMOS Mode  
LVDS Mode  
5
5
25  
25  
μW  
μW  
VDD  
VDD  
)
232112f  
4
For more information www.linear.com/LTC2321-12  
LTC2321-12  
aDc TiMing characTerisTics The l denotes the specifications which applꢄ over the full operating  
temperature range, otherwise specifications are at TA = 25°C ꢃNote 4ꢅꢀ  
SYMꢂOꢁ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2
UNITS  
Msps  
ns  
l
l
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Time ꢀetween Conversions  
Acquisition Time  
SMPL  
(Note 11)  
(Note 11)  
5±±  
3±  
1±±±±±±  
CYC  
ns  
ACQ  
Conversion Time  
22±  
25±  
25  
ns  
CONV  
READOUT Time  
ns  
READOUT  
DCNVSCKL  
DSCKLCNVH  
SCK  
(Note 11)  
ns  
SCK Quiet Time from CNV↓  
SCK Delay Time to CNV↑  
SCK Period  
(Note 11)  
±
ns  
(Notes 12, 13)  
15.6  
7
ns  
SCK High Time  
ns  
SCKH  
SCK Low Time  
7
ns  
SCKL  
SCK to CLKOUT Delay  
SDO Data Valid Delay from CLKOUT↓  
(Note 12)  
2.8  
ns  
DSCKCLKOUT  
DCLKOUTSDOV  
HSDO  
C = 5pF (Note 12)  
L
2.5  
2.5  
ns  
SDO Data Remains Valid Delay from  
CLKOUT↓  
C = 5pF (Note 11)  
L
ns  
l
l
t
t
t
C = 5pF (Note 11)  
2.5  
1±  
3
3
ns  
ns  
SDO Data Valid Delay from CNV↓  
ꢀus Relinquish Time After CNV↑  
REFOUT1,2 Wake-Up Time  
DCNVSDOV  
DCNVSDOZ  
WAKE  
L
(Note 11)  
C
= 1±μF  
ms  
REFOUT1,2  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 8: All specifications in dꢀ are referred to a full-scale ±4.±96V input  
with REFOUT = 4.±96V.  
Note 9: When REFOUT1,2 is overdriven, the internal reference buffer must  
be turned off by setting REFINT = ±V.  
Note 2: All voltage values are with respect to ground.  
Note 10: f  
= 2MHz, I  
varies proportionally with sample rate.  
SMPL  
REFꢀUF  
Note 3: When these pin voltages are taken below ground, or above V  
DD  
Note 11: Guaranteed by design, not subject to test.  
Note 12: Parameter tested and guaranteed at OV = 1.71V and  
or OV , they will be clamped by internal diodes. This product can handle  
DD  
DD  
input currents up to 1±±mA below ground, or above V or OV , without  
DD  
DD  
OV = 2.5V.  
DD  
latch-up.  
Note 4: V = 5V, OV = 2.5V, REFOUT1,2 = 4.±96V, f = 2MHz.  
SMPL  
Note 13: t  
of 15.6ns maximum allows a shift clock frequency up to  
SCK  
DD  
DD  
64MHz for rising edge capture.  
Note 14: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 5: Recommended operating conditions.  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 7: ꢀipolar zero error is the offset voltage measured from –±.5LSꢀ  
when the output code flickers between ± ±±±± ±±±± ±±±± and 1 1111  
1111 1111. Full-scale bipolar error is the worst-case of –FS or +FS un-  
trimmed deviation from ideal first and last code transitions and includes  
the effect of offset error.  
Note 15: CNV is driven from a low jitter digital source, typically at OV  
logic levels. This input pin has a TTL style input that will draw a small  
amount of current.  
DD  
12  
Note 16: 1LSꢀ = 2 • REFOUT1,2/2  
0.8 • OV  
DD  
t
WIDTH  
0.2 • OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
232112 F01  
0.8 • OV  
0.8 • OV  
0.2 • OV  
DD  
DD  
DD  
DD  
0.2 • OV  
Figure 1ꢀ Voltage ꢁevels for Timing Specifications  
232112f  
5
For more information www.linear.com/LTC2321-12  
LTC2321-12  
Typical perForMance characTerisTics  
TA = 25°C, VDD = 5V, OVDD = 2ꢀ5V, REFOUT1,2 =  
4ꢀ096V, fSMPꢁ = 2Msps, unless otherwise noted ꢃNote 16ꢅꢀ  
Integral Nonlinearitꢄ  
vs Output Code  
Differential Nonlinearitꢄ  
vs Output Code  
DC Histogram  
1.0  
0.5  
1.00  
0.80  
0.60  
0.40  
0.20  
0
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
0
0.20  
0.40  
0.60  
0.80  
–1.00  
–0.5  
–1.0  
–4096  
–2048  
0
2048  
4096  
–2  
–1  
0
1
2
–4096  
–2048  
0
2048  
4096  
CODE  
OUTPUT CODE  
232112 G01  
OUTPUT CODE  
232112 G03  
232112 G02  
THD, Harmonics vs Input  
Frequencꢄ ꢃ50kHz to 1MHzꢅ  
32k Point FFT, fS =2Msps,  
fIN = 500kHz  
SNR, SINAD vs Input Frequencꢄ  
ꢃ50kHz to 1MHzꢅ  
–85  
–90  
0
–20  
74.0  
73.5  
73.0  
72.5  
72.0  
71.5  
71.0  
SNR = 72.9dB  
THD = –86.1dB  
SINAD = 72.8dB  
SFDR = 89.5dB  
THD  
–40  
SNR  
–95  
HD2  
HD3  
–60  
SINAD  
–80  
–100  
–100  
–120  
–140  
–105  
–110  
0
0.25  
0.50  
0.75  
1
0
0.5  
1
0.2  
0.4  
0.6  
0.8  
0
1
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
232112 G06  
232112 G05  
232112 G04  
THD, Harmonics vs  
Input Common Mode  
SNR, SINAD vs Reference Voltage,  
fIN = 500kHz  
8k Point FFT, IMD, fS = 2Msps,  
VIN+ = 100kHz, VIN= 500kHz  
–75  
–80  
0
–20  
SNR  
73  
71  
69  
67  
65  
SINAD  
–85  
–40  
THD  
–90  
–95  
–60  
HD2  
HD3  
–80  
–100  
–105  
–100  
–120  
–140  
–110  
2.1 2.3 2.5 2.7 2.9  
INPUT COMMON MODE (V)  
3.3  
1.5  
2
2.5  
3
3.5  
5
1.7 1.9  
3.1  
0.5  
1
4
4.5  
0.2  
0.4  
FREQUENCY (MHz)  
0
0.6  
0.8  
1.0  
V
REF  
(V)  
232112 G07  
232112 G08  
232112 G09  
232112f  
6
For more information www.linear.com/LTC2321-12  
LTC2321-12  
Typical perForMance characTerisTics  
TA = 25°C, VDD = 5V, OVDD = 2ꢀ5V, REFOUT1,2 =  
4ꢀ096V, fSMPꢁ = 2Msps, unless otherwise noted ꢃNote 16ꢅꢀ  
Output Match with Simultaneous  
Input Steps at CH1, CH2  
5000  
Crosstalk vs Input Frequencꢄ  
CMRR vs Input Frequencꢄ  
–80  
–83  
–124  
–126  
–128  
–130  
4000  
3000  
2000  
1000  
0
CH1  
–86  
CH2  
–89  
–92  
–95  
–98  
–101  
–104  
–1000  
0
0.5  
1
1.5  
2
2.5  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
100  
200  
300  
400  
500  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
TIME (ns)  
232112 G10  
232112 G11  
232112 G12  
Offset Error vs Temperature  
Gain Error vs Temperature  
REFOUT1,2 Output vs Temperature  
0.50  
0.40  
0.30  
0.20  
0.10  
0
0.15  
0.10  
0.05  
0
200  
100  
0
4.096V  
2.048V  
–100  
–200  
–300  
–400  
–500  
CH1  
CH2  
–0.10  
–0.20  
–0.30  
–0.40  
–0.50  
–0.05  
–0.10  
0
25 50 75 100  
TEMPERATURE (°C)  
150  
125  
–50 –25  
0
25  
50  
75 100 125  
0
50  
TEMPERATURE (°C)  
–40 –25  
–50  
150  
100  
TEMPERATURE (°C)  
232112 G14  
232112 G13  
232112 G15  
Reference Current vs Temperature,  
VREF = 4ꢀ096V  
Supplꢄ Current  
OVDD Current vs SCK Frequencꢄ,  
CꢁOAD = 10pF  
vs Sample Frequencꢄ  
8
6
4
2
0
0.350  
0.345  
0.340  
0.335  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
9.0  
8.5  
8.0  
0
20 40 60 80  
TEMPERATURE (°C)  
120  
100  
–40 –20  
0
0.5  
1
1.5  
2
0
10 20 30 40 50 60 70 80 90 100 110  
SAMPLE RATE (Msps)  
SCK FREQUENCY (MHz)  
232112 G16  
232112 G17  
232112 G18  
232112f  
7
For more information www.linear.com/LTC2321-12  
LTC2321-12  
pin FuncTions  
+
V
ꢃPins 1, 8ꢅ: Power Supply. ꢀypass V to GND with  
SDO1 , SDO1 ꢃPins 15, 16ꢅ: Channel 1 Serial Data Out-  
DD  
DD  
a 1±µF ceramic and a ±.1µF ceramic close to the part. The  
DD  
put. The conversion result is shifted MSꢀ first on each  
V
pins should be shorted together and driven from the  
falling edge of SCK. In CMOS mode, the result is output  
+
same supply.  
on SDO1 . The logic level is determined by OV . Do  
DD  
not connect SDO1 . In LVDS mode, the result is output  
A
, A ꢃPins 2, 3ꢅ: Analog Differential Input Pins.  
+
IN2  
IN2  
+
differentially on SDO1 and SDO1 . These pins must be  
differentially terminated by an external 1±±Ω resistor at  
the receiver (FPGA).  
Full-scale range (A  
– A  
) is ±REFOUT2 voltage.  
IN2  
+
IN2  
These pins can be driven from V to GND.  
DD  
GND ꢃPins 4, 5, 10, 29ꢅ: Ground. These pins and exposed  
pad (Pin 29) must be tied directly to a solid ground plane.  
+
CꢁKOUT , CꢁKOUT ꢃPins 17, 18ꢅ: Serial Data Clock  
Output. CLKOUT provides a skew-matched clock to latch  
the SDO output at the receiver. In CMOS mode, the skew-  
A
, A  
ꢃPins 6, 7ꢅ: Analog Differential Input Pins.  
+
IN1  
IN1  
+
Full-scale range (A  
– A  
) is ±REFOUT1 voltage.  
IN1  
+
matched clock is output on CLKOUT . The logic level  
IN1  
These pins can be driven from V to GND.  
is determined by OV . Do not connect CLKOUT . For  
DD  
DD  
low throughput applications using SCK to latch the SDO  
CNV ꢃPin 9ꢅ: Convert Input. This pin, when high, defines  
the sampling phase. When this pin is driven low, the con-  
version phase is initiated and output data is clocked out.  
+
output, CLKOUT can be disabled by tying CLKOUT to  
OV . In LVDS mode, the skew-matched clock is output  
DD  
+
differentially on CLKOUT and CLKOUT . These pins must  
be differentially terminated by an external 1±±Ω resistor  
at the receiver (FPGA).  
This input pin is a TTL-style input typically driven at OV  
DD  
levels with a low jitter pulse, but it is bound to V levels.  
DD  
This pin is unaffected by the CMOS/LVDS pin.  
+
SDO2 , SDO2 ꢃPins 19, 20ꢅ: Channel 2 Serial Data Out-  
REFRTN1 ꢃPin 11ꢅ: Reference ꢀuffer 1 Output Return.  
ꢀypass REFRTN1 to REFOUT1. Do not tie the REFRTN1  
pin to the ground plane.  
put. The conversion result is shifted MSꢀ first on each  
falling edge of SCK. In CMOS mode, the result is output  
+
on SDO2 . The logic level is determined by OV . Do  
DD  
REFOUT1Pin12ꢅ:Referenceuffer1Output.Anonboard  
buffer nominally outputs 4.±96V to this pin. This pin is re-  
ferred to REFRTN1 and should be decoupled closely to the  
pin (no vias) with a ±.1µF (X7R, ±4±2 size) capacitor and  
a 1±μF (X5R, ±8±5 size) ceramic capacitor in parallel. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFINT pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
not connect SDO2 . In LVDS mode, the result is output  
+
differentially on SDO2 and SDO2 . These pins must be  
differentially terminated by an external 1±±Ω resistor at  
the receiver (FPGA).  
+
SCK , SCK ꢃPins 21, 22ꢅ: Serial Data Clock Input. The  
falling edge of this clock shifts the conversion result MSꢀ  
+
first onto the SDO pins. In CMOS mode, drive SCK with  
a single-ended clock. The logic level is determined by  
+
VꢂYP1 ꢃPin 13ꢅ: ꢀypass this internally supplied pin to  
ground with a 1µF ceramic capacitor. The nominal output  
voltage on this pin is 1.6V.  
OV . Do not connect SCK . In LVDS mode, drive SCK  
DD  
and SCK with a differential clock. These pins must be  
differentially terminated by an external 1±±Ω resistor at  
the receiver (ADC).  
OV ꢃPin 14ꢅ: I/O Interface Digital Power. The range of  
DD  
OV is 1.71V to 2.5V. This supply is nominally set to the  
DD  
OGNDPin23ꢅ:I/OGround.Thisgroundmustbetiedtothe  
groundplaneatasinglepoint.OV isbypassedtothispin.  
same supply as the host interface (CMOS: 1.8V or 2.5V,  
DD  
LVDS:2.5V).ypassOV toOGNDwitha±.1μFcapacitor.  
DD  
VꢂYP2 ꢃPin 24ꢅ: ꢀypass this internally supplied pin to  
ground with a 1µF ceramic capacitor. The nominal output  
voltage on this pin is 1.6V  
232112f  
8
For more information www.linear.com/LTC2321-12  
LTC2321-12  
pin FuncTions  
CMOS/VDS ꢃPin 25ꢅ: I/O Mode Select. Ground this pin  
REFRTN2 ꢃPin 27ꢅ: Reference ꢀuffer 2 Output Return.  
ꢀypass REFRTN2 to REFOUT2. Do not tie the REFRTN2  
pin to the ground plane.  
to enable CMOS mode, tie to OV to enable LVDS mode.  
DD  
Float this pin to enable low power LVDS mode.  
REFOUT2Pin26ꢅ:Referenceuffer2Output.Anonboard  
buffer nominally outputs 4.±96V to this pin. This pin is  
referred to REFRTN2 and should be decoupled closely to  
the pin (no vias) with a ±.1µF (X7R, ±4±2 size) capacitor  
and a 1±μF (X5R, ±8±5 size) ceramic capacitor in paral-  
lel. The internal buffer driving this pin may be disabled  
by grounding the REFINT pin. If the buffer is disabled,  
an external reference may drive this pin in the range of  
REFINT ꢃPin 28ꢅ: Reference ꢀuffer Output Enable. Tie to  
V
when using the internal reference. Tie to ground to  
DD  
disable the internal REFOUT1 and REFOUT2 buffers for  
use with external voltage references. This pin has a 5±±k  
internal pull-up to V .  
DD  
Exposed Pad ꢃPin 29ꢅ: Ground. Solder this pad to ground.  
1.25V to V .  
DD  
FuncTional block DiagraM  
V
DD  
1,8  
VBYP1  
LDO  
13  
A
A
+
IN1  
IN1  
+
SDO1  
7
+
LVDS/CMOS  
THREE-STATE  
SERIAL OUTPUT  
15  
16  
12-BIT + SIGN  
SAR ADC  
SDO1  
S/H  
6
REFINT  
REFOUT1  
28  
12  
GND  
G
G
4, 5, 10, 29  
1.2V REF  
OV  
DD  
14  
REFOUT2  
26  
9
+
CLKOUT  
17  
18  
CNV  
TIMING CONTROL  
LOGIC  
OUTPUT  
CLOCK DRIVER  
CLKOUT  
+
SCK  
21  
22  
LVDS/CMOS  
RECEIVERS  
SCK  
A
+
IN2  
+
2
3
+
SDO2  
LVDS/CMOS  
THREE-STATE  
SERIAL OUTPUT  
19  
20  
12-BIT + SIGN  
SAR ADC  
S/H  
SDO2  
A
V
IN2  
DD  
1,8  
VBYP2  
24  
LDO  
232112 BD  
232112f  
9
For more information www.linear.com/LTC2321-12  
LTC2321-12  
TiMing DiagraM  
ACQUISITION  
CONVERSION  
READOUT  
CNV  
1
2
3
3
4
4
5
6
6
10  
10  
11  
11  
12  
12  
13  
13  
SCK  
HI-Z  
SDO  
HI-Z  
B12  
B11  
B10  
B9  
B8  
B3  
B2  
B1  
B0  
1
2
5
CLKOUT  
SERIAL DATA BITS B[12:0] CORRESPOND TO CURRENT CONVERSION  
232112 TD  
applicaTions inForMaTion  
OVERVIEW  
CONVERTER OPERATION  
The LTC2321-12 is a low noise, high speed 12-bit + sign  
dual successive approximation register (SAR) ADC with  
differential inputs and wide input common mode range.  
Theflexibleanaloginputssupportfullydifferential,pseudo-  
differential bipolar and pseudo-differential unipolar drive  
without requiring any hardware configuration. The MSꢀ  
of the 12-bit + sign two’s complement output indicates  
the sign of the differential analog input voltage.  
The LTC2321-12 operates in two phases. During the  
acquisition phase, the sample capacitor is connected to  
the analog input pins A and A  
to sample the dif-  
+
IN  
IN  
ferential analog input voltage, as shown in Figure 3. A  
falling edge on the CNV pin initiates a conversion. Dur-  
ing the conversion phase, the 13-bit CDAC is sequenced  
through a successive approximation algorithm for each  
input SCK pulse, effectively comparing the sampled input  
with binary-weighted fractions of the reference voltage  
The ADC’s transfer function provides 13-bits of resolu-  
(e.g., V  
/2, V /4 … V /4±96) using a  
REFOUT REFOUT REFOUT  
tion across the full-scale span of 2 • V , as shown in  
REF1,2  
differential comparator. At the end of conversion, a CDAC  
output approximates the sampled analog input. The ADC  
control logic then prepares the 13-bit digital output code  
for serial transfer.  
Figure 2. If the analog input spans less than this full-scale,  
such as in the case of pseudo-differential drive, the ADC  
provides 12-bits of resolution across this reduced span,  
with the additional benefit of digitizing over- and under-  
range conditions, as shown in Table 1. This unique feature  
is particularly useful in control loop applications.  
TRANSFER FUNCTION  
The LTC2321-12 digitizes the full-scale voltage of 2 • RE-  
13  
FOUT1,2into2 levels,resultingina13-bitresolutionsize  
of 1mV with REFꢀUF = 4.±96V. The ideal transfer function  
is shown in Figure 2. The output data is in 2’s compli-  
ment format. When driven by fully differential inputs, the  
13  
transferfunctionspans2 codes.Whendrivenbypseudo  
12  
differential inputs, the transfer function spans 2 codes.  
232112f  
10  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
V
V
DD  
0 1111 1111 1111  
0 1111 1111 1110  
C
IN  
R
15Ω  
ON  
10pF  
A
A
+
IN1  
0 0000 0000 0001  
0 0000 0000 0000  
1 1111 1111 1111  
BIAS  
VOLTAGE  
DD  
C
IN  
R
15Ω  
ON  
10pF  
2 • REFOUT  
8192  
1LSB =  
1 0000 0000 0001  
1 0000 0000 0000  
232112 F03  
IN1  
–REFOUT  
–1  
LSB  
0
1
LSB  
REFOUT – 1LSB  
INPUT VOLTAGE (V)  
232112 F02  
Figure 3ꢀ The Equivalent Circuit for the Differential  
Analog Input of the ꢁTC2321-12  
Figure 2ꢀ ꢁTC2321-12 Transfer Function  
Single-Ended Signals  
Analog Input  
Single-ended signals can be directly digitized by the  
LTC2321-12. These signals should be sensed pseudo-  
differentially for improved common mode rejection. ꢀy  
connecting the reference signal (e.g., ground sense) of  
The differential inputs of the LTC2321-12 provide great  
flexibility to convert a wide variety of analog signals with  
no configuration required. The LTC2321-12 digitizes the  
difference voltage between the A and A pins while  
+
IN  
IN  
the main analog signal to the other A pin, any noise or  
IN  
supporting a wide common mode input range. The analog  
disturbance common to the two signals will be rejected  
by the high CMRR of the ADC. The LTC2321-12 flexibility  
handles both pseudo-differential unipolar and bipolar sig-  
nals, with no configuration required. The wide common  
mode input range relaxes the accuracy requirements of  
any signal conditioning circuits prior to the analog inputs.  
input signals can have an arbitrary relationship to each  
other, provided that they remain between V and GND.  
DD  
The LTC2321-12 can also digitize more limited classes of  
analog input signals such as pseudo-differential unipolar/  
bipolarandfullydifferentialwithnoconfigurationrequired.  
The analog inputs of the LTC2321-12 can be modeled by  
the equivalent circuit shown in Figure 3. The back-to-back  
diodes at the inputs form clamps that provide ESD protec-  
Pseudo-Differential ꢂipolar Input Range  
The pseudo-differential bipolar configuration represents  
driving one of the analog inputs at a fixed voltage, typically  
tion.Intheacquisitionphase,1±pF(C )fromthesampling  
IN  
capacitorinserieswithapproximately15Ω(R )fromthe  
ON  
V
/2, and applying a signal to the other A pin. In this  
REF  
IN  
on-resistance of the sampling switch is connected to the  
input. Any unwanted signal that is common to both inputs  
will be reduced by the common mode rejection of the ADC  
sampler. The inputs of the ADC core draw a small current  
case the analog input swings symmetrically around the  
fixedinputyieldingbipolartwo’scomplementoutputcodes  
with an ADC span of half of full-scale. This configuration  
is illustrated in Figure 4, and the corresponding transfer  
function in Figure 5. The fixed analog input pin need not  
spikewhilechargingtheC capacitorsduringacquisition.  
IN  
Table 1ꢀ Code Ranges for the Analog Input Operational Modes  
+
MODE  
SPAN ꢃV – V  
IN  
MIN CODE  
MAX CODE  
IN  
Fully Differential  
–REFOUT to +REFOUT  
–REFOUT/2 to +REFOUT/2  
± to REFOUT  
1 ±±±± ±±±± ±±±±  
1 1±±± ±±±± ±±±±  
± ±±±± ±±±± ±±±±  
± 1111 1111 1111  
± ±111 1111 1111  
± 1111 1111 1111  
Pseudo Differential ꢀipolar  
Pseudo Differential Unipolar  
232112f  
11  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
V
V
REF  
REF  
LT1819  
LTC2321-12  
25Ω  
25Ω  
0V  
0V  
A
A
+
REFOUT1  
VBYP1  
IN1  
10µF  
1µF  
V
REF  
220pF  
10k  
V
/2  
REF  
V
/2  
REF  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
SDO1  
CLKOUT  
SCK  
IN1  
10k  
1µF  
ONLY CHANNEL 1 SHOWN FOR CLARITY  
232112 F04  
Figure 4ꢀ Pseudo-Differential ꢂipolar Application Circuit  
ADC CODE  
full-scale. This configuration is illustrated in Figure 6, and  
thecorrespondingtransferfunctioninFigure7.Iftheinput  
(2’s COMPLEMENT)  
4095  
V
REF  
LT1818  
2047  
LTC2321-12  
V
REF  
25Ω  
+
0V  
A
+
IN1  
REFOUT1  
0V  
A
10µF  
1µF  
IN  
(A + – A )  
IN IN  
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
VBYP1  
220pF  
25Ω  
DOTTED REGIONS AVAILABLE  
BUT UNUSED  
–2048  
–4096  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
A
IN1  
SDO1  
CLKOUT  
SCK  
232112 F05  
232112 F06  
Figure 5ꢀ Pseudo-Differential ꢂipolar Transfer Function  
Figure 6ꢀ Pseudo-Differential Unipolar Application Circuit  
be set at V /2, but at some point within the V rails  
REF  
DD  
allowingthealternateinputtoswingsymmetricallyaround  
thisvoltage.Iftheinputsignal(A A )swingsbeyond  
ADC CODE  
(2’s COMPLEMENT)  
+
IN  
IN  
4095  
±REFOUT1,2/2, valid codes will be generated by the ADC  
and must be clamped by the user, if necessary.  
2047  
Pseudo-Differential Unipolar Input Range  
A
IN  
(A + – A )  
IN IN  
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
The pseudo-differential unipolar configuration represents  
driving one of the analog inputs at ground and applying a  
DOTTED REGIONS AVAILABLE  
BUT UNUSED  
–2048  
–4096  
signal to the other A pin. In this case, the analog input  
IN  
swings between ground and V yielding unipolar two’s  
REF  
232112 F07  
complement output codes with an ADC span of half of  
Figure 7ꢀ Pseudo-Differential Unipolar Transfer Function  
232112f  
12  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
signal (A – A ) swings negative, valid codes will be  
frequencies of 5±±kHz and less. Data sheet typical perfor-  
mancecurvestakenathigherfrequenciesusedaharmonic  
rejection filter between the ADC and the signal source to  
eliminatetheopampasthedominantsourceofdistortion.  
+
IN  
IN  
generated by the ADC and must be clamped by the user,  
if necessary.  
Single-Ended-to-Differential Conversion  
The fully-differential configuration yields an analog input  
Whilesingle-endedsignalscanbedirectlydigitizedaspre-  
viously discussed, single-ended to differential conversion  
circuits may also be used when higher dynamic range is  
desired. ꢀy producing a differential signal at the inputs of  
the LTC2321-12, the signal swing presented to the ADC is  
maximized, thus increasing the achievable SNR.  
The LT®1819 high speed dual operational amplifier is  
recommendedforperformingsingle-ended-to-differential  
conversions, as shown in Figure 8. In this case, the first  
amplifier is configured as a unity-gain buffer and the  
single-ended input signal directly drives the high imped-  
ance input of this amplifier.  
span (A – A ) of ±REFOUT1,2. In this configuration,  
+
IN  
IN  
theinputsignalisdrivenoneachAINpin, typicallyatequal  
spans but opposite polarity. This yields a high common  
mode rejection on the input signals. The common mode  
voltageoftheanaloginputcanbeanywherewithintheV  
DD  
input range, but will be limited by the peak swing of the  
full-range input signal. For example, if the internal refer-  
ence is used with V = 5V , the full-range input span  
DD  
DC  
will be ±4.±96V. Half of the input span is typically driven  
on each AIN pin, yielding a signal span for each AIN pin of  
4.±96V . This leaves ~±.9V of common mode variation  
P-P  
tolerance. When using external references, it is possible  
to increase common mode tolerance by compressing the  
ADC full-range codes into a tighter range. For example,  
Fullꢄ-Differential Inputs  
using an external 2.±48V reference with V = 5V the total  
DD  
To achievethefulldistortionperformanceoftheLTC2321-12,  
a low distortion fully-differential signal source driven  
through the LT1819 configured as two unity-gain buffers,  
as shown in Figure 9, can be used. This circuit achieves  
the full data sheet THD specification of –85dꢀ at input  
span would be ±2.±48V and each AIN span would be lim-  
ited to 2.±48V allowing a common mode range of ~3V.  
P-P  
Compressing the input span would incur a SNR penalty  
of approximately 1dꢀ. Input span compression may be  
usefulifsingle-supplyanaloginputdriversareusedwhich  
V
REF  
0V  
LT1819  
V
REF  
LT1819  
V
REF  
+
V
REF  
+
0V  
0V  
0V  
V
REF  
0V  
V
REF  
+
V
REF  
V
REF  
/2  
+
200Ω  
0V  
0V  
232112 F09  
200Ω  
232112 F08  
Figure 8ꢀ Single-Ended to Differential Driver  
Figure 9ꢀ ꢁT1819 ꢂuffering a Fullꢄ-Differential Signal Source  
232112f  
13  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
cannotswingrail-to-rail.Thefully-differentialconfiguration  
is illustrated in Figure 1±, with the corresponding transfer  
function illustrated in Figure 11.  
is important even for DC inputs, because the ADC inputs  
draw a current spike when during acquisition.  
For best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2321-12. The amplifier  
provides low output impedance to minimize gain error  
and allow for fast settling of the analog signal during the  
acquisition phase. It also provides isolation between the  
signal source and the ADC inputs, which draw a small  
current spike during acquisition.  
INPUT DRIVE CIRCUITS  
A low impedance source can directly drive the high im-  
pedance inputs of the LTC2321-12 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
V
V
REF  
REF  
0V  
LT1819  
LTC2321-12  
25Ω  
25Ω  
+
0V  
A
+
REFOUT1  
VBYP1  
IN1  
10µF  
1µF  
220pF  
V
V
REF  
0V  
REF  
+
0V  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
A
SDO1  
CLKOUT  
SCK  
IN1  
ONLY CHANNEL 1 SHOWN FOR CLARITY  
232112 F10  
Figure 10ꢀ Fullꢄ-Differential Application Circuit  
ADC CODE  
(2’s COMPLEMENT)  
4095  
2047  
A
IN  
(A + – A )  
INn  
INn  
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
–2048  
–4096  
232112 F11  
Figure 11ꢀ Fullꢄ-Differential Transfer Function  
232112f  
14  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
Input Filtering  
ADC REFERENCE  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Noisy input signals should be filtered prior  
to the buffer amplifier input with a low bandwidth filter  
to minimize noise. The simple 1-pole RC lowpass filter  
shown in Figure 12 is sufficient for many applications.  
Internal Reference  
The LTC2321-12 has an on-chip, low noise, low drift  
(2±ppm/°C max), temperature compensated bandgap  
reference. It is internally buffered and is available at  
REFOUT1,2 (Pins 12, 26). The reference buffer gains  
the internal reference voltage to 4.±96V for supply volt-  
The input resistor divider network, sampling switch on-  
ages V = 5V and to 2.±48V for V = 3.3V. ꢀypass  
DD  
DD  
resistance (R ) and the sample capacitor (C ) form a  
ON  
IN  
REFOUT1,2 to REFRTN1,2 with the parallel combination  
of a ±.1µF (X7R, ±4±2 size) capacitor and a 1±μF (X5R,  
±8±5 size) ceramic capacitor to compensate the reference  
buffer and minimize noise. The ±.1µF capacitor should  
be as close as possible to the LTC2321-12 package to  
secondlowpassfilterthatlimitstheinputbandwidthtothe  
ADC core to 11±MHz. A buffer amplifier with a low noise  
density must be selected to minimize the degradation of  
the SNR over this bandwidth.  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
minimize wiring inductance. Tie the REFINT pin to V to  
enable the internal reference buffer.  
Table 2ꢀ REFOUT1,2 Sources and Ranges vs VDD  
DD  
REFINT  
PIN  
DIFFERENTIAꢁ  
SPAN  
V
REFOUT1,2 PIN  
Internal 4.±96V  
DD  
5V  
5V  
±V  
±4.±96V  
±1.25V to ±5V  
±2.±48V  
5V  
External (1.25V to 5V)  
Internal 2.±48V  
3.3V  
3.3V  
3.3V  
±V  
External (1.25V to 3.3V)  
±1.25V to ±3.3V  
SINGLE-ENDED  
INPUT SIGNAL  
50Ω  
+
IN  
LTC2321  
IN  
SINGLE-ENDED  
3.3nF  
TO DIFFERENTIAL  
DRIVER  
232112 F12  
BW = 1MHz  
Figure 12ꢀ Input Signal Chain  
232112f  
15  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
External Reference  
±4±2 size) ceramic capacitor and a 1±μF ceramic capaci-  
tor (X5R, ±8±5 size) close to each of the REFOUT1,2 and  
REFRTN1,2 pins.  
The internal reference buffer can also be overdriven from  
1.25V to 5V with an external reference at REFOUT1,2  
as shown in Figure 13 (b and c). To do so, REFINT must  
be grounded to disable the reference buffer. A 55k internal  
resistance loads the REFOUT1,2 pins when the reference  
buffer is disabled. To maximize the input signal swing  
and corresponding SNR, the LTC6655-5 is recommended  
whenoverdrivingREFOUT.TheLTC6655-5offersthesame  
smallsize,accuracy,driftandextendedtemperaturerange  
as the LTC6655-4.±96. ꢀy using a 5V reference, a higher  
SNR can be achieved. We recommend bypassing the  
LTC6655-5 with a parallel combination of a ±.1µF (X7R,  
Internal Reference ꢂuffer Transient Response  
The REFOUT1,2 pins of the LTC2321-12 draw charge  
(Q  
) from the external bypass capacitors during each  
CONV  
conversion cycle. If the internal reference buffer is over-  
driven,theexternalreferencemustprovideallofthischarge  
with a DC current equivalent to I  
= Q  
/t  
.
REF  
CONV CYC  
Thus, the DC current draw of REFOUT1,2 depends  
on the sampling rate and output code. In applications  
where a burst of samples is taken after idling for long  
REFINT  
V
3.3V TO 5V  
DD  
REFINT  
REFOUT1  
REFOUT1  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
LTC2321-12  
LTC2321-12  
5V TO 13.2V  
10µF  
10µF  
10µF  
10µF  
LTC6655-4.096  
REFRTN1  
REFRTN2  
REFRTN1  
V
V
IN  
OUT_F  
V
OUT_S  
REFRTN2  
REFOUT2  
SHDN  
0.1µF  
REFOUT2  
GND  
GND  
232112 F13a  
232112 F13b  
ꢃ13aꢅ ꢁTC2321-12 Internal Reference Circuit  
ꢃ13bꢅ ꢁTC2321-12 with a Shared External Reference Circuit  
5V TO 13.2V  
REFINT  
LTC6655-4.096  
V
V
V
REFOUT1  
IN  
OUT_F  
SHDN  
0.1µF  
0.1µF  
OUT_S  
LTC2321-12  
0.1µF  
10µF  
10µF  
REFRTN1  
REFRTN2  
REFOUT2  
LTC6655-2.048  
V
SHDN  
V
IN  
OUT_F  
V
OUT_S  
GND  
0.1µF  
232112 F13c  
ꢃ13cꢅ ꢁTC2321-12 with Different External Reference Voltages  
Figure 13ꢀ Reference Connection  
232112f  
16  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
periods, as shown in Figure 14 , I  
quickly goes from  
DYNAMIC PERFORMANCE  
REFꢀUF  
approximately~75µAtoamaximumof4±±µAforREFOUT  
= 5V at 2Msps. This step in DC current draw triggers a  
transient response in the external reference that must be  
considered since any deviation in the voltage at REFOUT  
will affect the accuracy of the output code. If an external  
reference is used to overdrive REFOUT1,2 the fast settling  
LTC6655 reference is recommended.  
Fast Fourier transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢀy applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2321-12 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
CNV  
Signal-to-Noise and Distortion Ratio ꢃSINADꢅ  
IDLE  
PERIOD  
232112 F14  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is bandlimited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure16showsthattheLTC2321-12achieves  
a typical SINAD of 72.8dꢀ at a 2MHz sampling rate with  
a 5±±kHz input.  
Figure 14ꢀ CNV Waveform Showing ꢂurst Sampling  
5000  
4000  
3000  
2000  
1000  
0
CH1  
CH2  
Signal-to-Noise Ratio ꢃSNRꢅ  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 16 shows  
that the LTC2321-12 achieves a typical SNR of 73dꢀ at a  
2MHz sampling rate with a 5±±kHz input.  
–1000  
0
100  
200  
300  
400  
500  
TIME (ns)  
232112 F15  
Figure 15ꢀ Transient Response of the ꢁTC2321-12  
0
SNR = 72.9dB  
THD = –86.1dB  
SINAD = 72.8dB  
–20  
SFDR = 89.5dB  
–40  
–60  
–80  
–100  
–120  
–140  
0.2  
0.4  
0.6  
0.8  
0
1
FREQUENCY (MHz)  
232112 F16  
Figure 16ꢀ 32k Point FFT of the ꢁTC2321-12  
232112f  
17  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
Total Harmonic Distortion ꢃTHDꢅ  
the LTC2321-12 to communicate with any digital logic  
operating between 1.8V and 2.5V. When using LVDS I/O,  
Totalharmonicdistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
the OV supply must be set to 2.5V.  
DD  
Power Supplꢄ Sequencing  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
The LTC2321-12 does not have any specific power sup-  
ply sequencing requirements. Care should be taken to  
adhere to the maximum voltage relationships described  
in the Absolute Maximum Ratings section. The LTC2321-  
12 has a power-on-reset (POR) circuit that will reset the  
LTC2321-12 at initial power-up or whenever the power  
supply voltage drops below 2V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
reinitialize the ADC. No conversions should be initiated  
until 1±ms after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
V22 + V32 + V42 +…+ VN2  
THD=2±log  
V1  
where V1 is the RMS amplitude of the fundamental  
frequency and V2 through V are the amplitudes of the  
N
second through Nth harmonics.  
POWER CONSIDERATIONS  
The LTC2321-12 requires two power supplies: the 5V  
power supply (V ), and the digital input/output interface  
DD  
power supply (OV ). The flexible OV supply allows  
DD  
DD  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
9.0  
8.5  
8.0  
0
0.5  
1
1.5  
2
SAMPLE RATE (Msps)  
232112 F17  
Figure 17ꢀ Power Supplꢄ Current of the ꢁTC2321-12 Versus Sampling Rate  
232112f  
18  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
TIMING AND CONTROꢁ  
Nap/Sleep Modes  
Nap mode is a method to save power without sacrificing  
power-updelaysforsubsequentconversions.Sleepmode  
has substantial power savings, but a power-up delay is  
incurred to allow the reference and power systems to  
become valid. To enter nap mode on the LTC2321-12,  
the SCK signal must be held high or low and a series of  
two CNV pulses must be applied. This is the case for both  
CMOS and LVDS modes. The second rising edge of CNV  
initiates the nap state. The nap state will persist until either  
asinglerisingedgeofSCKisapplied,orfurtherCNVpulses  
are applied. The SCK rising edge will put the LTC2321-12  
back into the operational (full-power) state. When in nap  
mode, two additional pulses will put the LTC2321-12 in  
sleep mode. When configured for CMOS I/O operation, a  
single rising edge of SCK can return the LTC2321-12 into  
operational mode. A 1±ms delay is necessary after exiting  
sleep mode to allow the reference buffer to recharge the  
external filter capacitor. In LVDS mode, exit sleep mode  
by supplying a fifth CNV pulse. The fifth pulse will return  
the LTC2321-12 to operational mode, and further SCK  
pulses will keep the part from re-entering nap and sleep  
modes. The fifth SCK pulse also works in CMOS mode  
as a method to exit sleep. In the absence of SCK pulses,  
repetitive CNV pulses will cycle the LTC2321-12 between  
operational, nap and sleep modes indefinitely.  
CNV Timing  
The LTC2321-12 sampling and conversion is controlled  
by CNV. A rising edge on CNV will start sampling and the  
fallingedgestartstheconversionandreadoutprocess.The  
conversion process is timed by the SCK input clock. For  
optimum performance, CNV should be driven by a clean  
low jitter signal. The Typical Application at the back of the  
data sheet illustrates a recommended implementation to  
reduce the relatively large jitter from an FPGA CNV pulse  
source.Notethelowjitterinputclocktimesthefallingedge  
of the CNV signal. The rising edge jitter of CNV is much  
less critical to performance. The typical pulse width of the  
CNV signal is 3±ns at a 2Msps conversion rate.  
SCK Serial Data Clock Input  
The falling edge of this clock shifts the conversion result  
MSfirstontotheSDOpins. A64MHzexternalclockmust  
be applied at the SCK pin to achieve 2Msps throughput.  
CꢁKOUT Serial Data Clock Output  
The CLKOUT output provides a skew-matched clock to  
latch the SDO output at the receiver. The timing skew  
of the CLKOUT and SDO outputs are matched. For high  
throughput applications, using CLKOUT instead of SCK  
to capture the SDO output eases timing requirements at  
the receiver. For low throughput applications, CLKOUT  
can be disabled by tying CLKOUT to OV .  
RefertothetimingdiagramsinFigure18,Figure19,Figure2±  
and Figure 21 for more detailed timing information about  
sleep and nap modes.  
+
DD  
CNV  
1
2
NAP MODE  
FULL POWER MODE  
SCK  
HOLD STATIC HIGH OR LOW  
Z
WAKE ON 1ST SCK EDGE  
SDO1  
SDO2  
Z
232112 F18  
Figure 18ꢀ CMOS and VDS Mode NAP and WAKE Using SCK  
232112f  
19  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
REFOUT  
RECOVERY  
REFOUT1  
REFOUT2  
4.096V  
4.096V  
t
WAKE  
CNV  
1
2
3
4
NAP MODE  
SLEEP MODE  
FULL POWER MODE  
SCK  
HOLD STATIC HIGH OR LOW  
WAKE ON 1ST SCK EDGE  
SDO1  
SDO2  
Z
Z
Z
Z
232112 F19  
Figure 19ꢀ CMOS Mode SꢁEEP and WAKE Using SCK  
REFOUT  
RECOVERY  
REFOUT1  
REFOUT2  
4.096V  
4.096V  
t
WAKE  
WAKE ON 5TH  
CSB EDGE  
CNV  
1
2
3
4
5
NAP MODE  
SLEEP MODE  
FULL POWER MODE  
SCK  
HOLD STATIC HIGH OR LOW  
SDO1  
SDO2  
Z
Z
Z
Z
Z
232112 F20  
Figure 20ꢀ VDS and CMOS Mode SꢁEEP and WAKE Using CNV  
t
DSCKHCNVH  
CNV  
t
t
t
SCK  
SCKL  
3
SCKH  
1
2
4
5
5
6
6
10  
10  
11  
12  
12  
13  
13  
SCK  
HI-Z  
HI-Z  
B12  
B11  
B10  
B9  
B8  
B3  
B2  
B1  
B0  
SDO  
t
DCLKOUTSDOV  
1
2
3
4
11  
CLKOUT  
t
t
t
READOUT  
CNVH  
CONV  
t
THROUGHPUT  
232112 F21  
SERIAL DATA BITS B[12:0] CORRESPOND TO CURRENT CONVERSION  
Figure 21ꢀ ꢁTC2321-12 Timing Diagram  
232112f  
20  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
DIGITAL INTERFACE  
skew of the CLKOUT and SDO outputs are matched. For  
high throughput applications, using CLKOUT instead of  
SCK to capture the SDO output eases timing requirements  
at the receiver.  
The LTC2321-12 features a serial digital interface that  
is simple and straight forward to use. The flexible OV  
supply allows the LTC2321-12 to communicate with any  
digital logic operating between 1.8V and 2.5V. A 64MHz  
external clock must be applied at the SCK pin to achieve  
2Msps throughput.  
DD  
+
+
+
InCMOSmode, usetheSDO1 , SDO2 andCLKOUT pins  
+
as outputs. Use the SCK pin as an input. Do not connect  
the SDO1 , SDO2 , SCK and CLKOUT pins, as they each  
have internal pull-down circuitry to OGND.  
InadditiontoastandardCMOSSPIinterface,theLTC2321-  
12 provides an optional LVDS SPI interface to support low  
noise digital design. The CMOS/LVDS pin is used to select  
the digital interface mode.  
+
+
In LVDS mode, use the SDO1 /SDO1 , SDO2 /SDO2 and  
+
CLKOUT /CLKOUT pins as differential outputs. These  
pinsmustbedifferentiallyterminatedbyanexternal100Ω  
resistor at the receiver (FPGA). The SCK /SCK pins are  
differential inputs and must be terminated differentially by  
an external 100Ω resistor at the receiver (ADC).  
+
ThefallingedgeofSCKoutputstheconversionresultMSB  
first on the SDO pins. CLKOUT provides a skew-matched  
clock to latch the SDO output at the receiver. The timing  
2.5V  
LTC2321-12  
FPGA OR DSP  
OV  
DD  
+
SDO1  
+
100Ω  
+
SDO1  
CLKOUT  
+
100Ω  
+
CLKOUT  
SCK  
+
2.5V  
100Ω  
+
CMOS/LVDS  
SCK  
SDO2  
+
100Ω  
SDO2  
CNV  
232112 F22  
Figure 22. LTC2321 Using the LVDS Interface  
232112f  
21  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
applicaTions inForMaTion  
BOARD LAYOUT  
Recommended Layout  
To obtain the best performance from the LTC2321-12,  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCB) should ensure the digital and  
analog signal lines are separated as much as possible.  
In particular, care should be taken not to run any digital  
clocks or signals adjacent to analog signals or underneath  
the ADC.  
ThefollowingisanexampleofarecommendedPCBlayout.  
A single solid ground plane is used. Bypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information, refer to the DC1996,  
the evaluation kit for the LTC2321-12.  
Figure 1. Layer 1, Top Layer  
Figure 3. Layer 3, Power Plane  
Figure 2. Layer 2, Ground Plane  
Figure 4. Layer 4, Bottom Layer  
232112f  
22  
For more information www.linear.com/LTC2321-12  
LTC2321-12  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UFD Package  
28-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1712 Rev B)  
0.70 ±0.05  
4.50 ±0.05  
3.10 ±0.05  
2.50 REF  
2.65 ±0.05  
3.65 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
3.50 REF  
4.10 ±0.05  
5.50 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
2.50 REF  
R = 0.115  
TYP  
R = 0.20 OR 0.35  
R = 0.05  
TYP  
× 45° CHAMFER  
0.75 ±0.05  
4.00 ±0.10  
(2 SIDES)  
27  
28  
0.40 ±0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 ±0.10  
(2 SIDES)  
3.50 REF  
3.65 ±0.10  
2.65 ±0.10  
(UFD28) QFN 0506 REV B  
0.25 ±0.05  
0.200 REF  
0.50 BSC  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
232112f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
23  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC2321-12  
Typical applicaTion  
Low Jitter Clock Timing with RF Sine Generator Using Clock Squaring/Level-Shifting Circuit and Retiming Flip-Flop  
V
CC  
NC7SVUO4P5X  
0.1µF  
1k  
MASTER_CLOCK  
V
CC  
50Ω  
1k  
D
PRE  
NC7SV74KBX  
CONV  
Q
CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
CLR  
CONV ENABLE  
LTC2321-12  
CNV  
SCK  
10Ω  
10Ω  
10Ω  
CLKOUT  
GND  
CMOS/LVDS SDO1  
SDO2  
232112 TA02  
NC7SVU04P5X (× 3)  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC2321-16/LTC2321-14 16-Bit/14-Bit, 2Msps Simultaneous Sampling ADC 3.3V/5V Supply Differential Input Common Mode Range, 4mm × 5mm  
QFN-28 Package  
LTC2314-14  
14-Bit, 4.5Msps Serial ADC  
3V/5V Supply, 18mW/31mW, 20ppm/°C Max Internal Reference,  
Unipolar Inputs, 8-Lead TSOT-23 Package  
LTC2370-16/LTC2368-16/ 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial,  
LTC2367-16/LTC2364-16 Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 94dB SNR, 5V Input Range,  
DGC, Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2380-16/LTC2378-16/ 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial,  
LTC2377-16/LTC2376-16 Low Power ADC  
2.5V Supply, Differential Input, 96.2dB SNR, ±5V Input Range, DGC, Pin-  
Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
DACs  
LTC2632  
Dual 12-/10-/8-Bit, SPI V  
Reference  
DACs with Internal  
DACs with External  
2.7V to 5.5V Supply Range, 10ppm/°C Reference, External REF Mode,  
Rail-to-Rail Output, 8-Pin ThinSOT™ Package  
OUT  
LTC2602/LTC2612/  
LTC2622  
Dual 16-/14-/12-Bit SPI V  
Reference  
300μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output, 8-Lead  
MSOP Package  
OUT  
References  
LTC6655  
Precision Low Drift, Low Noise Buffered Reference 5V/4.096V/3.3V/3V/2.5V/2.048V/1.25V, 5ppm/°C, 0.25ppm  
Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
Precision Low Drift, Low Noise Buffered Reference 5V/4.096V/3.3V/3V/2.5V/2.048V/1.25V, 5ppm/°C, 2.1ppm  
Peak-to-Peak Noise, MSOP-8 Package  
Amplifiers  
LT1818/LT1819  
400MHz, 2500V/µs, 9mA Single/Dual Operational  
Amplifiers  
–85dBc Distortion at 5MHz, 6nV/√Hz Input Noise Voltage, 9mA Supply  
Current, Unity-Gain Stable  
LT1806  
LT6200  
325MHz, Single, Rail-to-Rail Input and Output, Low –80dBc Distortion at 5MHz, 3.5nV/√Hz Input Noise Voltage,  
Distortion, Low Noise Precision Op Amps 9mA Supply Current, Unity-Gain Stable  
165MHz, Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise, Low Distortion, Unity-Gain Stable  
Low Noise, Op Amp Family  
232112f  
LT 0514 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2321-12  
LINEAR TECHNOLOGY CORPORATION 2014  

相关型号:

LTC2323

Dual 16-Bit/14-Bit/12-Bit, 5Msps/2Msps, Serial, High Speed SAR ADCs
Linear

LTC2323-12

16-Bit, 5Msps Differential Input ADC with Wide Input Common Mode Range
Linear

LTC2323-14

16-Bit, 5Msps Differential Input ADC with Wide Input Common Mode Range
Linear

LTC2323-16

16-Bit, 5Msps Differential Input ADC with Wide Input Common Mode Range
Linear

LTC2324

Quad/Octal 16-Bit/14-Bit/12-Bit, 5Msps/2Msps/1.5Msps, Serial, High Speed SAR ADCs
Linear

LTC2324-12

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2324-14

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2324-16

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2324CUKG-14#PBF

LTC2324-12 - Quad, 12-Bit + Sign, 2Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2324HUKG-12#PBF

LTC2324-12 - Quad, 12-Bit + Sign, 2Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2324HUKG-14#PBF

LTC2324-14 - Quad, 14-Bit + Sign, 2Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2324HUKG-16#PBF

LTC2324-16 - Quad, 16-Bit, 2Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 125&deg;C
Linear